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. Introduction 

The COVID-19 outbreak has motivated a large number of nu-

erical studies using epidemiology models [1,2] . A commonly used

odel is the Susceptible-Exposed-Infected-Removed (SEIR) model

3] . This model is formulated as a system of nonlinear ordinary

ifferential equations, for which no exact analytic solution has yet

een found. For this reason, most of the recent works focus on

he numerical analysis of statistical ensembles of initial data for

hese equations. However, due to the uncertainty and often unreli-

bility of the clinical data, the prediction about the real evolution

f the epidemic is rather difficult, if not impossible [4,5] . On the

ther hand, the SEIR epidemic model provides a deterministic evo-

ution for some given initial state. Therefore, the aim of this work

s to provide simple expressions of the main characteristics of the

opulation of individuals that have been in contact with the dis-

ase, as of instance the peak of the infected population and the

ime after which it occurs, the final number of individuals who

ave contracted the disease and the temporal shape of the infec-

ious population’s curves. These analytical expressions can become

seful through their application to the COVID-19, to obtain funda-

ental parameters as the reproduction number r and the epidemic

tarting time. 

The paper is organized as follow, In Section 2 we recall the SEIR

odel; in Section 3 we study the linear regime with the exponen-

ial growing and decaying evolution, depending on the reproduc-

ion number r ; in Section 4 we investigate the nonlinear regime

n the free spread evolution with r > 1. We approximate the ex-
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ct model of equations by a reduced model where the decaying

ode is adiabatically eliminated. This reduced model allows to ob-

ain analytical results which have been seen to be in good agree-

ent with the exact numerical solution. Section 5 summarizes the

esults and draws the conclusions. 

. The SEIR model 

We used the susceptible-exposed-infected-removed (SEIR) com- 

artment model [3,6–8] to characterize the early spreading of

OVID-19, where each individual could be in one of the follow-

ng states: susceptible ( S ), exposed ( E , being infected but with-

ut infectiousness), infected ( I , with infectiousness), recovered ( R )

nd dead ( D ). At later times a susceptible individual in the state S

ould turn to be an individual in the exposed state E with a rate

 / τ I , where r is the reproduction number (i.e. the average number

f infected people generated by each infected person during the

esease) and τI = 1 /γ2 is the average time in the infected state I .

n exposed individual in the state E becomes infected, i.e. in the

tate I in an average time τE = 1 /γ1 . Then the infected individual

s removed from the total population with the rate γ 2 either by

ecovering ( R ) or dying ( D ) with a mean case fatality proportion p .

he dynamical process of SEIR is described by the following set of

quations: 

˙ 
 = −rγ2 

(
S 

N 

)
I, (1) 

˙ 
 = rγ2 

(
S 

N 

)
I − γ1 E, (2) 

˙ 
 = γ1 E − γ2 I, (3) 

https://doi.org/10.1016/j.chaos.2020.110243
http://www.ScienceDirect.com
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˙ R = (1 − p) γ2 I, (4)

˙ D = pγ2 I. (5)

Here S ( t ), E ( t ), I ( t ), R ( t ) and D ( t ) respectively represent the num-

ber of individuals in the susceptible, exposed, infectious, recovered

and death states at time t and N is the total number of individuals

in the system such that N(t) = S(t) + E(t) + I(t) + R (t) . Finally, the

cumulative population C is 

 = E + I + R + D, (6)

equal to the total population of individuals who have contracted

the infection. 

3. Linear regime 

If E ( t ), I ( t ), R ( t ) � N ( t ), then the susceptible population S can be

approximated by the total population N (i.e. S ~ N ) and the equa-

tions for the exposed and infected population are linear: 

˙ E = rγ2 I − γ1 E (7)

˙ I = γ1 E − γ2 I (8)

3.1. General solution of the linear equations 

Introducing the Laplace transforms 

˜ E (λ) = 

∫ ∞ 

0 

E(t) e −λt dt 

˜ I (λ) = 

∫ ∞ 

0 

I(t) e −λt dt 

with Re λ > 0, Eqs. (7) and (8) becomes (
λ + γ1 −rγ2 

−γ1 λ + γ2 

)(
˜ E 
˜ I 

)
= 

(
E(0) 
I(0) 

