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Phosphorus-containing drugs belong to an important class of therapeutic agents and arewidely applied in daily clinical
practices. Structurally, the phosphorus-containing drugs can be classified into phosphotriesters, phosphonates,
phosphinates, phosphine oxides, phosphoric amides, bisphosphonates, phosphoric anhydrides, and others; function-
ally, they are often designed as prodrugs with improved selectivity and bioavailability, reduced side effects and toxic-
ity, or biomolecule analogues with endogenous materials and antagonistic endoenzyme supplements. This review
summarized the phosphorus-containing drugs currently on the market as well as a few promising molecules at clinical
studies, with particular emphasis on their structural features, biological mechanism, and indications.
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Table 1
Nomenclature of P(III)-containing molecules
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1. Introduction

Phosphorus belongs to one of the most essential elements of life and is
extensively distributed in nature. For example, phosphate-containing
units are important building-blocks for nucleotides, which are the basic
structures of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA).
Phosphorus-containing compounds are involved in vital processes or
Table 2
Nomenclature of P (V)-containing molecules

2

functions ranging from biochemistry, biogeochemistry, ecology, agricul-
ture, to industry. For example, one of the most famous agricultural and in-
dustrial application was dichlorvos (DDVP), which used to be a broad
spectrum insecticide and acaricide but was banned since 1998 due to its
high toxicity in inhibiting acetyl cholinesterase [1]. Phosphorus-containing
drugs constitute to be an important class of therapeutic agents targeting a
wide range of diseases. Their development has long attracted significant



Fig. 2. Interconversion of phosphomonoesters prodrugs into their hydroxyl parent
drugs and inorganic phosphate during the absorption and distribution process.
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attention from drug companies and pharmaceutical industry. For instance,
menadiol sodium diphosphate developed by Roche was approved in 1941
as a vitamin K4 derivative in reducing risk of hemorrhage [2]. Classified by
the structural character of phosphorus-containing functional groups, they
can be categorized as phosphoesters, phosphoric amides, phosphonates,
phosphinates, phosphine oxides, bisphosphonates, phosphoric anhydrides,
and et al. Mechanistically, these phosphorus-containing drugs are designed
either from the modification of present drugs to improve their properties,
or derived from biological analogues [3–4]. A number of phosphorus-
containing drugs are designed as prodrugs in the form of phosphotriesters,
phosphonates, phosphinates and phosphine oxides to achieve higher selectiv-
ity and bioavailability. Such prodrugs modified with phosphorus functional-
ities are believed to have a higher polarity and provide stronger hydrogen
bonding in vivo compared to its unmodified one in clinical administration
[5]. For example, monoester clindamycin phosphate is developed against
bacterial infections and used in various drug combinations known as
Benzaclin®2000, Ziana/Veltin®2006 and so forth [6–7]. Synthetic steroids
such as betamethasone, dexamethasome, prednisolone, hydrocortisone, and
estramustine are developed to their corresponding sodium phosphates
for the treatment of inflammations [8–10]. Another important type
of phosphorus-containing drugs is biological analogues. For example,
sofosbuvir is a nucleotide analogue inhibitor of NS5B polymerase developed
for hepatitis C therapy [11–13], while remdesivir* is an antiviral nucleotide
analog recently authorized for emergency use as a drug against COVID-19
[14–16].

The purpose of this review is to provide a brief overview of the
phosphorus-containing drugs on market. Although there have been a few
reviews related to the design of phosphorus-containing drugs, a compre-
hensive review with particular emphasis on their chemical structures and
indications remains in high demand [3–4,17].We hope this review can pro-
vide a clear structural landscape and therapeutic information of the current
phosphorus-containing drugs on market, as well as an overview of the
fast-developing area, trends, and opportunities in the discovery of new
phosphorus-containing therapeutics.

2. Nomenclature of P-Containing Molecules

One unique aspect of phosphorus atom is its valence, which can be ei-
ther 0, I, II, III, or V. Most phosphorus-containing organic compounds are
P(III)- and P(V)-containing molecules. Both are useful and common in na-
ture, with myriad biological and chemical functions. Hence, it is important
to classify different phosphorus-containing organic compounds with unam-
biguous nomenclature for identification.
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2.1. P(III)-containing molecules

Most P(III)-containing compounds are essential chemical
feedstocks such as phosphine (PH3), phosphorus trichloride (PCl3),
triphenylphosphine (PPh3), and so on. On the basis of the element di-
rectly bound to the phosphorus center, P(III)-containing molecules can
be divided into phosphite esters, phosphonites, phosphinites, phos-
phine, phosphorothioite, phosphorodithioite, phosphoamidite, and so
on (Table 1) [4,18]. Due to the presence of a lone pair on the P(III)
atom with strong coordinating ability, P(III)-containing molecules are
rarely developed as therapeutic agents.

2.2. P(V)-Containing Molecules

Most phosphorus-containing drugs are P(V)-containing molecules.
Organophosphorus compounds with pentavalent phosphorus atom are
called phosphoranes; phosphoranes of the type R3P=CR2 with a phos-
phorus carbon double bond are known as phosphonium ylides. How-
ever, most phosphorus-containing drugs possess phosphoryl (P=O)
2003
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oester and phosphodiester drugs.



