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Grid cells are modulated by local head direction
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Grid and head direction codes represent cognitive spaces for navigation and memory. Pure
grid cells generate grid codes that have been assumed to be independent of head direction,
whereas conjunctive cells generate grid representations that are tuned to a single head
direction. Here, we demonstrate that pure grid cells also encode head direction, but through
distinct mechanisms. We show that individual firing fields of pure grid cells are tuned to
multiple head directions, with the preferred sets of directions differing between fields. This
local directional modulation is not predicted by previous continuous attractor or oscillatory
interference models of grid firing but is accounted for by models in which pure grid cells
integrate inputs from co-aligned conjunctive cells with firing rates that differ between their
fields. We suggest that local directional signals from grid cells may contribute to downstream
computations by decorrelating different points of view from the same location.
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patial cognition and memory rely on neural representations

of location and head direction!~#. These representations

include grid codes, in which neurons are active at the ver-
tices of a grid of tessellating triangles that cover the environment
an animal explores®, and head direction codes, in which neuronal
activity is tuned to head direction®. Effective navigation and
memory require that these codes are integrated, but whether
neurons that use grid codes to represent location also provide
local information about head direction is unclear.

Pure grid cells and conjunctive cells found in medial
entorhinal cortex (MEC) both generate grid codes. The activity
of pure grid cells is thought to depend only on the position of
the animal and to lack selectivity for head direction or other
navigational variables”-8. We refer to this as omnidirectional
firing (Fig. 1a). In contrast, conjunctive cells have grid firing
fields that manifest only when an animal moves in a particular
direction8. We refer to this as unidirectional firing (Fig. 1a).
This distinction is maintained in established models for grid
firing, which predict either omnidirectional firing, as suggested
for pure grid cells, or selectivity for a single direction, as
described for conjunctive cells?-1°. Analyses of the coding
properties of pure grid cells make similar assumptions!®:17,

However, a neuron’s firing could instead be tuned to multiple
head directions, in which case the frequency of its firing as a
function of head direction would have multiple modes. We
refer to this as multidirectional firing (Fig. 1a). The possibility
that pure grid cell activity is modulated in this way by head
direction has received little attention.

Here we investigate the modulation of pure grid cell firing by
head direction globally, or in other words across all firing fields,
and locally, at the scale of individual fields. We show that, when
considered globally, pure grid cells are usually active in all head
directions but nevertheless show selectivity for head direction. We
find that this multidirectional selectivity results from local mod-
ulation by head direction, with individual firing fields having one
or more different preferred directions. This local directional
modulation is not predicted by previously proposed continuous
attractor or oscillatory interference models for grid firing but can
be explained by models in which pure grid cells integrate inputs
from conjunctive cells with fields that differ from one another in
their maximum firing rates. This rich multidirectional modula-
tion suggests that, in addition to generating a metric for space,
pure grid cells could also provide downstream neurons with local
viewpoint information.

@  Possible relationship between neuronal activity and head direction
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Fig. 1 Grid cell firing is modulated by head direction. a Schematics of omnidirectional, unidirectional and multidirectional tuning. b Examples of firing rate
maps (left) and head direction histograms (right) for grid cells from mice (upper) and rats (lower). Polar histograms show binned counts of head direction
across all video frames (black) and the mean firing rate for each head direction bin (red). The head direction score (HD), two-sided Watson U2 test

statistic and corresponding significance estimate and maximum firing rates for each cell are indicated adjacent to the polar plot. ¢ Cumulative probability of
the two-sample Watson U2 test statistic comparing the distribution of head directions when each cell fired with the distribution of head directions for the
entire trajectory within the recording session (mice: p < 0.001 for 34/34 cells, rats: p < 0.01 for 68/68 cells). d Two-sample Watson test statistics plotted
as a function of head direction score for pure grid cells (red), head direction cells (blue), conjunctive cells (orange) and other cells (grey). The red lines

indicate significance levels p < 0.001 (dashed) and p < 0.01 (solid).
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Results

Grid cell firing is modulated by head direction. To investigate
directionality of grid cell firing, we analysed the activity of neu-
rons recorded with tetrodes targeted to the MEC of 8 mice
exploring an open field arena for 25.1+ 3.8 min/session. We
recorded from 300 neurons across 99 recording sessions (mean *
SD: 12.38+2.97 sessions; range: 8-16 sessions per animal).
Tetrode locations in the MEC were confirmed for seven of the
recorded mice. We identified 13% of the recorded neurons (39/
300) as having grid-like spatial firing fields using a metric based
on the rotational symmetry of the autocorrelogram of their firing
rate map® (see ‘Methods’). Evaluation of the directional firing of
these neurons, using a metric that detects unimodal directional
bias (cf. Fig. la; see head direction score in ‘Methods’), dis-
tinguished conjunctive cells, which were tuned to a single head
direction (n=>5) from pure grid cells (n = 34), which across the
whole environment were active during head orientation in all
directions (Supplementary Note 2).