)
(9)

where E (0) and I (0) are the initial conditions. The eigenvalues λ
are solution of ∣∣∣∣λ + γ1 −rγ2 

−γ1 λ + γ2 

∣∣∣∣ = 0 (10)

giving 

det (λ) = λ2 + (γ1 + γ2 ) λ + γ1 γ2 (1 − r) = 0 (11)

with solutions 

λ± = −γ1 + γ2 

2 

± 1 

2 

√ 

� (12)

where 

� = (γ1 + γ2 ) 
2 + 4 γ1 γ2 (r − 1) = (γ1 − γ2 ) 

2 + 4 rγ1 γ2 (13)

Since � > 0 the eigenvalues are real. Depending on r , we distin-

guish three cases: 

a) If r > 1 then 

√ 

� > γ1 + γ2 , so that λ+ > 0 and λ− < 0 . The

solution grows exponentially (explosive regime); 

b) If r < 1 then 

√ 

� < γ1 + γ2 , so that both λ+ < 0 and λ− < 0 .

The solution decays exponentially (relaxation regime); 

c) If r = 1 then 

√ 

� = γ1 + γ2 , so that λ+ = 0 and λ− = −(γ1 +
γ2 ) . The solution remains partially constant (marginally stable
regime). o
For the cases (a) and (b) the solution is 

(t) = 

1 √ 

�

{√ 

�E(0) cosh ( 
√ 

�t/ 2) + [(γ2 − γ1 ) E(0) 

+2 rγ2 I(0)] sinh ( 
√ 

�t/ 2) 
}

e −(γ1 + γ2 ) t/ 2 (14)

(t) = 

1 √ 

�

{√ 

�I(0) cosh ( 
√ 

�t/ 2) + [(γ1 − γ2 ) I(0) 

+2 γ1 E(0)] sinh ( 
√ 

�t/ 2) 
}

e −(γ1 + γ2 ) t/ 2 (15)

hereas in the case (c) ( r = 1 ) the solution is 

 (t) = 

1 

2 

[ E (0) + I(0)] + 

1 

2 

[ E(0) − I(0)] e −(γ1 + γ2 ) t/ 2 (16)

(t) = 

1 

2 

[ E(0) + I(0)] − 1 

2 

[ E(0) − I(0)] e −(γ1 + γ2 ) t/ 2 . (17)

.2. Analysis 

The only parameter which can be controlled by confinement

easures is the reproduction number r . In the following we as-

ume that for COVID-19 the characteristic times are τE = 3 . 69 days

nd τI = 3 . 48 days [9] . We consider the time evolution of the pop-

lation E and I for r > 1, r = 1 and r < 1, corresponding to the

xplosive, marginally stable and relaxation regimes, respectively. 

.2.1. Explosive regime 

For r > 1 and λ+ t � 1 , 

 (t) = 

1 

2 

{
E (0) + 

1 √ 

�
[(γ2 − γ1 ) E(0) + 2 rγ2 I(0)] 

}
e λ+ t (18)

 (t) = 

1 

2 

{
I (0) + 

1 √ 

�
[(γ1 − γ2 ) I(0) + 2 γ1 E(0)] 

}
e λ+ t (19)

ith λ+ > 0 . 

.2.2. Marginally stable regime 

When r = 1 , in the asymptotic limit t � τ E , τ I , E and I are con-

tant, 

 = I = 

1 

2 

[ E(0) + I(0)] (20)

nd the death population grows linearly in time 

 (t) = D (0) + 

pγ2 

γ1 + γ2 

[ I(0) − E(0)] + 

1 

2 

pγ2 [ E(0) + I(0)] t (21)

here D (0), E (0) and I (0) are the values taken at time when r starts

o be r = 1 . 