Fig. 3. Structures of secondary and tertiary alcohol-derived phosphomonoester drugs 2–4.
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groups, which are typically bound directly to oxygen (phosphate),
nitrogen (phosphoroamidate), carbon (phosphonate, phosphinate,
and phosphine oxide), sulphur (phosphorothionate), and fluorine
(phosphorofluoridate) [18]. Other major types of P(V)-containing
drugs include thiophosphate containing P=S bonds, phosphoric anhy-
drides with one or multiple P-O-P units, and bisphosphonate bearing
P-C-P units, as shown in Table 2.

3. Classification of P (V)-Containing Drugs

(Mark* means the drug is not on the market)

3.1. Phosphomonoester and Phosphodiester Drugs

The development of phosphoester and phosphodiester drugs have
attracted significant attention ever since menadiol sodium diphosphate
(Synkayvite®) was first developed and approved by FDA in 1941
Fig. 4. Structures of primary alcohol-der

4

(Figure 1) [19]. Today more than 37 phosphoesters and phosphodiesters
are in the market and their combinational drugs are not even included.

Most phosphoester drugs are developed based on the modification of
currently existing drugs to improve efficacy, by tethering a phosphoric
monoester to the drug molecule through a hydroxyl functionality, while
most phosphodiester drugs were derived from essential biomolecules or
bio-markers, such as glycerol, nucleotides, and enzymes.

3.1.1. Phosphomonoester Drugs
Phosphomonoester features the direct connection of the phosphate

group to the hydroxyl group of an existing drug molecule, which is de-
signed to circumvent the insufficient solubility issue of the parent drug.
The presence of phosphomonoester moiety improves the efficacy and the
aqueous solubility of the corresponding drug molecule during the absorp-
tion and distribution process (Figure 2) [5]. The phosphate prodrug un-
dergoes conversion to its parent drug in vivo and inorganic phosphate
through the interaction with alkaline phosphatase, an abundant enzyme
in human body [20].
ived phosphomonoester drugs 5–13.



Fig. 5. Structures of phenol-derived phosphomonoester drugs 15-17.
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Clindamycin (1) is a 50S ribosomal subunit inhibitor for treating gram-
positive bacterial infections (Figure 3). However, irritation at the injection
site was observed with this parent drug. The topical application of
clindamycin phosphate (Cleocin/Dalacin-S/Evoclin®, 2) can replace the
parent drug clindamycin (1) due to its higher aqueous solubility and effi-
cient release of drugs in vivo [7]. Clindamycin is also in combination with
benzoyl peroxide (Benzaclin®2000), tretinoin (Ziana/Veltin®2006),
adapalene and benzoyl peroxide* (phase III) in treating acne [6,21].
Fosfluconazole (Prodif®2003, 3) has been considered as a triazole antifun-
gal and lanosterol 14 α-demethylase (CYP51A1) inhibitors. It is prescribed
for the treatment of fungal infections caused by Cryptococcus neoformans
and Candida [22]. The application of fosfluconazole increases the efficacy
of the parent drug fluconazole in vivo due to the rapid transport of phos-
phate derivative across cell membranes [23]. Polyestradiol phosphate
(PEP) (Estradurin/Estradurine®1957, 4) is a polymeric synthetic estrange
steroid for the treatment of metastatic prostate cancer [24]. As slow hydro-
lysis rate is presented for phosphoesters of secondary and tertiary alcohols
Fig. 6. Structures of steroid hormone-der
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due to decreased catalytic efficiency of the enzyme by steric hindrance at
the cleavage site, polyestradiol phosphate (4) represents a long-lasting
prodrug with slow release of estradiol in the body [25].

Effective clinical applications are also achieved by phosphatization of re-
lated biomolecules, such as endogenous structures. This is exemplified by
vidarabine monophosphate (5), a phosphorylated vidarabine, actively
treating the systematic herpes virus infection (Figure 4) [26]. Its fluorine
derivative, fludarabine phosphate (Beneflur/Fludara/Oforta®1991, 6), is a
DNA synthesis inhibitor and applied in therapy of chronic lymphocytic leu-
kemia (CLL) [27–28]. Many molecules of this type are still in clinical trials.
For instance, triciribine phosphate* (TCN-P, 7) is currently at phase II clini-
cal studies and is designed for the treatment of breast cancer, acute myeloid
leukemia and ovarian cancer by inhibiting protein kinase B (PKB) at the tar-
get AKT1 [29–30]. Pyridoxal phosphate* (PLP, 8) as a purinergic P2 recep-
tor antagonist, is currently tested in tardive dyskinesia (phrase II) [31].
Fostemsavir* (9) is under phase III stage as envelope glycoprotein inhibitors,
gp120 attachment inhibitors, and HIV gp120 protein inhibitors [32].
ived sodium phosphate drugs 18–22.
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Tedizolid phosphate (Sivextro®2014, 10) is one of the most important
protein synthesis inhibitors, 50S ribosomal subunit inhibitors, and
oxazolidinone antibiotics. This pharmaceutical product is used for the treat-
ment of methicillin resistant to staphylococcus aureus and bacterial skin in-
fections [33]. Other phosphomonoester drugs derived from primary
alcohols include benfotiamine (Milgamma/Neurostop®) (11) for vitamin
B1 deficiency, chlorinated drugs dichlorvos (DDVP)* (12) and triclofos*
(13) [34–35].