Because a low directional bias might nevertheless be compa-
tible with a neuron encoding multiple directions (cf. Fig. 1a), we
also assessed directional tuning by comparing the distribution of
head directions when action potentials fired, with the distribution
of directions throughout the animal’s trajectory. A commonly
used way to visualize these distributions is using ‘classic’ head
direction plots (Fig. 1b). The differences between the distributions
were significant for all pure grid cells (p <0.001, n=34, two-
sample Watson U? test; Fig. lc, d), providing strong evidence
against the null hypothesis of independence between pure grid
cell firing and head direction (cf. Fig. 1a). To validate this result
and to test whether this apparent multidirectional tuning extends
across species, we analysed a previously published rat data set
(n=68 pure grid cells)®. Although the duration of recordings
in the rat experiments was shorter than for the mouse data (12 +
4.9 min, t = 11.68 p =2.18 x 10720, ¢ test), which may reduce the
power of tests for directionality, analysis of these data indicated
that, rather than being omnidirectional, firing of rat pure grid
cells was also tuned to multiple directions (Fig. 1b-d).

The results of the Watson U? test indicate a directional
preference in the firing of pure grid cells, but this could arise
from variation in the running direction in different parts of a
firing field, rather than from true dependence of firing on head
direction (Fig. 2a). This scenario for emergence of apparent
directionality from solely location-specific firing, previously
referred to as the ‘distributive hypothesis’, accounts for apparent
directional tuning of place cells in certain environments (cf.
ref. 18), To address whether the distributive hypothesis accounts
for the directional firing of pure grid cells, we compared spike
rate binned by the animal’s head direction for the observed data
with shuffled data sets generated by allocating spikes to the
behavioural trajectory according to the location-dependent
average firing rate (Fig. 2b and Supplementary Figs. 1 and 2).
We refer to the resulting plots as ‘distributive plots’ as they
enable assessment of a neuron’s directional tuning in compar-
ison to predictions made under the distributive hypothesis.
When we tested whether the experimental firing rate for each
directional bin in the distributive plots differed significantly
from the shuffled data (threshold p <0.05 after correcting for
multiple comparisons made across bins), we found 7.3 + 3.9 and
4.1 +4.5 significant bins out of 20 bins/cell for mice and rats,
respectively (Fig. 2c). For all pure grid cells from mice (n =34/
34 cells) and most pure grid cells from rats (n =56/68 cells),
there were more significant bins than expected based on
the shuffled data (for both data sets p<10~16, U>10,
Mann-Whitney U test vs the shuffled data; Fig. 2c). We
obtained similar results when we analysed firing as a function of
movement direction rather than head direction, although the

effects of movement direction were smaller (Supplementary
Fig. 3a). In contrast to the unimodal directional tuning of
conjunctive cells®, the directionally binned firing of pure grid
cells had multiple peaks and troughs. The orientation of the
peaks differed substantially between pure grid cells indicating
that they were not driven by common external cues (Supple-
mentary Fig. 4). Variation in running speed between different
parts of the environment is also unlikely to account for
directional tuning as, in agreement with previous studies!?,
firing of most pure grid cells had speed scores below the
threshold previously used to identify speed cells (cf. refs. 19-21;
median speed score for mouse grid cells = 0.068 £ 0.18, n = 34,
n = 26/34 with speed score <0.1; median for rat grid cells from
the rat data set=0.038 +£0.048, n =68, n=60/68 with speed
score <0.1; see Supplementary Fig. 5a and Supplementary
Note 2) and directional tuning was independent of a neuron’s
speed score (Supplementary Fig. 5b).

Together, these analyses indicate that firing of pure grid cells
has a multimodal directional structure that is qualitatively distinct
from the unidirectional tuning of conjunctive cells.

