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a b s t r a c t 

In this paper we conduct a simulation study of the spread of an epidemic like COVID-19 with temporary 

immunity on finite spatial and non-spatial network models. In particular, we assume that an epidemic 

spreads stochastically on a scale-free network and that each infected individual in the network gains a 

temporary immunity after its infectious period is over. After the temporary immunity period is over, the 

individual becomes susceptible to the virus again. When the underlying contact network is embedded in 

Euclidean geometry, we model three different intervention strategies that aim to control the spread of the 

epidemic: social distancing, restrictions on travel, and restrictions on maximal number of social contacts 

per node. Our first finding is that on a finite network, a long enough average immunity period leads to 

extinction of the pandemic after the first peak, analogous to the concept of “herd immunity”. For each 

model, there is a critical average immunity duration L c above which this happens. Our second finding 

is that all three interventions manage to flatten the first peak (the travel restrictions most efficiently), as 

well as decrease the critical immunity duration L c , but elongate the epidemic. However, when the average 

immunity duration L is shorter than L c , the price for the flattened first peak is often a high second peak: 

for limiting the maximal number of contacts, the second peak can be as high as 1/3 of the first peak, 

and twice as high as it would be without intervention. Thirdly, interventions introduce oscillations into 

the system and the time to reach equilibrium is, for almost all scenarios, much longer. We conclude that 

network-based epidemic models can show a variety of behaviors that are not captured by the continuous 

compartmental models. 

© 2020 Published by Elsevier Ltd. 
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. Introduction 

When recovering from a disease grants temporary immunity

gainst it, it can happen that an epidemic dies out locally, but sur-

ives elsewhere, returning at a later point in time. We observe a

second peak”. A second peak can also happen when interventions

re effectively applied to slow down the spread of a disease lo-

ally, but are then lifted. This phenomenon has a clear geometric

omponent. Standard compartmental models for epidemic curves

re inherently a-geometric, because they assume a perfectly mixed

opulation. Agent-based epidemiological models allow for an em-

edding of the population in a geometric space to capture this ef-

ect more clearly. 

In this paper we study this geometric effect empirically. We

onduct a simulation study about the effect of temporary immunity

n spreading processes on different agent-based models. Immunity

eing only temporary has been observed for various types of coro-
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aviruses, see [28] and references therein. It is currently being de-

ated whether the current Covid-19 epidemic provides lasting or

emporal immunity, see e.g. [42] . 

We also model the effect of three different interventions : 

) social distancing, 

B) traveling restrictions, and 

C) limiting the number of social contacts. 

Our simulation results may serve as a qualitative indication of

ossible outcomes of epidemic spread and intervention strategies

or highly infectious diseases, such as the current COVID-19 pan-

emic. It also gives qualitative predictions about the ways an epi-

emic might (or might not) return, depending on the average du-

ation and level of temporary immunity. The focus is twofold: first,

n understanding how the underlying space affects the outcome of

he simulations, and second, to see and compare the effect of the

hree intervention strategies on the pandemic. For the first goal,

e compare four scenarios with underlying geometries: 

• Scenario 1: The underlying network is “purely geometric”, ig-

noring long-range connections. For this scenario we use the

square nearest-neighbor torus Z 

2 
n as the base graph. 

https://doi.org/10.1016/j.chaos.2020.109965
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.109965&domain=pdf
mailto:j.jorritsma@tue.nl
mailto:timhulshof@bureauwo.nl
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• Scenario 2: The underlying network is a “mean-field network”,

ignoring the spatial component. For this scenario we use the

configuration model, which can mimic the local statistical prop-

erties of real human contact networks, such as degree distribu-

tions. 
• Scenario 3: The underlying network is a mixture between a ge-

ometric and mean-field network. For this we use Geometric In-

homogeneous Random Graphs , which possess geometric features

and can match the statistical properties of real human contact

networks. 
• Scenario 4: The epidemic is modeled in a “mean-field continu-

ous space”, ignoring the spatial component and approximating

the discrete population by a continuum. For this we use systems

of ordinary differential equations (also called: a compartmental

model), which are currently the most popular tool for epidemic

curve modeling. 

Our aim is to compare these models, and see what the effect

is of considering more realistic representations of the underlying

space and spreading mechanisms. We, however, emphasize that

our paper provides qualitative estimates, not quantitative ones. As

a result, the study here might underpin or support certain inter-

vention strategies more than others, but we refrain from (and see

no justification for) using these simplified models to make numer-

ical predictions with respect to the current COVID-19 outbreak. 

1.1. Epidemic spread with temporary immunity on a network 

We choose the simplest possible model that shows, qualita-

tively, the behavior that we would like to observe, namely, the ef-

fect of temporary immunity. This model can, however, be easily

modified to accommodate other compartments, such as an incuba-

tion period (exposed state) (as e.g. in [43] ), deaths, asymptomatic

cases, etc. For simplicity, we describe the dynamics in discrete time .

A continuous time version is analogous and shows the same qual-

itative behavior. The model is similar to the one studied in [18] ,

where the focus is on the critical regime. 

The spreading process changes at discrete time steps, t =
{ 0 , 1 , 2 , . . . } , each time step corresponds to, say, a day. We fix the

network G in advance. We think of nodes in the network as in-

dividuals. Each node within the network can be in three possible

states: susceptible (S), infected (I) or temporarily immune (T) . The

neighbors of a node u are nodes with a direct connection (also

called link, or edge) to u . A connection may correspond to a friend-

ship or an acquaintance, or simply a contact event. The discrete

time dynamics between the three states are described as follows

(see also Fig. 2 ): 

• Infecting: Each infected node, while being infectious, infects

each of its neighbors within the network with probability β at

every time-step. Infections to different neighbors happen inde-

pendently. 
• Healing: When infectious, each node heals with probability γ

at every time-step, independently of other nodes, and indepen-

dently of infecting other nodes. The average infectious period

of an infected node is 1/ γ time-steps. Upon healing, the node

becomes temporarily immune. 
• Losing immunity: Each temporarily immune node loses its im-

munity with probability η at every time-step, independently of

other nodes. The average immune period of a node is thus 1/ η
time-steps. After losing immunity, the node becomes suscepti-

ble again. 

We run these dynamics on three different types of networks,

covering the above mentioned scenarios: the purely geomet-

ric square grid, the pure network configuration model, and the

mixture Geometric Inhomogeneous Random Graph (GIRG) (see

Definitions 2.1, 2.2 , and 2.3 ) below. 
We adapt these dynamics to obtain a continuous S-I-T-S com-

artmental model (Scenario 4) in Section 2.4 . We choose the pa-

ameters of the underlying network models in Scenarios 1–3 so

hat the models have comparable average degree (and when pos-

ible, also comparable variance), and then vary the parameters β ,

and η. In the remainder of this section we give a quick sum-

ary of our findings, then in Sections 2 and 3 we define the four

cenarios and three intervention methods in more detail, and in

ection 4 we present our detailed simulation results. 

.2. Phases of S-I-T-S on continuous compartmental models. 

For Scenario 4, we observe three (commonly known) phases of

he epidemic, that we briefly describe here for comparison. For the

odel description, see Section 2.4 . 

1) Subcritical and critical phase : Immediate extinction . Whenever

the basic reproduction number, R 0 = β/γ ≤ 1 , the epidemic

dies out without producing a peak. For β/ γ < 1, it dies out

quickly (logarithmic in the initial number of infected), while for

β/γ = 1 it dies out slowly (polynomial in the initial number of

infected). See Fig. 14 (b). 

2) Supercritical phase : Peaks of decreasing magnitude towards a

limiting stationary proportion . Whenever β/ γ > 1, the propor-

tion of infected population stabilizes at η
η+ γ

(
1 − γ

β

)
. There are

several larger peaks before the equilibrium is reached, see

Figs. 14 (a)–14 (b). The incline and decline of peaks are exponen-

tial . See more in Section 2.4 . 

.3. New supercritical phases in S-I-T-S epidemics on network models.

The presence of the network structure, as well as the under-

ying space, combined with temporary immunity has a surprising

ffect on the qualitative behavior of the epidemic. More specifi-

ally, new phases arise in the phase diagram compared to those

n Section 1.2 . The duration of the immune period plays a more

rofound role than in the continuous compartmental model of

ection 2.4 , where the single supercritical phase is entirely deter-

ined by the ratio β/ γ of the infection rate and the healing rate.

or finite spatial network models, there is no well-defined defini-

ion of R 0 : the average node-degree as well as the topology of the

etwork influences the probability of entering each phase. The fi-

al size of the epidemic is, at least for the most commonly known

-I-R model, often computable even for network models: See the

orks [38,48,52,58,65] for the final size of the epidemic in mean-

eld type networks, and the phase diagram for S-I-T-S on the lat-

ice [18, Figure 1] . 

For the S-I-T-S epidemic spread on all three network models

Scenarios 1, 2, and 3) we observe the following three phases, with

S below being new compared to Scenario 4: 

1) Subcritical and critical phase : Immediate extinction. The epi-

demic goes extinct almost immediately (for all runs), and the

number of infected decays exponentially in this case. When

R 0 ≈ 1, the epidemic may die out more slowly. We emphasize

though, that the critical and subcritical phase do not separate

so clearly on the stochastic S-I-T-S model on networks: due to

the stochastic nature, the epidemic might die out quickly even

when R 0 > 1. For the extinction time (logarithmic vs polynomial

of the network size), the initial number of infected individuals

plays a more important role. This is, however, out of the scope

of our current study and we do not pursue this direction fur-

ther. 

2) Supercritical phases : Possible large outbreak. With positive

probability, there is a large outbreak. For network-based S-I-T-S,

the supercritical phase separates into two sub-phases: 
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2S) Extinction after a Single peak : When the duration of the

immune period is long, the epidemic has a single peak, af-

ter which it immediately goes extinct. Heuristically, the rea-

son for the existence of this new phase is that after the

first epidemic peak, earlier infected nodes become immune

and maintain their immunity long-enough to provide barri-

ers in the network that the infection cannot pass through.