Besides parent drugs containing aliphatic alcohols, those with phenolic
moieties are also applicable to design as phosphomonoester prodrugs
(Figure 5) [36]. For example, fosfestrol sodium* (15) is an estrogen recep-
tor (ER) agonist in prostatic cancer therapy and this drug is derived from
the phosphorylation of hormone drug fosdestrol* (Distilbene/Stilbestrol/
Stilbetin®) (14). Fosfosal (Aydolid/Disdolen®) (16) is a salicylic acid
Fig. 7. Structures of sodium and ca

6

phosphate serving as a nonsteroidal anti-inflammatory and analgesic drug
(NSAID) [37]. As a topoisomerase (DNA) II alpha (TOP2A) inhibitor,
etoposide phosphate (Etopophos®1996, 17) exhibits sufficient aqueous
solubility to minimize the probability of drug precipitation by injection,
which is widely used for treating testicular cancer, small cell lung cancer,
multiple myeloma, acute lymphoblastic leukemia, and non-Hodgkin’s lym-
phoma [5,38–40].

Themodification by forming sodium and calciumphosphates also shows
a tremendous improvement in aqueous affinity of the parent drugs, facilitat-
ing drug absorption and distribution, as well as relieving skin irritation. One
of themost classical examples is betamethasone, a steroidmedicationwhich
acts as a glucocorticoid receptor (GR) agonist for various infections, allergic
diseases, and immune inflammations (Figure 6) [41–42]. Betamethasone so-
dium phosphate (18) is involved in intramuscular usewhen the oral therapy
lcium phosphate drugs 23-30.



Fig. 8. Structures of phosphodiester drugs 31-34 and cyclic phosphodiester drugs 35-37.
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is not feasible. This prodrug is also used in clinical application to interact
with drugs such as betamethasone acetate (Celestone Soluspan®1965)
and fradiomycin sulfate (Rinderon-A®), to stimulate additional inhibitory
activity against cell wall biosynthesis [43–44].

The anabolic steroids analogues, dexamethasone sodium phosphate
(Aacidexam/Alba-Dex/Decadrol/Dexacort/Hexadrol/Oradexon®) (19) is
1959
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developed to replace its parent drug testosterone in clinical application.
For example, aciont (Visulex®) is currently in phase II clinical trial for
treating uveitis [8,45–46]. Other synthetic glucocorticoid corticosteroid an-
alogues include hydrocortisone sodium phosphate (Hydrocortone®1960,
21) and prednisolone sodium phosphate (Prednesol/Predsol/Predsolan/
Solu-Predalone/Solucort®) (20), which are also used in combination
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Sofosbuvir & Ribavirin & 

Epigallocatechin (Catvira®)*

Phase III
Glufosfamide*

NDA apply 2020
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sey®)

2017
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Ethanolate & Cobicistat & Emtricitabine (Symtuza®)

hosphoric amide drugs.



Fig. 10. Structures of phosphoromonoamidate drugs 38–43.
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with sulfacetamide sodium (Vasocidin®1988) and phenoxazoline*
[9,47–48]. In addition, estramustine phosphate sodium (Emcyt/Estracyt®)
(22) has been approved as an alkylating agent to treat prostatic cancer [10].

Most phosphomonoester drugs are pharmacologically designed from
either existing clinical drugs or naturally occurring compounds by esterifi-
cation to form sodium and calcium phosphate (Figure 7). Fosphenytoin
disodium (Cerebyx/Fostoin/Pro-Epanutin/Cereneu/Prophenytoin/
Prodilantin®1996, 23) is applied to deliver phenytoin more efficiently
due to its excellent water-solubility [13,49–50]. Fospropofol disodium
(Lusedra/Aquavan®2008, 24) is also a water-soluble form of fospropofol
which is a hypnotic alkylphenol derivative to be related to the effects on
GABA-mediated chloride channels in the central nervous system (CNS)
[51–53]. This drug molecule can be hydrolyzed by alkaline phosphatase
in vivo to propofol, possessing greater potential than propofol for hyperlip-
idemia at long-time administration. It is noted that riboflavin sodium phos-
phate (Hyryl/Ribo®) (25) is developed from natural riboflavin (vitamin
B2) and menadiol sodium diphosphate (Synkayvite®1941, 26) is modified
from Vitamin K4 [19]. Other promising and important phosphomonoester
drugs currently under clinical studies include gadofosveset trisodium*
Fig. 11. Structures of phosp
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(Ablavar/AngioMARK/Vasovist®2015, 28), (S)-ornidazole disodium
phosphate* (NDA apply) (27), and mifamurtide sodium* [54–56]. There
are only a few calcium phosphate drugs on the market. Calcium
glycerylphosphate (or calcium glycerophosphate, 29) is a mineral supple-
ment and fosamprenavir calcium (Lexiva/Telzir®2003, 30) is a derivative
of HIV-1 protease inhibitor and antiretroviral drug amprenavir [57–58].