.2.3. Relaxation regime 

When r < 1, λ+ is negative and E and I tend to zero, whereas

 tends to the following constant value, 

 (∞ ) = D (0) + 

p 

2 γ2 (1 − r) 
{ [ γ1 + γ2 (1 + 2 r)] I(0) 

+(γ2 − γ1 ) E(0) } (22)

here D (0), E (0) and I (0) are the values taken at time when r

tarts to be r < 1. Fig. 1 shows a typical temporal evolution of I ( t )

nd D ( t ) starting with r > 1, then subsequently changed to r = 1

nd later on to a value r < 1. The regime is linear (i.e. with E,

 � N ), the initial values are E(0) = 10 and I(0) = 0 and p = 0 . 01 .

he red dashed line is for r = 3 (explosive regime). The green

ashed-dotted line is for r changed from r = 3 to r = 1 at t = 20

marginally stable regime) and the blue solid line is for r = 3 un-

il t = 20 , then r = 1 between t = 20 and t = 30 and finally r = 0 . 8

or t > 30 (relaxation regime). Notice the asymmetry of the curve

f I ( t ) due to the different growing and decaying rates. 
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Fig. 1. Evolution of I ( t ) and D ( t ) with r = 3 (red dashed line), r = 1 after t = 20 days (green dashed-dotted line) and r = 0 . 8 after t = 30 days (blue solid line). Initial 

conditions: E(0) = 10 . I(0) = 0 , N(0) = 6 .e 7 ; p = 0 . 01 . 
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. Nonlinear regime 

In the following, we investigate the nonlinear regime with a

onstant reproduction number r > 1. This corresponds to a free

pread of the infection, with an initial exponential growth of the

xposed population E , and so also of I and D . The exponential

rowth stops when susceptible population S becomes sensibly less

hen the total number N of the individuals. This regime is simi-

ar to the saturation in a single-mode laser, where steady-state is

eached when the gain of emitted photons equals the losses by the

avity [10] . Notice that 

 + I + S + R + D = N 0 (23)

s a constant of motion and N(t) = N 0 − D (t) . However, if p � 1

e always have D � N 0 , so that with a good approximation we

an approximate N by N 0 . Introducing the removed population Q =
 + D, we can eliminate S = N 0 − (E + I + Q ) using the constant of

otion and obtain 

˙ 
 = rγ2 

(
1 − E + I + Q 

N 0 

)
I − γ1 E (24) 

˙ 
 = γ1 E − γ2 I (25) 

˙ 
 = γ2 I (26) 

e normalize the variables by N 0 defining x = E/N 0 , y = I/N 0 and

 = C/N 0 where C = E + I + Q is the cumulative population, i.e. the

otal number of individuals who have contracted the infection.

hen the equations become 

˙ 
 = rγ2 (1 − z) y − γ1 x (27)

˙ 
 = γ1 x − γ2 y (28) 

˙ 
 = rγ2 (1 − z) y (29) 

These equations have a single steady-state solution (i.e. ˙ x =
˙  = ˙ z = 0 ) with x = y = 0 (end of the epidemics) and z = z 0 with

 < z 0 < 1. This solution is stable if r 0 = r(1 − z 0 ) < 1 . We see that

he stability condition implies 

 0 > 1 − 1 

r 
(30) 

n Fig. 2 we plot E / N, I / N and C / N for r = 1 . 5 , p = 0 . 01 , τE =
 . 69 days, τ = 3 . 48 days and initial conditions E(0) = 10 , I(0) = 0 ,
I 
(0) = 6 · 10 7 . We observe that C / N tends to a steady-state value of

bout 0.6, whereas the peak of I / N is about 0.03: it means that for

hese parameters the 60% of the total population has contracted

he infection and the peak the infected population is about 3% of

he total population. Note that these results are independent on p

nd depend only on τ E , τ I and r . 