See Fig. 12 (a). 

2M) Long-time survival, Many peaks: When the duration of the

immunity period is relatively short, the epidemic follows a

(qualitatively) similar curve to the one observed in the ODE

in Section 2.4 . There is a first major outbreak, followed by

smaller second, third, etc., peaks, decreasing in magnitude,

and eventually settling on a (meta-stable) stationary propor-

tion of infected and immune population. See Fig. 12 (b). We

mention that this equilibrium is a meta-stable state, since

the all-susceptible configuration is an absorbing state. The

time to reach that, however, is exponentially long in the net-

work size, see [15] . 

tochastic transition between phases with a sharp threshold :

ue to the stochastic nature of the model, the phases 1, 2S, 2M

re, (at least on a finite but large network) intertwined. This means

hat for a given fixed set of parameter β , γ , η, a single run of the

-I-T-S epidemic may enter any of the three phases, with different

robabilities. However, the probability of entering a given phase

ndergoes a sharp transition in the parameter values: for fixed β ,

, a small change in η results in a shift from almost always see-

ng phase 2S to almost always seeing phase 2M. This is called a

harp threshold phenomenon , see [26,27] . The sharp threshold is de-

ned as the value of ηc ( N ) where the survival probability crosses

/2. The same theory suggests that the threshold ηc ( N ) converges

n the large network limit. The probability of long survival (phase

M) can be seen in Fig. 3 for eight different models as a function

f η, all with the same average degree E [ deg (u )] = 8 . We conjecture

hat the long survival probabilities are monotone in η, see Fig. 20 ,

here the experiment is carried out with more runs for each value

f η. 

Height of the first peak: The height of the first peak, in all

odels, is insensitive to η, just like for Scenario 4, see Fig. 4 A

ossible explanation for this insensitivity is that during the initial

pread, the S-I-T-S process is closely approximated by an S-I-R pro-

ess, where temporarily immune nodes are simply removed. 

Shape and location of the first peak: For Scenario 2 (mean-

eld network), the shape of the first and later peaks are similar to

hat of Scenario 4, i.e., exponential incline followed by exponential

ecline. Scenario 1, the grid, however, has a linear incline followed

y linear decline, if there is a first peak, which is not true, when

is large. See Section 4.2 . The shape of the curve for Scenario 3

epends on the parameter values: as long as there are many long-

ange connections, and hubs in the network (nodes with very high

egree), the curve resembles that of Scenario 2. 

When this is not the case, Scenario 3 starts to gradually resem-

le the epidemic curve of the grid (Scenario 1): linear incline fol-

owed by linear decline, see Fig. 12 . 

Explanation of the linear peak-shapes: The linear growth was

lso investigated in a similar setting recently in [64] . There, the au-

hors proposed to model the contact network using a related (one-

imensional) model that is called the Newman-Watts small world

53] . The mathematical explanation for seeing a linear growth

urve is as follows: these models are embedded in geometry, and

he parameters are such that long edges do not dominate yet,

nd hence the typical ball-growth is polynomial. This is in accor-

ance with theoretical results (5) related to the average distance in

he network being short (poly-logarithmic) when there are many
ong-connections but long (polynomial) when these are scarce. See

43] and references therein for the role of long-connections. 

Topology-dependent fluctuations after the first peak: The

uctuations after the first peak are highly dependent on the net-

ork topology. For power-law networks with infinite asymptotic

ariance, there is no second peak and the system reaches equi-

ibrium very quickly after the first peak. For finite variance net-

orks, several further peaks occur, see e.g. Figs. 23 , 25 . The transi-

ion is most profound when interventions change the topology, see

ection 1.4 below. 

We mention that for Scenario 3 the way the second peak hap-

ens is entirely different from the first peak: the initial spread

s local, emanating from the source, (with some long connections

ausing non-local new infection centers), while the second peak is

pread out, infections occur everywhere in space. This is quite nat-

ral, since during the initial wave, the epidemic fills the space, and

hus the second peak happens roughly when the immunity arising

rom the first wave starts to wear off, and at that moment it does

ot have a well-defined source anymore. This is why we never see

he epidemic to die out after a second peak. It either dies out after

he first peak, or many peaks occur and the system reaches equi-

ibrium. 

We conclude that the continuous ODE approximations often

ail to capture the later behavior of the epidemic, which depends

ighly on the network topology. 

.4. Comparison of intervention methods a) b) c) on scenario 3. 

We carry out the intervention methods on Scenario 3, the geo-

etric scale-free network model. We model intervention (A), keep-

ng physical distance by randomly removing connections from the

etwork. 

Intervention (B), allowing for less travel, is modeled in two

ifferent ways. Once, it is modeled by drawing for each present

dge a random exponential threshold with a common mean L , and

utting the edge if it exceeds its threshold value, resulting in a

onnection-length distribution that decays exponentially above the

hreshold L . Secondly, it is also modeled by increasing the long-

ange parameter α to αnew . 

Intervention (C), limiting the maximal number of contact per

erson, is modeled by prescribing a maximal node degree M and

hen for each node u with degree higher than M , randomly chosen

onnections of u are cut until at most M connections remain, see

ore details in Section 3 . 

We choose the parameters M , L , αnew so that the average de-

ree is the same after all interventions. See Fig. 1 for a visualiza-

ion of the intervention methods. 

We summarize our most important, qualitative findings. For

uantitative values see Section 3 . 

The height of the first peak drops . In all interventions, the

eight of the first peak is dropping, by at least as much as the

hrinkage in average node degree (intervention A) and even more

ith other interventions. The most effective intervention in this re-

pect is the hard no-travel rule. See left on Fig. 4 . 

Elongated first peak. The time and duration of the first peak

s later/longer than without intervention. For keeping physical dis-

ance, the time-shift is the least apparent (a few days), while for

ntervention B it is the most profound, a factor of 10, see bottom

f Fig. 24 , as well as Table B.1 . 

Long-survival probabilities drop. Each intervention pushes the

robability of the system entering phase (2M) lower for a fixed pa-

ameter setting β , γ , η. When increasing η (thus decreasing the

mmunity duration), at a critical ηc the system abruptly goes from

ominantly phase 2S from dominantly phase 2M, (a sharp thresh-

ld). The sharp threshold ηc of long-survival is increased under all
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Fig. 1. Visualization of the change in the underlying contact network under interventions for Scenario 3 (see Fig. 26 below). By (w) and (s) we denote the weak and strong 

travel restrictions, respectively. 
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interventions, see Fig. 19 . In this respect, interventions B and C per-

form best. 

Higher second peak. Intervention B and C result in a higher

second peak, or even make a second peak appear where originally

it was not present. The worst intervention in this respect is inter-

vention C (limiting the maximum degree), where the second peak

can be as high as 1/3 of the first peak. See Fig. 4 and 21 . For infi-

nite variance degree GIRG, on Fig. 21 ) the strong travel restriction

also causes a second peak, while social distancing and increasing

α does not. 

A possible explanation for a higher second peak is the follow-

ing. Under intervention C (limiting node degree) and Intervention

B (cutting long-edges), there are no more hubs in the network:

nodes with very high degree. Once infected, hubs infect a large

proportion of their neighbors roughly at the same time. More-

over, hubs are much closer to each other (in terms of graph dis-

tance) than the average distance in the graph, thus the infection

can travel quickly between hubs. To summarize, hubs synchronize

the system. Once the hubs are removed, this synchronization is

also removed from the system and oscillations similar to the grid

appear. Limiting node degree without travel restrictions has the

strongest effect on the removal of hubs. Limiting travel reduces the

degree of hubs, but do not remove them completely, since nodes

that were hubs before the intervention, have typically many local

connections as well, see Fig. 16 . 

More oscillations to reach equilibrium . Interventions C and B,

while they are most effective regarding the first peak, introduce

high oscillations in the system, and the time to reach equilibrium

can be much longer than in the original model (from a few days to

more than a thousand days). Again, these oscillations are explained

by the lack of synchronization. See Figs. 25 and 26 for these later

effects. 

To summarize, we conclude that the effect of interventions vary

to a high extent and depend on the precise way the intervention

changes the network topology. Again, ODE-approximations fail to

capture these various effects. 

2. Network models 

2.1. Scenario 1: Lattice network models 

Arguably the simplest geometric network model is the nearest

neighbor lattice. To avoid boundary effects, and make the network

completely homogeneous, we shall study epidemics on the torus

Z 

2 
n instead of a square that we define here: 

Definition 2.1 (Nearest neighbor tori) . Arrange nodes on a square

grid, and label them with two coordinates u = (x, y ) , for x, y ∈
{ 1 , 2 . . . , n } . To obtain Z 

2 
n , connect u = (x 1 , y 1 ) to v = (x 2 , y 2 ) when

either x 1 = x 2 and | y 1 − y 2 | = 1 mod n or y 1 = y 2 and | x 1 − x 2 | =
1 mod n . To obtain 

˜ Z 2 n , connect u = (x 1 , y 1 ) to v = (x 2 , y 2 ) when

| x 1 − x 2 | ≤ 1 mod n and | y 1 − y 2 | ≤ 1 mod n . The networks have N =
n 2 nodes, see Fig. 6 . 
Lattice models are homogeneous and the average distance

ithin the network is large, it grows polynomially with the num-

er of nodes. Writing d G (u, v ) for the number of connections on

he shortest path between nodes u and v , (also called: graph dis-

ance), the average distance becomes 

ist (N) := 

1 (
N 
2 

) ∑ 

u, v 
d G (u, v ) = �( 

√ 

N ) . (1)

.2. Scenario 2: The configuration model and other a-geometric 

etwork models 

A-geometric random network models are often used as null-

odels to compare network data to purely random networks. Here

e describe a commonly used model, the configuration model, and

ention similar alternatives. The configuration model is a well-

tudied object in mathematical network science, dating back to

ollobás [10] and Molloy and Reed [46,47] . The main advantage of

his simple model is that it can mimic the degree distribution of

eal-life networks. 

efinition 2.2 (Configuration model) . Fix N ≥ 1 the number of

odes. Prescribe to each node u ∈ { 1 , 2 , . . . , n } its node-degree

eg (u ) ≥ 0 , so that the total degree h N := 

∑ 

u ≤N deg (u ) is even. To

orm a graph, to each node u we assign deg (u ) number of half-

dges and the half-edges are then paired uniformly at random to

orm edges. The resulting random multi-graph is the configuration

odel. The erased configuration model can be obtained by erasing

ll self-loops and multiple edges between nodes. 