3.1.2. Phosphodiester Drugs
Besides phosphomonoester drugs designed from direct connection be-

tween the phosphate group and a hydroxyl group of the parent drug, phos-
phodiester drugs derived from natural and biologically active chemicals
constitute another important class of phosphate drugs (Figure 8). For
example, (S)-ethylisothiouronium diethylphosphate (Difetur/Ravimig/
Raviclust/Raviten®1997, 31) is a specific inhibitor of inducible nitric
oxide (NO) synthase on hepatic NO production level [59–60]. Other
distinct phosphodiester structures are cyclic esters such as bucladesine,
cifostodine (neurodrug) (37), and adenosine cyclophosphate (36)
[17,61]. Bucladesine sodium (Actosin®) (35) is modified from
bucladesine, which is a nucleotide derivative of phosphodiesterase (PDE)
horodiamidate 44–47.



Fig. 12. Structures of phosphorotriamidate 48–55.
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inhibitor tomimic the action of endogenous cAMP [62–63]. Derived from a
natural choline compound in brain, choline alfoscerate (α-GPC) (Brezal/
Delecit/Gliatilin®) (33) was designed as a parasympathomimetic acetyl-
choline precursor to deliver choline across the blood-brain barrier (BBB)
for treating Alzheimer's disease and other dementias [64–65]. BBB is a
highly selective semipermeable border of endothelial cells. Solutes are
not permitted to cross into extracellular fluid of neurons reside-containing
CNS from the circulating blood, such as pathogens. As a result, one major
challenge in drug discovery of the CNS therapy is to allow the therapeutics
to pass through BBB [66–68]. It is believed that the high polarity of choline
alfoscerate makes it readily pass through BBB to provide good therapeutic
effect [69]. Other renowned phosphodiester drugs are exemplified by
Fig. 13. Structures of tenofovir slafenamide fumarate 56.
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colfosceril palmitate (Surfexo®Neonatal™) (34) applied as a pulmonary
surfactant, and vitamin B12-derived methylcobalamine* (MeCbl/MeB12)
(32) as a cardiovascular drug [70–72].

3.2. Phosphoric Amide Drugs

Phosphoric amide drugs, such as phosphoromonoamidates,
phosphorodiamidates and phosphorotriamides, are designed as prodrugs
from the corresponding active parent drugs by direct connection between
nitrogen and phosphorus atom. Figure 9 delineated the time line for the de-
velopment of main phosphoric amide drugs. Among them, fosaprepitant
dimeglumine (EMEND/Ivemend/Proemend®2007, 38) is a prodrug of
apreitant, which is used to prevent chemotherapy-induced nausea and
vomiting (CINV), and postoperative nausea and vomiting (PONV) [73].
Creatine and phosphocreatine are naturally occurring chemicals within
the body primarily stored in skeletal muscle. Because phosphocreatine is
capable of anaerobically donating a phosphate group to ADP to regenerate
ATP, and excess ATP can be dephosphorylated during periods of low mus-
cle activity to convert creatine to phosphocreatine, phosphocreatine is a
crucial energy buffer in body muscle cells. The pharmacological role of cre-
atine phosphate sodium (39) is to facilitate recycling of ATP for reducing
the risk of muscular and cardiovascular disease [74–75]. (See Fig. 10.)

Sofosbuvir (Sovaldi/Elbanovir/Resof®2013, 40) is developed as a
prodrug in antihepatitis C treatment. This phosphoric amide compound is
metabolized in vivo to triphosphate form as the active antiviral agent,
2017
Tenofovir disoproxil phosphate & 

Emtricitabine and Efavirenz

Phase II
Fosfomycin sodium & 

Amikacin Sulfate*

Phase III
Ridaforolimus* (Taltorvic®)

2017
Tenofovir disoproxil 

phosphate (Tefovir®)

O/ 
®)

lunbrig®)

hinate, phosphine oxide and other drugs.



Fig. 15. Structures of phosphonate drugs 57–60.

Fig. 16. Structures of antiviral phosphonate drugs 61–63.
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which functions as a defective substrate for NS5B protein (viral RNA poly-
merase) to inhibit viral RNA synthesis [11–12,76–77]. Sofosbuvir is also
combined with ledipasvir (Harvoni®2014), velpatasvir (Epclusa®2016),
velpatasvir, voxilaprevir (Vosevi®2017), ribavirin, and epigallocatechin*
(Catvira® phase III) in clinical applications [13,78–80]. Ceftaroline fosamil
Fig. 17. Structures of phosphonate dru
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acetate (Teflaro/Zinforo®2010, 41) is developed as a prodrug of
ceftaroline, which is a novel cephalosporin for inhibiting MRSA. It converts
to active metabolise caftaroline and inactive caftaroline-M1 in vivo [81].
Antiviral remdesivir* (GS-5734) (Veklury®NDA apply) (43) is a RNA poly-
merase inhibitor recently authorized for emergency use as a drug against
gs and bioactive molecules 64–68.
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COVID-19. Remdesivir is reported to inhibit murine hepatitis virus (MHV)
replication, potently inhibit SARS-CoV, and MERS-CoV in primary human
airway epithelial cells. By comparing with its parent adenosine nucleoside
without possessing the phosphoramide moiety, 1′-cyano 4-aza 7,9-
dideazaadenosine C-nucleoside (GS-441524, 42), remdesivir has provided
markedly enhanced antiviral activities. It is more potent (EC50 = 0.03
μmol/L) in inhibition of MHV than GS-441524 (EC50= 1.1 μmol/L). In ad-
dition, remdesivir has shown 3 to 30 times more active than GS-441524 in
all tested coronaviruses (CoVs) due to its more efficient metabolization of
remdesivir [14–16].