.1. Reduced model 

In this section we find an approximated analytic solution of

qs. (27) –(29) in the free spread evolution with r > 1. The idea is

o adiabatically eliminate the decaying mode with negative eigen-

alue λ−. To this aim, it is convenient to write Eqs. (27) –(29) in the

asis of the eigenvalues λ±. Writing again the linear Eqs. (7) and

8) in the form 

d 

dt 

(
x 
y 

)
= 

(
−γ1 rγ2 

γ1 −γ2 

)(
x 
y 

)
(31) 

he normalized eigenvectors associated to the eigenvalues λ± of

q. (12) are 

 ± = 

1 

D ±

(
γ2 + λ±

γ1 

)
(32) 

here 

 ± = 

√ 

γ 2 
1 

+ (γ2 + λ±) 2 (33) 

ence, in the new basis 

x 
y 

)
= 

(
γ2 + λ+ 

D + 
γ2 + λ−

D −
γ1 

D + 
γ1 

D −

)(
x̄ 
ȳ 

)
(34) 

nd the inverse is 

x̄ 
ȳ 

)
= 

( 

γ1 

D −
− γ2 + λ−

D −

− γ1 

D + 
γ2 + λ+ 

D + 

) (
x 
y 

)
(35) 

n the new basis Eqs. (27) –(29) take the form: 

˙ ¯
 = λ+ ̄x − rγ1 γ2 √ 

�

(
x̄ + 

D + 
D −

ȳ 

)
z (36) 

˙ ¯
 = λ−ȳ + 

rγ1 γ2 √ 

�

(
D −
D + 

x̄ + ȳ 

)
z (37) 

˙ 
 = rγ1 γ2 

(
x̄ 

D + 
+ 

ȳ 

D −

)
(1 − z) (38) 
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Fig. 2. Simulation with r = 1 . 5 and p = 0 . 01 . Initial conditions: E(0) = 10 , I(0) = 0 , N = 6 · 10 7 . I / N (a) and C / N (b) vs. time from the numerical solution (solid black line) 

and from the analytic expressions, Eqs. (63) and (62) (dashed blue line). The time t is in units of days and τE = 3 . 69 days, τI = 3 . 48 days. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Plot of s vs. z for r = 1 . 5 , 2 , 2 . 5 , 3 . 0 , from Eq. (52) . 
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Notice that as expected in the linear regime the dynamics of x̄ and

ȳ are uncoupled. Now we consider the free spread regime with

r > 1 such that λ+ is positive and λ− is negative. If r − 1 is small,

then | λ−| � λ+ and we can adiabatically eliminate the ’slave’ vari-

able ȳ . Neglecting ˙ ȳ in (37) we obtain 

D + 
D −

ȳ ≈ − rγ1 γ2 √ 

�

x̄ z 

λ− + (rγ1 γ2 / 
√ 

�) z 
(39)

which when inserted in Eqs. (36) and (38) yields 

˙ x̄ = 

1 

λ− + (rγ1 γ2 / 
√ 

�) z 

[
λ+ λ− + 

rγ1 γ2 √ 

�
(λ+ − λ−) z 

]
x̄ (40)

˙ z = 

rγ1 γ2 

D + 

(
λ−

λ− + (rγ1 γ2 / 
√ 

�) z 

)
x̄ (1 − z) (41)

Since λ+ − λ− = 

√ 

� and γ1 γ2 r = λ+ λ−[ r / (1 − r )] , 

˙ x̄ = 

λ+ 
1 − βz 

[ 
1 − z 

k 

] 
x̄ (42)

˙ z = −λ+ λ−
kD + 

(1 − z) 

1 − βz 
x̄ (43)

D + 
D −

ȳ = 

βz 

1 − βz 
x̄ (44)

where k = (r − 1) /r and β = λ+ /k 
√ 

�. Finally, the original vari-

ables are 

y = 

γ1 

D + 

[
x̄ 

1 − βz 

]
(45)

x = 

γ2 

γ1 

[
1 + 

λ+ 
γ1 

(
1 − z 

k 

)]
y (46)