See Fig. 7 for an illustration of the algorithm, and Fig. 8 for

wo realizations. Observe that we pair half-edges randomly, hence,

ven though the prescribed degrees might be deterministic, the

onfiguration model is a random (multi)graph. It is a multi-graph

ince multiple connections between nodes and even connections

o the same node may occur, however, these become proportion-

lly insignificant when the size of the graph is sufficiently large. An

asy way to obtain a simple graph from the configuration model is

o erase second, third, etc edges between nodes, as well as self-

onnections. It is shown that the erasure does not affect the em-

irical distribution of the model in any significant way [34] . For

 mathematical overview on the properties of the configuration

odel and erased configuration model, see [34] . 

In real-life networks, an extreme variability of node degree is

ften observed, see [1,25,51] . Extreme node degree variability re-

ults in the presence of a few individuals with extreme influence

n spreading processes, the hubs or superspreaders [51] . Mathemat-

cally, this extreme degree variability can be expressed using the

mpirical distribution of node degrees, that follows a power-law : 

rob ( deg (u ) ≥ x ) � 1 

x τ−1 
. (2)

ith exponent τ > 2. In our simulations we study the case when

he empirical degree distribution follows such a power law, i.e., the

ode-degrees satisfy (2) , for some parameter τ > 2. In this case, the
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1 Mathematically, dist is a metric on the underlying space, (e.g. ‖ · ‖ 2 ). Here, the 

formula is given for a two-dimensional model. In higher dimension, the exponent 

2 α in the denominator should change to dim ·α, with dim the dimension of the 

model. 
ode-degrees in the erased configuration model version also follow

2) , with the same exponent τ . 

Other popular a-geometric models include the Chung-Lu and

he similar Norros-Reittu model [16,17,54] , and preferential attach-

ent models (also known as the Barabási-Albert model) [3] . In

he Chung-Lu and the Norros-Reittu model, only the expected de-

rees of nodes are prescribed, rather than their exact degree. It is

hown that these models, with similar parameter settings, behave

ualitatively similarly to the configuration model, see [34] for ref-

rences. The preferential attachment model is a growing network

odel, that is best suitable to study the evolution of networks on a

onger time-scale. For a relatively short time-frame typical to epi-

emic spread, a time snapshot of the preferential model could be

sed. Mathematical results suggest that snapshots of this model

ehave, again, qualitative similarly to the configuration model with

imilar degree structure, although numerical values might differ

5,21,23,25] . As a result, we choose the configuration model for

aseline comparison. 

An important feature of the configuration model is the small-

orld property . Heuristically, this means that two arbitrary nodes

n the network can be connected via very short paths, using only

 few connections. Mathematically, the small world phenomenon

eans that the average graph distance Dist (N) = 

∑ 

u, v d G (u, v ) / 
(

N 
2 

)
n the network is small, at most logarithmic in the network size.

or the configuration model, when τ > 3, the network is proven to

e a small world [35,66] , while, when τ ∈ (2, 3), the average graph

istance is ultra small, meaning a double-logarithm of the network

ize: 

ist (N) = 

{
�( log N) when τ > 3 

�( log log N) when τ ∈ (2 , 3) . 
(3) 

n the former case, when τ > 3, the shape of the epidemic curve is

hown to converge in the large network limit, see [4,6,39] . 

While the configuration model easily accommodates power-law

ode degrees, and has the small-world property, it neither contains

ommunities nor clustering [25,63] . Empirically, clustering quanti-

es the effect commonly known as “a friend of a friend is also

ikely to be my friend”. Mathematically, clustering means the pres-

nce of triangles in the network. Communities are parts of the net-

ork that have significantly more connections than the same num-

er of randomly selected nodes. One could argue that clustering

nd communities in human contact networks often arise due to

patial effects: people living nearby tend to know each other with

igher probability. To accommodate clustering and communities, as

ell as keep node degree variability high, we introduce our last

odel of investigation. 

.3. Scenario 3: Geometric inhomogeneous random graphs 

The last network class we run the S-I-T-S epidemic on is a mix-

ure of pure geometric and purely random network models. For

his we use a general Geometric Inhomogeneous Random Graph

GIRG) model, that is a state-of-the-art model for real-world so-

ial and technological networks, embedded in geometric space. The

resence of underlying geometry underpins the model: individu-

ls are embedded in space, just like in real life, allowing for lo-

al community structures to be present in the contact network,

eading to strong clustering [13,63] . The GIRG incorporates edges

ridging spatial distance on all scales, ranging from short to long-

ange edges, as well as a high variability of node degree: in fact,

he model is scale-free in two respects: both in spatial distance that

dges cover, and in node-degree variability [13] . 

Contact- or activity networks of humans have been found to

how similar behavior, including heavy-tailed degree distributions,

trong clustering, and community structures [1,8,49–51] , as well as

eavy-tailed distance-distribution for edges, see references in [36] . 
Recently, several spatial random graph models were developed

o incorporate these features: hyperbolic random graphs [9,33,56] ,

cale-free percolation [19] , and GIRGs [11–13] . These models can

e unified into a general model containing all these three models

s special cases. The qualitative behavior of the three models is the

ame. The following definition is general, and in its last sentence

e specify it for GIRG. The underlying space can be the earth’s

urface, or R 

2 , the two-dimensional Euclidean space. We denote

y x ∧ y the minimum of two numbers x , y . 

efinition 2.3 (Geometric Inhomogeneous Random Graph 

GIRG)) . Fix N ≥ 1 the number of nodes. Assign to each node

 ∈ { 1 , 2 , . . . , n } a fitness w u > 0 , and a spatial location �( u ). Fix

> 0. For any pair of nodes u, v with fixed w u , w v , �(u ) , �(v ) ,
onnect them by an edge with probability 

rob (u is connected to v ) �
(

w u w v 

dist (�(u ) , �(v )) 2 
)

α ∧ 1 , (4)

here dist is a distance function 

1 , i.e., it measures the distance be-

ween the locations �(u ) , �(v ) . When �( u ) is chosen uniformly in

 box of volume N , we obtain the GIRG. 

Any or all of the vertex set, fitnesses, and spatial locations can

e random (see Fig. 9 ). GIRGs have a natural interpretation: the

tnesses express the ability of nodes to have many connections,

embeds them in space, and α is the long-range parameter: the

maller α is, the more the model favors longer connections. The

arameter space of GIRG is rich enough to model many desired

eatures observed in real networks: 

a) extreme variability of the number of neighbors (degrees), 

b) connections present on all length-scales, 

c) small and ultra-small distances, 

d) strong clustering, 

e) local communities. 

In real-life networks, (a) corresponds to the presence of a few

ndividuals with extreme influence on spreading processes, the

ubs or superspreaders . Mathematically, (a) corresponds to the em-

irical distribution of node degrees following a power-law , as in

2) above, for some τ > 2. Setting a power-law fitness distribu-

ion for w u in GIRG yields that the degrees satisfy (2) , while set-

ing w u ≡ 1 results in a (fairly) homogeneous network with some

onger edges, that is known in the literature as (continuum) long-

ange percolation [7] . The abundance of long-range connections is

uned by α in (4) : the smaller α, the more likely are long-range

onnections (b). The power-law exponent τ and the long-range pa-

ameter α tune the average graph distance Dist (N) , see [7,11,19,20] :

ist (N) = 

⎧ ⎨ 

⎩ 

�( log log N) when τ ∈ (2 , 3) , α > 1 

�
(
( log N) ζ

)
when τ > 3 , α ∈ (1 , 2) 

�( 
√ 

N ) when τ > 3 , α > 2 . 

(5) 

omparing this to the average distance in the configuration model

n (3) and to the lattice models in (1) , one sees that geometry and

ong-range connections play a role when τ > 3, and the model in-

erpolates between the small-world configuration model and the

attice. 

Empirically, clustering quantifies the effect commonly known as

a friend of a friend is also likely to be my friend”. Mathemati-

ally, clustering means the presence of triangles in the network.

ommunities and clustering are naturally present in SCLM, because

he model favors connections between nodes that are close to each
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Fig. 2. Schematic diagram of node states and their transition probabilities. A susceptible node u may only become infected when it has at least one infected neighbor. Each 

of the infected neighbors infects u with probability β , independently, in each step. 
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other in space (see Fig. 9 ). Thus, GIRG incorporates all five desired

features. 

For the spread of information or infections in such networks,

it is known that large-degree nodes and many triangles have op-

posing effects. On the one hand, nodes of large degree (also called

hubs, super-spreaders, or influencers) contribute to fast dissemi-

nation, and foster explosive propagation of information or infec-

tions [24,32,57,59] . On the other hand, clustering and community

structures provide natural barriers that slow down the process,

while long-range edges accelerate the spread [2,37,40,41,45] . 

2.4. Scenario 4: S-I-T-S compartmental model 

For baseline comparison to continuous epidemic models, we

use a continuous S-I-T-S model, where there are only three pos-

sible states, susceptible (S), infected (I) or temporarily immune (T) ,

in a total population of N individuals. Susceptible individuals may

become infected via a contact to infectious individuals, while infec-

tious individuals heal and thus become temporarily immune. The

assumption is that individuals make contact with a random other

individual at rate β . Immune individuals loose their immunity at a

certain rate and become susceptible again. 