Cyclophosphoamide is a vital structure of phosphorodiamidate drugs
and is commonly featured by the presence of two P-N bonds. Drugs of
this type have been used as nitrogen mustard alkylating agents for cancer
treatment (Figure 11). It has been reported that the phosphoryl group is in-
volved as the carrier structure of alkylation reaction at β-chloroethylamino
functionality, which can be selectively activated by phosphoramidase in
tumor cells for alkylation of DNA through a cationic aziridinium intermedi-
ate [3,82]. Cyclophosphamide (Cytoxan/Endoxan/Endoxana/Neosar/
Revimmune/Sendoxan®1959, 44) is a chemotherapy medicine suppress-
ing the immune system [83–84]. Normally, it is in drug interactions with ci-
metidine, diclofenac and salazosulfapyridine (SASP)* (phase II) for clinical
treatment of solid tumor, metastatic pancreatic cancer, as a Histamine H2
receptor antagonist, alkylating agent, COX inhibitor, PGSI and LT synthesis
inhibitor [85–87]. In addition, the combination of cyclophosphamide and
capecitabine* (phase II) is applicable for treatment of mammary cancer
by further inhibiting nucleoside metabolism and thymidylate synthase
(TYMS) [88–89]. As the alkylating agents, ifosfamide (Holoxan/Ifex/
Mitoxana®1987, 45) is used for treating testicular cancer, breast cancer,
solid tumor, lung cancer, sarcoma, lymphoma, and ovarian cancer, while
trofosfamide (Ixoten®) (46) is used for targeting malignant tumor [90].
Several phosphordiamidate drugs are currently under investigation as
alkylating agents and DNA synthesis inhibitors such as glufosfamide*
(47) currently in phase III clinical trial for treating advanced breast cancer
and pancreatic cancer [91–92].

Phosphorotriamidate alkylating agents bearing aziridine rings are also
important nitrogen mustards as antineoplastic agents such as azetepa*
(48), uredepa* (49), dipin* (50), fopurine* (51), and meturedepa* (52)
Fig. 18. Structures of phosphinate an
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(Figure 12) [17]. Glyciphosphoramide* (53) bearing β-chloroethylamino
moieties is an effective DNA crosslinking agent with antitumor activities
[93–94]. However, some phosphorostriamideates are enzyme inhibitors
such as urease inhibitors tolfamide* (54) and flurofamide* (55) [95–97].

Tenofovir alafenamide fumarate (Vemlidy®2016, 56) is a phosphate-
containing drug having distinct chemical structures with respect to the
phosphoric amides moieties [98]. It possesses a phosphorus center
connecting directly with one P-C, P-N, and P-N bond (Figure 13). As a
HBV nucleotide reverse transcriptase inhibitor (NRTI), this drug is
approved for treatment of hepatitis B. It is also involved in a series of coop-
erative drugs for treatment of AIDS. For example, it is used in combination
with emtricitabine (Descovy®2016), rilpivirine hydrochloride, and
emtricitabine (Odefsey®2016) to inhibit additional nucleoside analog
and non-nucleoside, HIV nucleoside analog reverse transcriptase
[99–100]. Alternatively, it is combined with darunavir ethanolate,
cobicistat and emtricitabine (Symtuza®2017) to inhibit additional HIV-1
protease and cytochrome P450 3A (CYP3A) enzyme [101].

3.3. Phosphonate, Phosphinate, and Phosphine Oxide Drugs

Compounds containing a phosphorus atom binding directly to one or
more carbon atoms feature different structure characters from phosphates,
usually rendering a more hydrophilic surface and having better chemical
stability. In awide range of technologically important applications in chem-
ical synthesis, a good catalytic activity is achieved by using phosphonate,
phosphinate, and phosphine oxide as the catalyst due to the stronger ad-
sorption capacity of the P-C bond for metal ions and organic molecules
[102]. Fig. 14 delineates the progress in the development of phosphonate,
phosphinate, phosphine oxide, and related drugs.

The synthetic phosphonate analogues are mainly used as acyclic
enzyme inhibitors, normally as phosphonate analogue prodrugs in clinical
application (Figure 15). For example, the phosphonic acid derivative, fos-
carnet sodium (Foscavir/Triapten/Virudin®1991, 57) was developed
from foscarnet (phosphonomethanoic acid) in treatment of herpes viruses,
including drug-resistant cytomegalovirus (CMV) and herpes simplex
viruses (HSV-1 and HSV-2) [103–104]. It selectively acts against the pyro-
phosphate binding site due to the structural mimic of anion pyrophosphate
d phosphine oxide drugs 69–73.



Fig. 19. Structures of phosphorofluoridate drug 74 and phosphorothiate drugs 75–76.
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[105–106]. Antiparasitic drug metrifonate (Bilarcil/Memobay/ProMem®)
(58) is an acetylcholinesterase inhibitor [107]. However, this drug was
banned due to its high toxicity of metabolism dichlorvos in plants [108].
The phosphonodipeptides are also developed possessing antibacterial and
antifungal properties, such as alafosfalin* (59) and LeuAlaP* (60) which
are used as antibacterial drugs [109–110].