4.2. Analytical solution 

Eqs. (42) and (43) may provide some analytical result. Rescaling

the time as 

τ = 

λ+ 
k 

t (47)

and defining 

s = −λ−
D + 

x̄ (48)
qs. (42) and (43) take the form: 

ds 

dτ
= 

(
k − z 

1 − βz 

)
s (49)

dz 

dτ
= 

(
1 − z 

1 − βz 

)
s (50)

n the limit β → 0 they have the form of Lotka-Volterra equations

11] . From them, dividing member by member, it results 

ds 

dz 
= 

k − z 

1 − z 
(51)

hich when integrated yields 

 = z + 

1 

r 
ln | 1 − z| (52)

here we assumed s → 0 when z → 0. On the other hand, s → 0

hen z → z ∞ 

(see Fig. 3 ), where z ∞ 

is the solution of the tran-

cendental equation 

z ∞ 

+ ln | 1 − z ∞ 

| = 0 (53)

he same transcendental Eq. (53) for z ∞ 

has been obtained for the

IR compartmental model [12,13] . Here we have demonstrated its

alidity also for the SEIR model. 
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We see from Fig. 3 that s = 0 for z = 0 and z = z ∞ 

. The maxi-

um value of s occurs when z = k = 1 − 1 /r so that 

 max = 1 − 1 

r 
− 1 

r 
ln r (54) 

hese simple equations provide two analytic expressions for the

symptotic value of C / N and for the peak of I / N . 

Let’s now find an approximated solution of z as a function of

he scaled time τ . Using Eq. (52) in Eq. (50) we obtain a differen-

ial equation for z : 

dz 

dτ
= 

1 − z 

1 − βz 

(
z + 

1 

r 
ln | 1 − z| 

)
(55) 

rom the numerical analysis and assuming βz � 1, we find that

 ( τ ) is well approximated by the following function: 

(τ ) = 

z ∞ 

2 

{ 1 + tanh [ k (τ − τd ) / 2] } = 

z ∞ 

e k (τ−τd ) 

1 + e k (τ−τd ) 
(56) 

here τ d depends on the initial conditions. From (49) it follows

or βz � 1 

ds 

dτ
= [ k − z(τ ) ] s = 

{ 

k − z ∞ 

2 

− z ∞ 

2 

tanh [ k (τ − τd ) / 2] 

} 

s (57) 

his equation can be integrated to give 

 (τ ) = s (0) 

{
cosh [ kτd / 2] 

cosh [ k (τ − τd ) / 2] 

}z ∞ /k 

e (k −z ∞ / 2) τ (58)

ince k τ d � 1 and, from Eqs. (52) and (56) , s (0) ≈ kz ∞ 

exp (−kτd ) ,

e can write Eq. (58) in the following form: 

 (τ ) = kz ∞ 

[
sech [ k (τ − τd ) / 2] 

2 

]z ∞ /k 

e (k −z ∞ / 2)(τ−τd ) (59)

he time τmax at which s ( τ ) is maximum can be evaluated from

he condition z(τmax ) = k which, using Eq. (56) , yields 

max = τd + 

1 

k 
ln 

[
k 

z ∞ 

− k 

]
(60) 

here τd = (1 /k ) ln [ kz ∞ 

/s (0)] . For instance, for r = 1 . 5 and s (0) =
0 −5 , we obtain z = 0 . 5828 , s = 0 . 063 and τ = 31 . 25 . 
∞ max max 

ig. 4. (a): Plot of C ∞ / N vs. r , from the numerical solution of Eqs. (1) - (5) (dashed line) an

hreshold value k = 1 − 1 /r. (b) Peak value of I / N vs. r from the numerical solution of Eqs
. Results and conclusions 

We have obtained analytical expressions for the asymptotic

alue of the cumulative population fraction C / N and the peak of

he infectious population fraction I / N in the case of free spread

volution of COVID-19. Furthermore, we have obtained approxi-

ated expressions of these quantities as a function of time and the

imes at which the peak and the end of the epidemics is expected.

e summarize here below these results: 

a) The asymptotic value of the cumulative population fraction is

C ∞ 

/N = z ∞ 

, where z ∞ 

is the solution of the transcendental

Eq. (53) . A comparison between the exact solution obtained by

integrating Eqs. (1) –(5) and the solution of Eq. (53) is shown in

Fig. 4 (a). Notice that this value depends only on the reproduc-

tion number r . 