The deterministic ordinary differential equation (ODE) model is

governed by the three main parameters: 

• β: rate of infecting a susceptible individual when being in-

fected, 
• γ : rate of healing, and becoming temporarily immune, 
• η: rate of losing temporal immunity and becoming susceptible

again. 

See Fig. 5 for a schematic diagram. We assume the population

size is N , denote by S ( t ), I ( t ), T ( t ) the number of susceptible, in-

fected and temporarily immune individuals at time t , then the cor-

responding ordinary differential equation becomes: 

d S 

d t 
= −βIS 

N 

+ ηT 

d I 

d t 
= + 

βIS 

N 

− γ I 

d T 

d t 
= + γ I − ηT 

For the infection to survive, β > γ is necessary, otherwise

lim t→∞ 

I(t) = 0 . When β > γ holds, this ODE has a stationary state,

which is explicitly computable: 

S ∞ 

= N 

γ

β
, I ∞ 

= N 

η

η + γ

(
1 − γ

β

)
, T ∞ 

= N 

γ

η + γ

(
1 − γ

β

)
. 

Observe that the equilibrium proportion of infected is roughly lin-

ear in η, as long as η �γ . One can also compute the basic repro-

duction number, R 0 = β/γ , and observe that T ∞ 

= I ∞ 

γ /η. Qualita-

tively, the ODE exhibits either (sub)critical behavior, implying ex-

tinction, or supercritical behavior, as described in Section 1.2 and

depicted in Figs. 14 (a)–14 (b). On these figures, for the supercritical

case one can observe that 
a) the height of the first peak does not depend on the duration of

the immune period; only on β , γ . 

b) for fixed β , γ , increasing the duration of the immune period re-

sults in deepening the valley between the first and the second

peak. The minimum between the first and second peak is al-

ways strictly positive, however, it approaches 0 as 1/ η tends to

infinity. For somewhat realistic values ( β = 0 . 38 , γ = 0 . 14 , the

minimum gets near 0 around 1/ η ≈ 210). Since this is a contin-

uous system, the second peak is always present, explaining the

absence of phase 2S in this compartmental model. 

. Modeling intervention methods on GIRGs 

) Social distancing measures: percolation 

In the current Covid-19 outbreak, many governments issued a

ollection of social distancing measures: keeping 1.5 meter dis-

ance from each other, wearing face masks, hand-gloves, washing

ands frequently, and so on. Such measures result in reducing the

umber of contact moments between individuals and thus result-

ng the chance for the virus to spread. When the social distanc-

ng measures are not combined with travel restrictions, this results

n the underlying contact network to lose its connections roughly

andomly. This has been observed also in [22] . 

Hence, we model the effect of social distancing by randomly re-

oving a certain proportion of edges in the network. This method

s called percolation in the mathematical literature [31] . The same

ethod is used to model social distancing in e.g. [55] , where per-

olation is applied to the configuration model. We denote the re-

ulting network by G 

perc . 

) Travel restrictions 

In the current Covid-19 outbreak, many governments issued ev-

rybody to stay at home and only travel when necessary. Outside

ountry travel is not allowed for some countries, e.g. Spain, Italy,

ermany, Hungary. This results in the underlying contact network

o lose many of its long connections. 

We model the removal of long-connections in the network in

wo different ways: a (seemingly) milder and a stronger interven-

ion measure. 

B(w): Weak travel restriction. One way to reduce the number

f long-range connection in the network is by increasing the pa-

ameter α in GIRG. This intervention does not cause a ‘hard cutoff’

or the length of connections: some long-range connections might

emain, but the intervention is strong enough to push the distances

n the network from poly-logarithmic to polynomial, see (5) . 

Increasing α, when τ > 3, decreases the probabilities of long

dges: indeed, in (4) , for two nodes u, v with locations �(u ) , �(v ) ,
he ratio 

 u, v := 

w u w v 

dist (�(u ) , �(v )) 2 
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Fig. 3. A comparison of the probability of phase 2M on eight different networks with the same average degree 8 and number of nodes N = 160 0 0 0 , as a function of the 

η. Probabilities were computed using a 100 runs for all parameter values ( η) and models, with β = 0 . 225 , γ = 0 . 2 . Legend: CM, GIRG: Scenarios 2 and 3, with different 

parameters and Grid: Scenario 1. For all networks we see a sharp transition at a critical value of η where the system moves from phase 2P (single peak followed by 

extinction) to 2M (survival with multiple peaks) with overwhelming probability. 

Fig. 4. The effect of interventions on the first and second peak, as a function of η (the inverse of the average immunity period). Abbreviations in the legend: ‘hub’: limiting 

maximal node degree, ‘long’: strong restriction on travel, ‘perc’: social distancing. The first entry is increasing α, a weak restriction on travel. GIRG(3.3,1.3) is the original 

network. We see that the height of the first peak is insensitive to the duration of immunity, and that cutting long edges is most effective in reducing the first peak. For the 

second peak, limiting node degree pushes the critical η for appearance of the second peak from 0.002 to 0.006, however, above that the second peak is twice as high as for 

other interventions. See also Figs. 21, 22 . 
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Fig. 5. Schematic diagram of states and their transition rates in the continuous compartmental model. Infected individuals make contact at rate β to randomly chosen 

individuals, as a result, the number of susceptibles increases at rate β · S · I / N . This is a mean-field approximation of the graph model in Section 1.1 , see Fig. 2 . 
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is raised to the power α, so as long R u, v < 1 , increasing α reduces

the chance of a long connection being present. 

When τ > 3, the node fitnesses are, typically, not high enough 

2 

so that, typically, R u, v < 1 , hence the intervention of increasing

α is very effective. The average distance increases from poly-

logarithmic to polynomial in the network size. On the other

hand, when τ ∈ (2, 3), node pairs with ratio R u, v > 1 happen fre-

quently enough (even on global scale, nodes with fitness > 

√ 

n are

present), hence, increasing α turns out to be ineffective in reducing

the average distance in the network, since many long-range edges

remain. This is in good correspondence with (5) , where the average

distance is doubly-logarithmic regardless of the value of α when

τ ∈ (2, 3). We denote the resulting network by G 

α . 

B(s): Strong travel restriction. Another way to reduce the num-

ber of long-range connection in the network is by removing long-

edges in the network. Mathematically, we set a threshold distance

T , and for each edge e = (u, v ) present in the original network we

draw an independent Exponential variable X (u, v ) with mean T ; and

remove the edge e when 

dist (�(u ) , �(v )) > X (u, v ) 

This intervention does cause a ‘hard cutoff’ for the length of con-

nections at the threshold T . The intervention is also strong enough

to push the distances in the network from poly-logarithmic to

polynomial. We denote the resulting network by G 

long . 

C) Limiting the maximal number of contacts 

Another intervention measure that one can imagine is to limit

the maximal number of contact a person can have. On the con-

tact level, this rule barely affects individuals with low number of

contacts, but it aims to decrease the number of contact of ‘super-

spreaders’ in the network: nodes that have a relatively high degree.

We model this effect by choosing a node-degree threshold M ,

and for each node u that has, in the original network, more than M

connections, we remove deg (u ) − M many randomly chosen con-

nections from node u . The removal of these connections, in turn,

also reduces the number of connections of other vertices. Thus, the

resulting network has maximal node degree at most M . Since we

removed connections randomly, some long connections still remain

in the network if they were originally present. We denote the re-

sulting network by G 

hub . 

4. Simulation results 

In this section we present our results for the network based

S-I-T-S epidemic model. We first comment on the general descrip-

tion of the types of phases that may occur that are mentioned in

Section 1.2 , then we compare our findings for each Scenario (the
2 Node fitnesses are less than 
√ 

n for all nodes, with high probability 

n  

s

urely geometric lattice models, the mean field network configu-

ation model, and their mixture geometric inhomogeneous random

raphs) with respect to the various intervention strategies. 

Throughout this section, these underlying networks for the dif-

erent scenarios (and interventions) are sampled once per param-

ter setting and kept constant over the simulation runs. On every

raph, for every described parameter setting of the S-I-T-S model,

he results are based on 100 simulations of the epidemic spread-

ng starting from a single node. This node is sampled uniformly at

andom at the beginning of every simulation, and differs per run. 

Recall from Section 1.3 that the epidemic on networks can have

wo supercritical phases, one with a single peak, and one with

any peaks, where the system survives for longer. The transition

etween these phases is stochastic, but undergoing a sharp thresh-

ld. 

Long-time survival probabilities. The probability of long sur-

ival (phase 2M) can be seen in Fig. 10 for eight different models

s a function of η, all with the same average degree E [ deg (u )] =
 : two configuration models with τ = 2 . 5 and τ = 3 . 3 , respec-

ively, three geometric inhomogeneous random graphs (GIRG) with

(τ, α) = (2 . 5 , 2 . 3) , (3 . 3 , 1 . 3) and (3.3, 2.3) respectively, and the

odified lattice ˜ Z 

2 (called ‘grid’ on the figure). All networks have

he same number of N = 160 0 0 0 nodes. We see that the con-

guration model with the smallest τ has the smallest threshold

c , followed closely by GIRG with (τ, α) = (2 . 5 , 1 . 3) . The grid 

˜ Z 2 
N 

nd long range percolation (LRP) with α = 2 . 3 have the highest ηc 

 ≈ 0.085 and ≈ 0.01), these are networks where the average dis-

ance is linear. Theory [26,27] suggest that the threshold ηc ( N ) con-

erges in the large network limit. 