Phosphonate derivatives of heterocyclic bases have shown to inhibit nu-
cleoside phosphorylase (Figure 16) [17]. Adefovir dipivoxil (ADV)
(Preceon/Hepsera®, 62), a prodrug of pivoxil, is formulated to improve
the fat solubility in vivo from adefovir, which is more polar and has a low
oral bioavailability because of its free phosphonic acid functionality
[3,111]; Tenofovir disoproxil phosphate (Tefovir®2017) (63) also inhibits
nucleotide analogues reverse-transcriptase (NtRTI) for hepatitis B therapy.
The interaction of tenofovir disoproxil phosphate with emtricitabine and
efavirenz (2017) has been applied for AIDS treatment [112–113]. In addi-
tion, (S)-HPMPA (61) possess potent and selective inhibitory activities
against a broad spectrum of DNA viruses [114].

The high value of biological compounds with structures containing C-P
bonds was gradually recognized with the identification of more and more
naturally produced phosphonates. Their unique structural features and
chemical biosyntheses are widely exploited in drug discovery and
agricultural application (Figure 17) [115]. For example, fosfomycin is a
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phosphoenolpyruvate (PEP) analogue that inhibits the enzyme UDP-N-
acetylglucosamine-3-enolpyruvyltransferase (MurA). It has been reported
that this drug inhibits the biosynthesis of bacterial cell wall by alkylating
an active site cysteine residue [116–118]. Fosfomycin sodium
(CONTEPO/Fosfocine/Fosmicin-S/ZOLYD®1996, 64), as an antibiotic,
was primarily used to treat bladder infections [119]. This drug is also in-
volved in drug combination with amikacin sulfate* (phase II) for further
inhibiting protein 30S ribosomal subunit [120–121]. Another clinical appli-
cation of aliphatic phosphate is fosfomycin trometamolium (Monuril/
Monurol®1996, 65), which is mainly used for lowering urinary tract infec-
tion caused by sensitive bacteria [3,121–122]. Drugs in this category re-
main in clinical trials including antiviral drugs fosarilate* (68),
cardiovascular drugs fostedil* (66) and mifobate* (67) [17,123].

The replacement of the P-O bonds of phosphates with two or three P-C
bonds has been applied in phosphorus-containing drug design (Figure 18).
Unlike most angiotensin converting enzyme (ACE) inhibitors of cardiovas-
cular drugs, fosinopril (Monopril®1991, 69) with a phosphinate structure
is a more positive choice for treating hypertension and chronic heart failure
through the body elimination by both renal and hepatic pathways
[124–125]; fosinoprilat is developed from the de-esterfication of fosinopril,
which competitively binds to ACE in vivo [126]. Ridaforolimus*
(Taltorvic®phase III, 70) is a small-molecule inhibitor of rapamycin
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Fig. 22. Structures of nitrogenous bisphosphonate drugs 81–87.

Fig. 23. Structures of nitrogenous bisphosphonate drugs 88–90.
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(mTOR), interfering growth, division, metabolism, and angiogenesis of
tumor cells [127]. As for phosphine oxide drugs containing three P-C
bonds, fosazepam (71) is a water soluble derivative of diazepam
(Valium1963), which is substituted with a dimethylphosphoryl group to
improve its solubility in water [128]. This drug is a benzodiazepine deriva-
tive and acts as a positive allostericmodulator of the GABA type A receptors
(GABAA) [129]. Small-molecule drug brigatinib (Alunbrig®2016, 72) acts
as both an anaplastic lymphoma kinase (ALK) and a epidermal growth fac-
tor receptor (EGFR) inhibitor. It is also used in targeted cancer therapy
[130–131]. Fosenazide (73) is a neurodrug with strong inhibiting activities
of adrenaline and 5-hydroxyrtryptamine (serotonin) [17].
Fig. 24. Structures of pyrop
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3.4. Other Phosphate Drugs

Besides the above introduced drugs, there are a series of phosphate
drugs with close biological similarities, such as irreversible acetylcholines-
terase inhibitors, dyflos and ecothiopate iodide (Figure 19) [132]. Dyflos
(Floropryl®) (74) is a parasympathomimetic drug acting as irreversible an-
ticholinesterase and being able to induce delayed peripheral neuropathy.
This drug is used in ophthalmology as amiotic agent in veterinarymedicine
and treatment of chronic glaucoma [133]. Both dyflos and ecothiopate io-
dide (Ecothiopate Iodide®) (75) are used as ocular antihypertensives for
chronic glaucoma therapy by covalently binding to serine group at the
hosphate drugs 91–93.
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active site of the cholinesterase [134]. Amifostine (Ethyol®1995, 76) is a
cytoprotective adjuvant and is used as an organic phosphorothiate prodrug
for cancer chemotherapy and radiotherapy. After administration, it is hy-
drolyzed in vivo by alkaline phosphatase to the active cytoprotective thiol
metabolite as a DNA-binding chemotherapeutic agent [135].

3.5. Bisphosphonate and Phosphoric Anhydride Drugs

Main bisphosphonate and phosphoric anhydride drugs have been devel-
oped since 1970s (Figure 20), and more than 14 medical molecules of
bisphosphonates and 8 phosphoric anhydrides are developed (both not in-
clude drug combination). Both of them constituted with at least two phos-
phorus functionalities, whose definition was based on P-containing
linkages of ‘P-C-P’ or ‘P-O-P’.