b) The peak value of the infectious population fraction is, from

Eqs. (45) , (48) and (54) , 

I peak 

N 

= 

4 γ1 

√ 

�

(γ1 + γ2 + 

√ 

�) 2 

[ 
1 − 1 

r 
− 1 

r 
ln r 

] 
(61) 

The agreement of this expression with the exact result shown

in Fig. 4 (b) is better for values of r closer to the threshold r = 1 .

c) We have obtained an approximated temporal profile of C ( t )/ N ,

C(t) 

N 

= z(t) = 

z ∞ 

2 

{ 1 + tanh [ λ+ (t − t d ) / 2] } (62) 

where t d = (1 /λ+ ) ln [ kz ∞ 

/s 0 ] and s 0 = (−λ−/D + D −)[ γ1 x 0 −
(γ2 + λ−) y 0 ] , where x 0 and y 0 are the initial values of x and y .

From this expression we have obtained the expression of I ( t )/ N

as a function of time: 

I(t) 

N 

= 

(
− γ1 

λ−

)
s (t) 

1 − βz(t) 
(63) 

where β = λ+ /k 
√ 

� and 

s (t) = kz ∞ 

[
sech [ λ+ (t − t d ) / 2] 

2 

]
z ∞ /k e λ+ (1 −z ∞ / 2 k )(t−t d ) (64)

The good agreement of Eqs. (62) and (63) with the exact nu-

merical solution of Eqs. (1) –(5) is shown in Fig. 2 . 

d) The time at which the peak of I / N is reached is 

t peak = 

1 

λ+ 
ln 

[
k 2 z ∞ 

s 0 (z ∞ 

− k ) 

]
(65) 
d from the analytical result of Eq. (53) (continuous line). The dotted red line is the 

. (1) - (5) (dashed line) and from Eq. (61) (continuous line). 
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Fig. 5. Plot of peak time t peak (in units of days) vs. r for initial values of E(0) = 10 

and I(0) = 0 , N(0) = 6 · 10 7 and τE = 3 . 69 days, τI = 3 . 48 days. 
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Fig. 5 shows t peak (in units of days) as a function of r for an

initial value of E(0) = 10 , I(0) = 0 and N(0) = 6 · 10 7 . 

These analytic expressions can be useful for deriving the uncer-

tainty in the estimates of COVID-19 caused by the fluctuations of

the values of the control parameters, as for instance the reproduc-

tion number r . In fact, the results of Ref. [4] suggest that uncertain-

ties in both parameters and initial conditions rapidly propagate in

the model and can result in different outcomes of the epidemics.

For instance, Fig. 4 a and b show the dependence of the fraction of

the final cumulative fraction, C ∞ 

/ N , and the daily infections peak,

I peak / N , as a function of r . We observe that the sensitivity of C ∞ 

/ N

on r variations is larger when r is close to unity (with approxi-

mately C ∞ 

/N ≈ 2(r − 1) ) whereas it decreases for increasing val-

ues of r . On the other hand, I peak / N grows almost linearly with r

(approximately as I peak /N ≈ 0 . 07(r − 1) ), so that its sensitivity to r

variations is almost constant. Finally, the uncertainty of the peak

time t peak (see Fig. 5 ) on r variations is very large for r close to

unity and it reduces strongly at larger r . 

In conclusions, we have obtained analytical expressions for the

peak and asymptotic values of COVID-19 pandemic curves in the

free spread as a function of the reproduction number and the two

average times in the exposed and infected states. The results have

been obtained by reducing the exact nonlinear model by adiabati-

cally eliminating the decaying mode of the linear regime. This al-

lows to reduce the SEIR model of a set of two equations similar to
he Lotka-Volterra equations, from which exact and approximated

olutions can be obtained. The analytical results have been com-

ared with the exact numerical solution, showing good agreement.

articular interesting is the asymptotic fraction of the removed (re-

overed+deaths) population fraction, which depends only on the

eproduction number r . Finally, the infected population curve is an

lmost symmetric function described by an hyperbolic secant func-

ion. 
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