The effect of geometry: long-range edges matter Comparing

he S-I-T-S epidemic curves on the configuration model and on

IRGs, with matching parameters (degree distribution and average

egree) can be seen in Fig. 11 . When we run the epidemic with the

ame parameters β , γ , η on configuration models and on GIRGs,

ith the same degree power-law exponent τ = 2 . 5 and τ = 3 . 3 ,

nd same mean degree, we find that the epidemic curves are in

ood match, as long as the long range parameter α of GIRG is in

he interval (1,2) when τ > 3. For τ ∈ (2, 3), hubs dominate the net-

ork (see left picture on Fig. 9 ), and the role of the parameter α
s insignificant. This is in accordance with theoretical results (5) ,

here distances are doubly-logarithmic regardless of the value α
s long as τ ∈ (2, 3). 

In Fig. 12 , we see that there is only a good match between the

-geometric configuration model and GIRG when τ < 3 or when

> 3 and α ∈ (1, 2). When τ > 3, the effect of the long range pa-

ameter α plays a crucial role. When α > 2, even when keeping

he average degree and the degree distribution the same, the curve

attens by roughly 40%. The explanation for this is that in this pa-

ameter range, even though hubs are present in the network, they

ostly connect to nearby nodes, and thus average distance is sig-

ificantly larger (see (5) ), thus the infection needs more time to

pread, see right on Fig. 9 . 
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We explain more about this effect under Intervention B(w), the

eak travel restrictions in Section 4.1 below. For the first two sce-

arios, the height of the first peak is 80 · 10 3 while in the second

cenario, α = 2 . 3 , the first peak only has magnitude 50 · 10 3 nodes,

n almost 40% decrease. 

The paper [44] studies the effect of the exponent α in more

etail on an S-I-R epidemic (corresponding to the first peak here)

n a related model, when (4) is replaced by 

rob (u is connected to v ) �
(

max (w u , w v ) 

dist (�(u ) , �(v )) 2 
)

α ∧ 1 . 

his is called the max-kernel in the literature, while (4) cor-

esponds to the product-kernel. We mention, however, that the

opology of networks generated by the max-kernel is signifi-

antly different from that of the product kernel, and the model in

44] falls under a different universality class, see [29, Theorem 1.1] .

.1. Intervention strategies. 

In this section we study the effect of four different intervention

trategies: social distancing, a weak and a strong travel restriction,

nd limiting the maximal number of contacts per node. We apply

ach intervention to two initial graphs on N = 160 0 0 0 nodes: G 1 ,

n GIRG with (τ, α) = (2 . 5 , 1 . 3) and average degree 9.7, and G 2 ,

n GIRG with (τ, α) = (3 . 3 , 1 . 3) and average degree 8.7. To be able

o compare the effect of the different intervention strategies, we

hoose the parameters of each intervention so the intervention re-

oves about 40% of all connections, resulting in four sub-networks

f G 1 and G 2 , respectively. 

After obtaining the sub networks, we run S-I-T-S on each of

hem with parameters β = 0 . 225 , γ = 0 . 2 and varying the values

f η from 0.001 to 0.013 at step-size 0.001, corresponding to av-

rage immunity period 1/ η decreased from 10 0 0 days down to 77

ays. 

We visualize and study below the effect of each intervention on

he S-I-T-S epidemic in five aspects: 

i) the change in the underlying contact network, 

ii) a visualization of the spread of the initial infection, 

ii) the probability of long-survival as a function of the immunity

parameter η, 

v) the height and location of the first and second peak, 

v) the full epidemic curve. 

ithout intervention 

For a baseline comparison, we carry out the above listed four

oints on the initial networks: 

i) On the top left picture of Figs. 15 and 16 , we see similar

networks than G 1 and G 2 : GIRGs with (τ, α) = (2 . 5 , 1 . 3) and

(3.3,1.3), respectively. The size is smaller, N = 10 0 0 nodes. Both

graphs have approximately the same average degree 4.8. 

ii) On the top left picture of Figs. 17 and Figs. 18 , the visualization

of the first 19 days of the epidemic are shown: the epidemic

spreads very quickly on G 1 , and also quite fast on G 2 : (almost)

the whole network is infected in both cases. This is explained

by the next point, the time of the first peak is about 8 and 14

days, respectively. 

ii) The probability of long-survival (phase 2M) as a function of the

immunity parameter η can be seen in Fig. 19 : the top curves

on the top/bottom picture show the curves for G 1 and G 2 , re-

spectively. Probabilities are calculated based on a hundred runs

for each model and value of η. Observe that the survival curves

drop for all intervention types, and stay below 0.7 even after

the sharp increase. 
v) Table B.1 shows the height and location of the first and sec-

ond peak for G 1 , G 2 (column O, original graph), while Figs. 21,

22 plots these heights as a function of η. 

We see that the location and height of the first peak is insen-

sitive to the change in η, it is ≈ 84 ∗10 3 on day 8 for G 1 , while

≈ 79 ∗10 3 on day 14 on G 2 . 

There is no second peak on G 1 , the ‘star’ shaped dots on the

curve indicate the height of the equilibrium. Observe that this

grows linearly with η, in accordance with the ODE-solution in

(6). 

On G 2 there is a second peak, and its height is increasing with

η, and its location is decreasing with η. However, there is no

clear relation between the location and 1/ η, the average immu-

nity duration, see Table B.1 . 

v) On Fig. 23 , the full epidemic curve ( η = 0 . 009 ) can be seen, on

top, the first 60 days while on the bottom picture the first 500

days. We indeed see that for G 1 , when τ < 3, the system reaches

equilibrium without a well-defined second peak. 

) Social distancing measures: percolation 

Before we start with details, a short summary: social distancing

eems to be the least effective intervention in terms of reducing

eaks, but at least it does not influence the presence or the height

f the second peak. 

i) On the top right picture of Figs. 15 and 16 , we see the change

in the network after percolation: even though the edge den-

sity and the average degree drops, long-range edges still remain

present, and the graph looks qualitatively the same as the ones

without intervention (top left). The long edges will carry the

majority of the infections. 

ii) On the top right picture of Figs. 17 and Figs. 18 , the visualiza-

tion of the first 19 days of the epidemic are shown under social

distancing: the epidemic spreads somewhat slower, but it still

manages to spread to fill the space and infect a large part of

the network. Observe that both top-right pictures are qualita-

tively similar to the top left pictures, where the same spread is

shown without intervention. 

ii) On Figs. 24, 25, 26 and 27 we see the comparison of the epi-

demic curves: the first peak appears later on the percolated

graphs, and their height is roughly 40% less than the height of

the original peak. On G 

perc 
1 

, there is no second peak, (just like

on the original G 1 ), while the second peak on G 2 only drops

by 10%, though it appears later. The equilibrium number of in-

fected also drops, roughly by 33%. 

ii) On Fig. 19 , the long-survival probabilities of epidemics are

shown as a function of η. Social distancing (called “perc” in the

legend) has its sharp threshold ηc = 0 . 004 for G 1 and 0.007 for

G 2 , in this respect it is one of the less effective measures even

with respect to survival probability. 

v) Table B.1 shows the height and location of the first and second

peak under social distancing (column A), while Figs. 21, 22 plots

these heights as a function of η. 

We see again that the location and height of the first peak is

insensitive to the change in η, it is ≈ 52 ∗10 3 on day 11 ± 1 for

G 1 , while ≈ 45 ∗10 3 on day 22 ± 1 on G 2 . Thus the first peak ap-

pears later on the percolated graphs, and their height is roughly

40% less than the height of the original peak. 

There is no second peak under social distancing on G 1 (the

large data are due to fluctuations in the equilibrium system),

while on G 2 its height is increasing with η, and roughly 75 −
80% of the original graph’s second peak. 

v) On Figs. 24, 25, 26 and 27 we see the comparison of the epi-

demic curves, just like on the original graph, there is no second

peak on G 

perc 
1 

either, while the second peak on G 2 only drops
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by 10%, though it appears later. The equilibrium number of in-

fected also drops, roughly by 33%. 

B) Travel restrictions 

Before we start with details, a short summary: strong travel

restriction is the most effective interventions in terms of reduc-

ing the first peak, but it elongates the epidemic enormously and

causes later oscillations and often a higher second peak. The ef-

fectiveness of increasing α depends on the node-degree power-law

exponent: when τ > 3, its effect is comparable to the strong travel

restriction, but when τ ∈ (2, 3), it is not effective or rather, it does

not model travel restrictions well. 

B(w): Weak travel restriction. 

i) On the middle left picture of Figs. 15 and 16 , we see the

change in the network after increasing α to a value that results

in the average degree to drop to 2.6: for G 1 (when τ = 2 . 5 ,

Fig. 15 ), this intervention only effect node-pairs with R u, v > 1

and most long-range edges remain present, while many short

and medium-scale edges are deleted. For τ < 3, increasing α
is not a good model for the no-travel rule. However, for τ > 3

( τ = 3 . 3 on Fig. 16 ), most node-pairs have R u, v < 1 and thus in-

creasing α does have a similar effect than cutting long-range

edges (compare to middle right picture). Observe that both pic-

tures have the same average degree 2.6, yet the middle left pic-

ture on Fig. 16 ) looks more sparse: this is because edges are

much more localized in space. 

ii) On the middle left pictures of Figs. 17 and Figs. 18 , the visual-

ization of the first 19 days of the epidemic are shown under the

weak no-travel rule: for G 1 ( Figs. 17 ), the remaining edges are

mostly long, and thus the picture looks qualitatively similar to

the top left, without intervention. However, for G 2 ( Fig. 18 ), the

intervention is very effective, and the epidemic spreads much

slower. Within the first 19 days, it only reaches a small fraction

of the network localized in various patches. 

iii On Fig. 19 , the long-survival probabilities of epidemics are

shown as a function of η. The weak no-travel rule, increasing

α (last row in the legend) has its sharp threshold ηc = 0 . 003

for G 1 and 0.007 for G 2 , in this respect it is also among the less

effective measures for both values of τ . 

v) Table B.1 shows the height and location of the first and second

peak under the weak no-travel rule (column Bw), while Figs. 21,

22 plots these heights as a function of η. 