3.5.1. Bisphosphonate Drugs
Bisphosphonate drugs are characterized by the presence of two phos-

phonate moieties connected with a substituted carbon atom. Substitution
with a hydroxyl group on the carbon atom has been shown to reduce
Fig. 25. Structures of nucleoside
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osteoclastic activity and inhibit bone resorption, construction, and recon-
struction. Drugs of this type are used for the treatment of hypercalcemia
caused by osteoporosis, deformable osteoarthritis, and bone tumor
[136–137].

As bone resorption inhibitors, non-nitrogenous bisphosphonate drugs
belong to the first generation of anti-osteoporotic drug (Figure 21). They
are absorbed and metabolized by osteoclasts into ATP analogues and
have been approved for preventing and treating osteoporosis in postmeno-
pause [138–139]. For example, etidronate disodium and clodronate
disodium contain both hydroxyl and chlorine substitutions on the carbon
atom connecting the two phosphate groups, respectively [3–4]. Etidronate
disodium (Calcimux/Didronel/Etidron®1977, 77) has been approved for
the treatment of osteoporosis and Paget's disease of bone, while
chlorophosphonic acid clodronate disodium (Bonefos/Abioklad/
Clasteon/Clastoban/Loron/Lytos/Ostac®1986, 78) is used for reducing
vertebral fractures, hyperparathyroidism, hypercalcemia in malignancy,
multiple myeloma, and pain related in fracture (reduction in inflammatory
markers like IL-1β, IL-6, and TNF-α) [140–142]. Chlorophosphonic acid
clodronate disodium is also involved in drug interaction with clodronic
pyrophosphate drugs 94-98.
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acid and hyaluronic acid* (phase I) in osteoarthritis therapy due to its po-
tent anti-inflammatory and analgesic effects [143].

Tiludronate disodium hydrate (Skelid ®2014, 79) is a bisphosphonate
derivative with a p-thiochlorobenzene ring-containing side chain for treat-
ment of navicular disease. This drug is metabolized by osteoclasts to inhibit
ATP in the cell competitively [144]. Another non-nitrogenous
bisphosphonate drug is 188Re-HEDP* (phase II) (80) which contains rare
metal rhenium [145].

Unlike the above-introduced first generation of bisphosphonates, the
second and third generation of bisphosphonate drugs have been developed
with nitrogen-containing substitution or nitrogen-containing heterocycles
in side chains, respectively. This specific design allow these drugs to inter-
fere farnesylation and protein geranylation of ATP by combining with
farnesyl pyrophosphate (FPP) synthetase and isopentene pyrophosphate
(IPP) of mevalonate channel to form a stable ternary complex [3,146–147].

Drugs belong to the second generation of bisphosphonate derivatives in-
clude pamidronate disodium (Aminomux/Aredia®1991, 81) for preventing
bone loss and strengthening bone, ibandronate sodium hydrate (Boniva/
Bondronat/Bonviva/Bondenza/Iasibon®1996, 82) for use in drugs interac-
tionswith colecalciferol (Bonviva Plus®2013) to treat osteoporosis and oste-
oporosis in post-menopausal women (phase III), alendronate sodium
(Alendros/Almerol/Avalent/Binosto/Bonalon/Fosamax/Fosamc/Onclast/
Steovess/Teiroc®1995, 83) which has been approved in drug combination
with colecalciferol (Adrovance/Fosamance®2005), and alendronate, in
combination with calcitriol (Maxmarvil®) (Figure 22) [3–4]. In addition,
LLP2A alendronate* (phase I) (84), neridronic acid (Attila/Nerixia®) (85),
and neridronate sodium (2002) (86) are used for treating osteoporosis and
Paget’s disease [148–150]. It should be indicated that incadronate disodium
(Bisphonal®1997, 87) is a nitrogen-containing bisphosphonate drug that
contributes a cycloheptyl substituted amino group [151].

The third generation of bisphosphonate derivatives have been reported
to possess more effective activity than drugs from the first two generations
(Figure 23). For example, risedronate sodium hydrate (Actonel/Benet/
Acrel®1998, 88) is involved in the interaction between risedronate sodium
with colecalciferol (Risenex plus/RisenexM®2010) [152–153]. Zoledronic
acid hydrate (Aclasta/Orazol/Reclast®2000, 89) has been shown to inter-
act with prednisolone* (phase III) and minodronic acid hydrate (Bonoteo/
Recalbon®2009, 90) [154–155].

3.5.2. Phosphoric Anhydrides Drugs
Phosphoric anhydrides drugs are another major class of phosphates

derivatives, including pyrophosphates, nucleoside diphosphates, nucleo-
side triphosphates, and tetraphosphates.