We see again that the location and height of the first peak is

insensitive to the change in η, it is ≈ 50 ∗10 3 on day 10 ± 1 for

G 1 , while ≈ 33 ∗10 3 on day 29 ± 2 on G 2 . We conclude that in-

creasing α only model travel restrictions well when τ > 3. In

this case, its effective, the only more effective measure is the

strong travel restriction. On G 2 , the height of the first peak is

44% of the original peak, while on G 1 , its 60%. 

We conclude that this intervention is very effective in terms of

reducing the first peak on G 2 . 

On G 

α
1 
, there is no second peak, (just like on the original G 1 ),

while the second peak on G 

α
2 

is about 80% of the height of the

second peak on G 2 , though it appears later. 

v) On Figs. 24, 25, 26 and 27 , we see the comparison of the epi-

demic curves, On G 

α
1 
, there is no second peak, just like on the

original G 1 . 

We mention that increasing α already has an effect on the

epidemic curve when the average degree is kept constant, see

Fig. 12 that shows the effect of increasing α on the epidemic curve:

for the configuration model ( τ = 3 . 3 ) and for GIRG with τ = 3 . 3

and α = 1 . 3 , herd immunity is reached first when 80 0 0 0 nodes

are infected, while in the second scenario, α = 2 . 3 , the first peak

only has magnitude 50 0 0 0 nodes, an almost 40% decrease. 
For short average immunity duration, (large η), later peaks can

e seen at the bottom picture of Fig. 12 , where we observe that

he intervention is effective in the sense that the stationary pro-

ortion of infected nodes is lower (roughly, 15% decrease: 4.1 k vs

.8 k nodes). However, the amplitude of the oscillations do increase

hen α = 2 . 3 (vs α = 1 . 3 ) and thus the second peak is higher by

15% (7.3 k vs 6.3 k ). This is in accordance with intuition: flattening

he curve results in an elongated first peak of the epidemic and a

igher second peak. 

B(s): Strong travel restriction. 

i) On the middle right picture of Figs. 15 and 16 , we see the

change in the network after applying the no-travel rule with

a parameter L so that the average degree drops by 40%: for G 1 

(when τ = 2 . 5 , Fig. 15 ), already L = 7 resulted in a 40% drop,

while for G 2 , L = 5 was needed. (when τ = 2 . 5 , Fig. 16 ). Again,

observe that both pictures have the same average degree 2.6,

yet the middle left picture on Fig. 16 ) looks more sparse: this

is because edges are much more localized in space. 

ii) On the middle right pictures of Figs. 17 and Figs. 18 , the visu-

alization of the first 19 days of the epidemic are shown under

the hard no-travel rule: for both networks, the effect of cutting

long-range edges is drastic: during the course of the first 19

days, the epidemic barely manages to leave a small area near

its source (for G 2 ) and only infects a smaller part of the net-

work (for G 1 ). 

ii) On Fig. 19 , the long-survival probabilities of epidemics are

shown as a function of η. The hard no-travel rule, (denoted by

“long” in the legend) has its sharp threshold ηc = 0 . 005 for G 1 

and 0.01 for G 2 , in this respect it is one of the most effective

measures in containing the epidemic: even with average immu-

nity duration 111 days, we only observe a single peak for half

of the runs. 

v) Table B.1 shows the height and location of the first and second

peak under the weak no-travel rule (column B), while Figs. 21,

22 plots these heights as a function of η. We see again that the

location and height of the first peak is insensitive to the change

in η, it is ≈ 39 ∗10 3 on day 25 ± 1 for G 

long 
1 

, while ≈ 13 ∗10 3 on

day 80 ± 2 on G 

long 
2 

, and so the height of the first peak is only

45% of the original peak, while on G 

long 
2 

, its only 15%. 

However, the first peak appears much later, by a factor 3 later

on G 1 , and a factor ≈ 5 later on G 2 . 

We conclude that this intervention is the most effective in

terms of reducing the first peak on G 2 , but it elongates the epi-

demic. 

This intervention does cause a second peak to appear also G 1 .

The height of second peak increases only slightly with η, and

thus, for low values of η, the second peak is higher on G 

long 
2 

than on G 2 , while for high values of η it is lower. On G 

α
1 
, the

height of the second peak is above the equilibrium proportion

on G 1 for lower values of η, but not for higher values. 

So, the intervention causes the second peak to be rather insen-

sitive to the value of η. It would be interesting to investigate

this further. 

v) On Figs. 24, 25, 26 and 27 , we see the comparison of the epi-

demic curves: this intervention is the most effective on both G 1 

and G 2 , the peak is much lower and appears later. 

Thus, the price for a (much) lower peak in case of the strong

travel restriction is a very elongated epidemic curve. 

) Limiting the maximal number of contacts 

Before we start with details, a short summary: even though this

ntervention has comparable effects to social distancing in reduc-

ng the first peak, it is causing very high second peak. We gave

 plausible explanation for this: removing hubs removes the syn-
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3 The parameters there can be translated as follows: a = η, b/ 4 = β, c = γ . The 

only difference between the S-I-R-S model studied in [18] and the S-I-T-S model we 

study is in the infection probability of a node u when it has more than one infected 

neighbor: there, the probability of infection is additive, here, we draw the infections 

from each infected neighbor independently with probability β . 
hronization from the system, causing high oscillations and a long

ime to reach equilibrium. 

i) On the bottom picture of Figs. 15 and 16 , we see the change

in the network after applying the rule of limiting the max-

imal node-degree. The maximal degree M is chosen so that

the average degree drops by 40%: on the bottom picture of

Figs. 15 , M = 5 , while M = 4 on the bottom picture of Figs. 15 .

Observe that limiting the maximal degree, but removing edges

randomly to achieve that, results in a network where there are

a still many long-range edges, but no hubs remain. Due to the

presence of the remaining long edges, the network looks more

densely connected compared to the hard and weak no-travel

rules. 

ii) On the bottom pictures of Figs. 17 and Figs. 18 , the visualiza-

tion of the first 19 days of the epidemic are shown when the

maximal node-degree is limited: for both networks, the effect

is apparent, but more drastic on G 2 , when τ > 3 During the

course of the first 19 days, the epidemic grows in a scattered

way, mostly using the remaining long edges. The effect is some-

where between the weak and the hard no-travel rule in terms

of its capability to restrain the spread. 

ii) On Fig. 19 , the long-survival probabilities of epidemics are

shown as a function of η. Limiting the maximal degree, mean-

ing no hubs, (denoted by “hub” in the legend) has its sharp

threshold ηc = 0 . 008 for G 1 and 0.01 for G 2 , so in terms of long

survival it is the most effective measure in containing the epi-

demic (together with the strong travel restriction for G 2 ). 

v) Table B.1 shows the height and location of the first and second

peak under the weak no-travel rule (column B), while Figs. 21,

4 plots these heights as a function of η. We see again that the

location and height of the first peak is insensitive to the change

in η, it is ≈ 49 ∗10 3 on day 25 ± 1 for G 

hub 
1 

, while ≈ 37 ∗10 3 on

day 41 ± 2 on G 

hub 
2 

. Interestingly, this intervention has roughly

the same effect as social distancing in terms of reducing the

first peak, especially on G 1 , the difference is a few percentages

only: On G 

hub 
1 

, the height of the first peak is roughly 60% of the

original peak, while on G 

hub 
2 

, its only 50%. 

This intervention, unlike social distancing, causes a second peak

to appear on G 

hub 
1 

, that again increases very slowly with η and

is roughly 1/5 of the height of the first peak on G 

hub 
1 

. The height

of second peak on G 

hub 
2 

is surprisingly high: roughly a factor 2

higher than that on G 2 . Its height, compared to the first peak

on G 

hub 
2 

, is also significant: as big as 1/3 of the first peak. 

So, the intervention causes the second peak to be rather insen-

sitive to the value of η. It would be interesting to investigate

this asynchronization, the surprisingly high second peak, and

its insensitivity to η further. 

v) On Figs. 24, 25, 26 and 27 , we see the comparison of the epi-

demic curves: also further peak are quite high, and the system

takes a very long time to equilibriate. 

Thus, the price for a lower first peak is a very high second peak ,

followed by quite high later peaks and a long time for the sys-

tem to equilibriate. 

onotonicity of survival probabilities 

On Figs. 10 and 19 , some curves do not appear to be monotone

ncreasing, but rather, after the sharp increase they seemingly de-

elop a small peak of survival probabilities. We believe that this

s only due to the increased fluctuations around the critical value

c . For one model, namely, G 2 under weak no-travel rule (which is

n instance of a GIRG with (τ, α) = (3 . 3 , 1 . 9) ), we have tested this

n a larger scale simulation. We have run 500 runs for each value

f η, and plotted the survival probabilities as a function of η on

ig. 20 . 
On this larger scale, the curve appears to be monotone, and we

elieve that this is indeed the case. 

.2. S-I-T-S on lattice network models. 

Epidemic models on lattice networks have been under investi-

ation for decades, see e.g. the book [61] , or the survey [62] . There

re close relations to percolation cluster growth models see e.g.

14,30] , and stochastic lattice gas models [18] . In the more applied

ciences, similar epidemic models have been developed under the

ame agent based modeling, see e.g. [60] and references therein,

r the survey [62] . The paper [18] conducts a simulation study of a

imilar model 3 to the S-I-T-S model studied here, but focusing on

he critical regime (and critical exponents) rather than the super-

ritical regime investigated here. 