Pyrophosphates are phosphorus oxyanions containing two phosphorus
atoms in a P-O-P linkage. Drugs of this type normally exist as pyrophos-
phate salt. The pyrophosphates drugs are developed from mimicking bio-
chemical molecules with respect to the phosphate-phosphate bonds
which are related to some endogenous important compounds, such as aden-
osine diphosphate (ADP) and adenosine triphosphate (ATP). For example,
ferric pyrophosphate citrate (Triferic®2011, 91) is an iron(III)
Fig. 26. Structures of other p
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pyrophosphate for iron supplementation (Figure 24). It is used as a key el-
ement in the formation of new red blood cells for anemic dialysis patients
[156–157]. Cocarboxylase (TPP/ThPP/ThDP) (92) is a hiamine (vitamin
B1) derivative for VB1 supplementation which is produced by the enzyme
thiamine diphosphokinase [158]. As apoptosis stimulant and platinum-
pyrophosphate agent, PT-112 (phase II) (93) is a platinum complex for
treatment of solid tumor, multiple myeloma, and hepatoma [159].

Other nucleoside derivatives are developed from the endogenous com-
pounds with high-energy phosphate, such as adenosine diphosphate (ADP)
and adenosine triphosphate (ATP) (Figure 25). As the nucleoside diphos-
phates analogues, citicoline sodium (CerAxon/Nicholin/Somazina®) (94)
can improve cardiovascular and cerebrovascular circulation, and is used
in treatment of brain damage, apoplexy, cerebrovascular, and Parkinson’s
disease. This drug is hydrolyzed to choline and cytosine nucleosides in cir-
culatory system and after crossing the blood-brain barrier, it is recombined
again in the brain tissue to promote the biosynthesis of phospholipids in the
cell membrane in brain tissue [160–161]. Flavin adenine dinucleotide
sodium (FAD) (Adeflavin/Flavitan/Flaziren/Wakadenin®) (95) is ap-
proved for treating acne, keratitis, vitamin B2 deficiency, conjunctivitis,
acne rosacea, eczema, seborrheic dermatitis, and stomatitis. It is a redox-
active coenzyme derivative with flavin mononucleotide, which is involved
with several important enzymatic reactions of riboflavin in metabolism
[162].

It is widely known that adenosine triphosphate (ATP) is the most direct
energy source involved in metabolism of organism. As its nucleoside ana-
logues, adenosine triphosphate disodium hydrate (Adesinon®, 96) is ap-
proved for treating supraventricular arrhythmia and peripheral vascular
disease in clinical practice. It is anticipated that a special antiplatelet
drug, cangrelor (Kengreal/Kengrexal®2015, 97) has phosphorus
oxyanions containing two phosphorus atoms in a P-O-P linkage [163];
one carbon atom and one phosphorus atom in P-C-P linkage, it is used to in-
terfere P2Y12 receptors reversibly, which involves in ADP-induced platelet
aggregate [164].

As a P2Y2 purinoceptor receptor (P2Y2) agonist, diquafosol
tetrasodium (Diquas/Prolacria®2010, 98) is a tetraphosphate and has
been approved for treating xerophthalmia [165].
3.6. Miscellaneous

Phosphorus-containing pharmaceutical molecules also include
phosphorodithioate drugs and more (Figure 26). Thiotepa (Tepadina/
Thioplex®1959, 99) is an alkylating agent and has been approved in treat-
ment of gastrointestinal tumor, mammary, bladder, and ovarian cancer
[166–167]. Malathion (Ovide®1982, 100) has been reported to inhibit
acetylcholinesterase (AChE) and is used for treating head louse [168]. As
an anti-rheumatic agent and phosphorus triethyl-phosphine coordinated
gold salt, auranofin (Ridaura®) (101) is a nonsteroidal anti-inflammatory
and analgesic drug. Besides treating rheumatoid arthritis, it also shows
moderate effects in clinical treatments of HIV infection, amebiasis,
hosphate drugs 99–101.
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tuberculosis and ovarian cancer, which may be against on coronavirus
(COVID-19) [169–170].

4. Conclusion and Outlook

This review summarizes the phosphorus-containing drugs on the mar-
ket and related promising agents that are currently under clinical studies.
Most P-containing drugs are designed as prodrugs for reducing side effects
and toxicity, increasing the selectivity and bioavailability. Drugs of this
type are characterized by either direct connection between phosphate
group and the hydroxyl group of the parent drugs or possessing an indirect
linker bearing function groups such as amino and halogens. The solubility
and aqueous affinity of parent drugs are improved significantly. While
slow conversion rate is confronted for prodrugs derived from the
phosphomonester of secondary and tertiary alcohols in some cases, such
as sodium phosphates and calcium phosphates, they are all developed by
simple substitutions from chemical synthesis.

In a wide range of important clinical applications, phosphoric anhy-
drides and polyphosphates derivatives of P-containing drugs are developed
by mimicking biochemical molecules in vivo, including some endogenous
structures (ATP and ADP) and enzymes. For example, bisphosphonates
with hydroxyl substitution on the carbon atom are active for bone resorp-
tion, construction, and reconstruction by reducing osteoclastic activities.
Future generations of phosphorus-containing osteoporosis drugs and others
with more complicated chemical structures share the same advantage.

It has been showcased that various forms of P-containing drug mole-
cules have been developed from a rapidly progressing clinical research
with various biological activities including anticancer, antibacterial, anti-
inflammatory, anti-osteoporosis, and cerebrovascular circulation. Most
common applications are consistently developed due to their potential ad-
vantages, including prodrugs modifying and resemblance to biochemical
entities. It is certain that phosphorus-containing drugs will continue to be
an important class of valuable therapeutic agents in clinical applications.
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