Arguable, due to their homogeneous nature, lattice models do

ot represent realistic epidemics well. Nevertheless, they provide

n interesting comparison, especially, when we apply homogeniza-

ion methods to GIRG, such as the strong no travel rule or limiting

he maximal node degree. The S-I-T-S on lattice networks has again

ubcritical, critical and supercritical phases. Here we briefly sum-

arize our findings for supercritical S-I-T-S on lattice networks.

ithin the supercritical phase, we distinguish the two sub-phases

S and 2M as before, see Fig. 13 . Between these phases, there is a

harp transition between the two phases. 

However, the shape of the peak is different from the mean-

eld configuration model and that of GIRGs: the number of in-

ected grows linearly , not exponentially, followed by a linear de-

line and extinction. The linear growth corresponds to the linear

ircumference of graph distance balls in two dimensions. The epi-

emic proceeds like a wave. The number of nodes ever infected

rows quadratically at the beginning, corresponding to quadratic

olume growth in the model. 

. Conclusion and outlook 

We have studied the first and second peak in an epidemic

preading model with temporary immunity on three different un-

erlying networks, and compared them to the classical compart-

ental model that is based on ordinary differential equations

ODE). On network models, a new supercritical phase arises: the

pidemic dies out after a single peak when the average immunity

uration is long enough. When this duration is short enough, the

odel survives, and reaches a meta-stable equilibrium, similar to

he ODE solution. However, as the variability of the node degrees

n the underlying network increases, the amplitude of the oscilla-

ions after the first peak become smaller, or even vanish, showing

hat the ODE approximations might not capture some aspects of

pidemic spread on networks well enough. 

We have used scale-free networks embedded in a geometric

pace to study interventions methods. The geometry allows for in-

uitive modeling of several intervention methods: social distancing,

ravel restrictions, and meeting a limited number of people. We

ompare the effect of these interventions by ‘permanently’ modi-

ying the underlying contact network, while maintaining the same

verage node-degree across interventions. We find that the strong

ravel restrictions are most effective in elongating and diminishing

he first peak: the shape changes from exponential to linear. How-

ver, travel restrictions and meeting a limited number of people

esult in a higher second peak, where the latter restriction yields
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the highest second peak. Our main conclusion is that the behavior

of the epidemic highly depends on the topology of the network. 

Several future adjustments can be made to make the model

more realistic. Other compartments could be added, such as an ex-

posed, quarantined, and death state. Moreover, one could study a

scenario where interventions are only applied once certain thresh-

olds in the number of infected nodes are exceeded, or are being

lifted. Our framework could also be used to investigate the effect

of geometry for other intervention methods, such as a mobile app.
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Fig. 6. Left: The two dimensional torus Z 2 7 on N = 49 nodes. Each node has four ne

neighbors. The nodes in the bottom row are also connected to the nodes in the top

right column. 

Fig. 7. The algorithm producing the configuration model. Left: First, for each nod

match half-edges randomly to form edges (connections). This may be done in a seq

intermediate stage is shown when there are five edges formed. Right: All half-edges
s. Right: The modified two dimensional torus ̃  Z 
2 
7 on N = 49 nodes. Each node has 8

and the nodes in the very left column are also connected to the nodes in the very

he network we prescribe its degree and draw it as half-edges. Middle: Then, we

al way, by always choosing a uniform pair from the remaining half-edges. Here, an

atched. The output is a random graph called the configuration model. 
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ppendix A. The underlying network models. 
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Fig. 8. Two examples of the configuration model. The N = 200 nodes have average degree 4, with power-law degree distribution, with exponent τ = 2 . 9 ( left ) and τ = 3 . 3 

( right ). 

Fig. 9. Two examples of Geometric Inhomogeneous Random Graphs (GIRGs). The N = 10 0 0 nodes are placed randomly into a square of area N . Each node draws a random 

fitness from a power law distribution with exponent τ = 2 . 95 ( left ) and τ = 3 . 3 ( right ). We used the same location for nodes and the same underlying uniform variables to 

simulate fitnesses in both cases: for a uniform variable U v ∈ [0 , 1] , we set the fitness of node v to W 

(2 . 95) 
v := U −1 / 1 . 95 

v on the left, while W 

(3 . 3) 
v := U −1 / 2 . 3 

v on the right. Each 

pair of nodes with positions x 1 , x 2 and weights w 1 , w 2 , respectively, is connected with probability p (τ ) = 0 . 5(1 ∧ 0 . 2(w 

(τ ) 
1 

w 

(τ ) 
2 

| x 1 − x 2 | −d ) α ) , where α = 2 . 5 . Connections are 

again generated in a coupled way, using the same set of uniform variables for the two pictures, thresholded at p (2.95) and p (3.3) , respectively. 

A

F  with  

S ) and  

c = (2 . 5  

s r all n  

f eaks) 
ppendix B. The effect of geometry and interventions 

ig. 10. A comparison of survival probability of S-I-T-S on eight different networks

urvival probabilities were computed using a 100 runs for all parameter values ( η

onfiguration model with τ = 2 . 5 , 3 . 3 , GIRG: GIRG power-law fitnesses with (τ, α) 

ame number of N = 160 0 0 0 nodes, and the same average degree E [ deg (u )] = 8 . Fo

rom phase 2P (single peak followed by extinction) to 2M (survival with multiple p
 the same average degree, as a function of the η, the rate of losing immunisation.

 models. The infection and healing rates β = 0 . 225 , γ = 0 . 2 for all cases. CM: the

 , 2 . 3) , (3 . 3 , 1 . 3) , (3 . 3 , 2 . 3) , and Grid: the modified lattice ̃  Z 
2 . All networks have the

etworks we see a sharp transition at a critical value of η where the system moves

with overwhelming probability. 
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Fig. 11. No intervention. Mean field network vs spatial scale-free networks with many long-range edges. A comparison of the number of infected on the configuration model 

versus GIRG with matching parameters. The continuous line shows the median of infected individuals, the shaded area is covers 95% of all runs for which the number of 

infected nodes was positive. Each model has average degree 8. Observe that the epidemic curve of configuration model with τ = 2 . 5 (CM(2.5), dark blue) matches that of 

GIRG with (τ, α) = (2 . 5 , 2 . 3) (GIRG(2.5,2.3), light blue), while the epidemic curve of the configuration model with τ = 3 . 3 (CM(3.3), yellow) matches that of that of GIRG 

with (τ, α) = (3 . 3 , 1 . 3) (GIRG(3.3,1.3), red) Top : η = 0 . 002 (500 days immunity), a single peak can be observed. Bottom : η = 0 . 009 (111 days immunity), many peaks can be 

observed. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 12. No intervention: The effect of geometry. Each model has average degree 8, and power-law exponent τ = 3 . 3 . We see that there is only a match between the mean 

field network configuration model (CM) when α < 2, hence, there are many long-range connections in the network. The epidemic curve of configuration model with τ = 3 . 3 

(CM(3.3), orange) matches that of GIRG with (τ, α) = (3 . 3 , 1 . 3) (GIRG(3.3,1.3), red). When α is increased to 2.3 (GIRG(3.3,2.3), green). This effects the first peak of epidemic 

curve to flatten, its magnitude is shrunk by almost 40%, even though the average degree is tuned to remain the same. Top: η = 0 . 0 02 (50 0 days immunity) On all three 

models, a single peak can be observed, and all runs die out within 70 days. Bottom : η = 0 . 009 , the first peak has the same height as on to the top picture and is not shown. 

Without intervention (GIRG(3.3,1.3)), the second and further peaks of the epidemic behave similarly to the mean-field network (CM(3.3)). With intervention, (GIRG(3.3,2.3)), 

both the oscillation period as well as its amplitude are higher, but the average stationary proportion of infected nodes is lower. (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 13. A comparison of the number of infected on the torus ̃  Z 2 n with n = 400 , in total N = 160 0 0 0 nodes, γ = 0 . 2 , β = 0 . 225 for two values of η, see in subfigure captions. 

The continuous curve shows the median, the shaded area 95% of all runs of all runs for which the number of infected nodes was positive. 

Fig. 14. Solutions of the ODE when N = 160 0 0 0 , γ = 0 . 14 with 10 0 initially infected nodes. The infection almost seemingly disappears from the system before the second 

peak appears when η = 0 . 001 . The infection does not turn into a pandemic when β < γ . 
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Fig. 15. Visualization of the change in the underlying contact network under interventions. The network on the top left is similar to G 1 : a GIRG with (τ, α) = (2 . 5 , 1 . 3) , 

average degree 4.8 on N = 10 0 0 nodes. All interventions result in an average degree ≈ 2.6. 
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Fig. 16. Visualization of the change in the underlying contact network under interventions. The network on the top left is similar to G 2 : a GIRG with (τ, α) = (3 . 3 , 1 . 3) , 

average degree 4.8 on N = 10 0 0 nodes. All interventions result in an average degree ≈ 2.6, just like on Fig. 15 , even though the pictures here look much more sparse. 
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Fig. 17. Visualization of the initial 19 days on G 1 under interventions. The network on the top left is G 1 , a GIRG with (τ, α) = (2 . 5 , 1 . 3) and average degree 9.6 on N = 160 0 0 0 

nodes. All interventions result in an average degree 5.7. The darker the color, the earlier the infection. We chose typical runs to illustrate the effect of interventions. 
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Fig. 18. Visualization of the initial 19 days on G 2 under several intervention measures. The network on the left is G 2 , a GIRG with (τ, α) = (3 . 3 , 1 . 3) and average degree 8.7 

on N = 160 0 0 0 nodes. All interventions result in an average degree 4.9. The darker the color, the earlier the infection. Color scaling is the same as on Fig. 17 . 
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Fig. 19. The effect of interventions: the long-survival probabilities (phase 2M) are decreasing significantly under each intervention strategy. The four interventions are: (A) 

social distancing, denoted as ”perc”, (B) limiting maximal degree, denoted as ”hub”, (Ch) a hard no-travel rule, denoted as ”long” on the legend, and (Cw) a weak no-travel 

rule: increasing α. We see that in all interventions, the long-survival probabilities are below the original curve. The threshold η is lowest for percolation and highest for 

limiting the maximal degree, while truncating long-edges and increasing α in the network both show an interesting non-monotonous survival probability curve. Top: The 

initial network is G 1 , a GIRG with (τ, α) = (2 . 5 , 1 . 3) , and E [ deg (u )] = 9 . 6 . Bottom: The initial network is G 2 , a GIRG with (τ, α) = (3 . 3 , 1 . 3) , and E [ deg (u )] = 8 . 7 . 
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Fig. 20. Monotonicity of survival probabilities as a function of η. For the graph G α2 , a GIRG(3.3, 1.9) (weak no-travel rule), we have tested the monotonicity of the survival 

probability curve, by increasing the number of runs to 500 for each value of η. The curve appears to be monotonous, with a sharp threshold near ηc ≈ 0.007. 

Table B1 

Time and location of the first and second peak under interventions, for all values of η. O: original graph, A: social distancing, Bw: weak no-travel rule (increasing 

α, B: hard no-travel rule (cutting long edges), C: limiting maximal node degree. Where the data is missing, the system produces a single peak only. The large 

numbers for the time of the second peak on G 1 are coming from random oscillations of the equilibriated system when there is no clear second peak. 

First peak ( × 10 3 ) Time of first peak Second peak ( × 10 3 ) Time of second peak 

η O A Bw B C O A Bw B C O A Bw B C O A Bw B C 

G 1 0.001 85 51 52 38 49 8 11 10 25 25 

0.002 84 53 52 39 49 8 10 10 25 25 1.2 1.5 1.7 1103 630 636 

0.003 84 50 51 39 48 8 11 10 24 26 1.7 1.3 1.2 1023 1027 1126 

0.004 84 53 51 39 49 8 11 11 25 26 2.2 1.6 1.6 4.0 609 920 634 193 

0.005 83 51 52 39 49 9 11 10 25 25 2.8 2.0 2.0 5.0 1177 790 697 170 

0.006 85 53 51 39 49 8 11 10 25 26 3.3 2.4 2.3 5.1 9.9 772 680 726 151 184 

0.007 83 53 50 39 49 8 12 10 25 25 3.9 2.7 2.6 5.4 10.1 436 705 708 136 163 

0.008 84 55 50 39 49 8 10 10 25 25 4.4 3.1 3.1 5.7 10.5 1184 1196 460 126 150 

0.009 83 49 49 40 50 8 12 10 24 25 4.9 3.5 3.4 5.5 10.4 308 895 868 117 140 

0.010 86 52 51 39 49 8 11 10 25 25 5.4 3.9 3.8 5.8 10.6 439 321 286 110 130 

0.011 83 51 52 40 48 8 11 10 24 25 6.0 4.2 4.1 5.9 10.5 972 352 244 105 123 

0.012 85 53 52 39 48 8 11 10 24 25 6.5 4.6 4.5 6.0 10.6 1071 225 552 102 116 

0.013 86 53 52 39 50 8 11 10 25 25 7.0 5.0 5.0 6.3 10.9 727 237 246 98 111 

G 2 0.001 78 46 32 12 37 14 21 30 81 40 

0.002 79 45 33 13 37 14 21 31 80 40 

0.003 80 45 33 13 37 14 21 27 79 42 3.3 154 

0.004 78 43 33 12 38 14 21 26 79 40 4.2 3.1 130 182 

0.005 79 47 33 12 38 14 21 31 78 40 5.1 5.0 4.0 110 171 228 

0.006 80 44 33 13 37 14 22 29 79 41 5.3 4.8 5.4 6.2 101 152 209 332 

0.007 79 46 33 13 37 13 21 28 81 40 5.7 5.2 5.4 6.1 13.5 97 143 183 344 242 

0.008 80 46 34 13 38 14 22 29 82 41 6.1 5.5 6.0 6.7 12.5 89 129 175 314 233 

0.009 78 45 34 13 38 14 21 29 80 39 6.5 5.9 6.4 6.9 13.0 86 121 161 284 208 

0.010 78 47 33 13 38 14 21 29 79 40 7.0 6.0 6.2 7.0 13.8 81 112 147 265 198 

0.011 80 47 34 13 38 13 23 29 80 41 7.4 6.5 6.6 7.0 14.2 78 112 142 236 188 

0.012 77 44 34 13 38 14 21 28 81 40 7.9 6.4 6.5 7.1 14.7 77 107 136 219 174 

0.013 80 45 35 14 39 14 22 26 81 40 8.4 6.8 7.0 7.2 14.7 77 102 131 205 162 
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Fig. 21. The effect of interventions on the first and second peak on G 1 , as a function of η (the inverse of the average immunity period). Abbreviations in the legend: ‘hub’: 

limiting maximal node degree, ‘long’: cutting long edges, ‘perc’: social distancing. The first entry is increasing α. GIRG(2.3,1.3) is the original network. We see that the height 

of the first peak is insensitive to the immunity duration, and that cutting long edges is most effective in reducing the first peak. For the second peak, limiting node degree 

pushes the critical η for appearance of the second peak from basically 0 to 0.005, however, above that the second peak is twice as high as for other interventions. Cutting 

long-edges also has a similar effect, although to a lesser extent. See also Figure 4 . Star indicates that there is no second peak, and the height we see is the height of the 

equilibrium, see the top figure on Fig. 25 . 
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Fig. 22. The effect of interventions on the first and second peak on G 2 , as a function of η (the inverse of the average immunity period). Abbreviations in the legend: ‘hub’: 

limiting maximal node degree, ‘long’: cutting long edges, ‘perc’: social distancing. The first entry is increasing α. GIRG(3.3,1.3) is the original network. We see that the height 

of the first peak is insensitive to the immunity duration, and that cutting long edges is most effective in reducing the first peak. For the second peak, limiting node degree 

pushes the critical η for appearance of the second peak from 0.002 to 0.006, however, above that the second peak is twice as high as for other interventions. See also 

Figure 21 . 
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Fig. 23. No intervention: the epidemic curves for the networks G 1 , G 2 on which we apply the intervention methods. G 1 is a GIRG with (τ, α) = (2 . 5 , 1 . 3) and average degree 

9.6, while G 2 is a GIRG with (τ, α) = (2 . 5 , 1 . 3) and average degree 8.7. Top: The first peak of the epidemic. Bottom: The second peak and stabilization of the number of 

infected. The average height and location of the first peak is H 1 (G 1 ) = 82785 on day 8 for G 1 , while it is H 1 (G 2 ) = 78263 on day 14 for GIRG with (τ, α) = (3 . 3 , 1 . 3) . On 

G 2 , we see a second peak at day 79 of average height H 2 (G 2 ) = 6538 , and the equilibrium number of infected E (G 2 ) ≈ 50 0 0 ± 100 . The equilibrium number of infected 

E (G 1 ) ≈ 4700 ± 100 is reached without a second peak on G 1 . 
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Fig. 24. The first peak under interventions. Top: The effect of interventions on G 1 : Social distancing (“GIRG(2.5, 1.3) perc”), the hard no travel rule (“GIRG(2.5, 1.3) long”), 

limiting the maximal number of contact (“GIRG(2.5, 1.3) hub”), and the weak no-travel rule (“GIRG(2.5, 2.37)”). The first peak disappears before day 60 in all cases. The 

curves for the weak no-travel rule and social distancing are almost identical. Bottom: The effect of interventions on G 1 : Social distancing (“GIRG(3.3, 1.3) perc”), the hard no 

travel rule (“GIRG(3.3, 1.3) long”), limiting the maximal number of contact (“GIRG(3.3, 1.3) hub”), and the weak no-travel rule (“GIRG(3.3, 1.9)”). The hard no travel rule is 

most effective in flattening the curve: both in its height as well as the day of the peak. 
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Fig. 25. Later effects of interventions on G 1 : Top : Social distancing (“GIRG(2.5, 1.3) perc”), as well as the weak no-travel rule (“GIRG(2.5, 2.37)”). No second peak can be 

observed, just like on the original network. Bottom: Limiting the maximal number of contact (“GIRG(2.5, 1.3) hub”), and the hard no travel rule (“GIRG(2.5, 1.3) long”’): 

second and further peaks are periodically present, with decreasing magnitude and period roughly the average immunity duration. G 1 is a GIRG with (τ, α) = (2 . 5 , 1 . 3) and 

average degree 9.6 on N = 160 0 0 0 nodes. All networks after intervention have average degree ≈ 4.9. 
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Fig. 26. Later effects of interventions on G 2 : Top : Social distancing (“GIRG(3.3, 1.3) perc”), as well as the weak no-travel rule (“GIRG(3.3, 1.9)”) compared to the original 

network (“GIRG(3.3, 1.3)”). Second and further peaks are present, equilibrium is reached within 600 days. Bottom: Limiting the maximal number of contact (“GIRG(3.3, 1.3) 

hub”), and the hard no travel rule (“GIRG(3.3, 1.3) long”’): second and further peaks are more profound, equilibrium is only reached around 1200 days. G 2 is a GIRG with 

(τ, α) = (3 . 3 , 1 . 3) and average degree 8.7 on N = 160 0 0 0 nodes. All networks after intervention have average degree ≈ 4.7. The first peak can be seen on Fig. 24 . The first 

peak of the red curve (corresponding to truncating long edges) is the first peak of the epidemic. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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Fig. 27. Later effects of interventions on G 1 , G 2 , for η = 0 . 013 : Top : G 1 and all interventions. Bottom G 2 and all interventions. The curves are qualitatively similar to η = 0 . 009 , 

the period between second and further peaks differ from those on Figs. 25 and 25 . The first peak is not affected by the change of η (below 2% change in height, that could 

be also due to statistical error margins, so we omit to plot it. The first peak of the red curve (corresponding to truncating long edges) is the first peak of the epidemic. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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