Pure grid fields are locally modulated by head direction. If
firing by pure grid cells encodes head direction, then we expect
this to also manifest at the level of individual firing fields. To test
this, we isolated spikes from each field using a watershed algo-
rithm (44 fields isolated from 13 pure grid cells in 4 mice and 83
fields from 25 pure grid cells in 5 rats; Fig. 3a) and analysed
directional firing separately for each field (Fig. 3b, c). We used the
watershed algorithm to avoid potential bias from manual selec-
tion of fields and only selected cells for further analysis when the
algorithm identified at least two fields.

Individual fields demonstrated clearer directional peaks than
for the arena as a whole suggesting a greater degree of directional
modulation at smaller spatial scales (cf. Figs. 1b and 3c). To assess
whether these peaks could have arisen by chance, we generated
distributive plots for each field (Fig. 3b, ¢, Supplementary Fig. 6).
For almost all pure grid cells, the firing rate in at least one
directional bin of the plot differed significantly from the
corresponding shuffled data after correcting for multiple
comparisons across bins (mice: 12/13 cells; rats 24/25 cells).
The number of significant bins per field was substantially greater
than predicted by the shuffled data (mice: 4.3 + 3.2 bins/field; rats:
2.1 + 2.8 bins/field, for mice and rats p < 10716, U> 8, vs shuffled
data, Mann-Whitney U test; Fig. 3d) and did not correlate with
bias in the behavioural head direction within the field
(Supplementary Fig. 7). The proportion of fields per grid cell
with directional bins that remained significant after correcting for
multiple comparisons was 84.6 +27.1% for mice (38/44 fields)
and 61.7 +28.2% for rats (47/83 fields). This head direction
dependence at the level of individual fields could not be explained
by speed dependence of neuronal firing (Supplementary Fig. 5c¢).
In contrast to unimodal tuning of conjunctive cells and head
direction cells, when fields from pure grid cells had significantly
modulated bins within their distributive plot, their relative
orientation was often consistent with multidirectional tuning
(cf. Fig. 3c and Supplementary Note 2). Although the presence of
multiple preferred directions in the fields of pure grid cells limits
the ability to directly compare the strength of directional
modulation with unidirectional conjunctive cells, each cell type
nevertheless demonstrated a similar proportion of directionally
modulated fields (Supplementary Fig. 8). Together, these analyses
demonstrate directional modulation of pure grid cell firing fields
that is not explained by the distributive hypothesis (cf. Fig. 2a) or
by potential confounds introduced by speed-dependent neuronal
firing.
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Fig. 2 The distributive hypothesis does not account for directional modulation. a Schematic of directional tuning caused by behavioural bias that can be
explained by the distributive hypothesis'®. Red arrows indicate head directions likely to be more sampled relative to the directions indicated by the black
arrows. Differences in sampling directions at the centre and edge of the field can lead to an apparent directional bias (Mouse schematic from scidraw.io
(https://doi.org/10.5281/zen0do.3910057, https://creativecommons.org/licenses/by/4.0/). b (1) Shuffled spike locations were generated by allocating
spikes to the trajectory according to probabilities determined by the spatial firing rate map. Circles represent recorded spikes and squares represent
shuffled spikes. (2) Observed and shuffled spike rates binned by head direction (bin width 18°, distributive plot) and visualized either with Cartesian (left)
or polar coordinates (right). Error bars/shaded areas indicate the 90% confidence intervals of the shuffled data and the measure of centre is the mean.
Asterisks indicate bins in which the observed data differs significantly from the shuffled data (p < 0.05, two-tailed p value calculated from the shuffled
distribution and corrected for multiple comparisons with the Benjamini-Hochberg procedure). (3) As for step 2 but comparing individual shuffles to the
overall shuffled distribution. (4) The number of significant bins in the observed data (determined as in step 2) and the shuffled data (determined by
repeating step 3 for all shuffles). The example data are from the cell in Fig. 1b. ¢ The distributions of the number of significant bins per cell differed
significantly between observed and shuffled data (n =34 grid cells from mice, p=6.5x10-24, U=10.08; n= 68 grid cells from rats, p=2.4 x 1029,
U =11.25, two-sided Mann-Whitney U test).

mice: 0.016 +0.36; for rats: 0.12 +0.28; Fig. 4a, b), consistent
with local directional modulation. In contrast, correlations

Inspection of individual fields from the same cell suggests that
their directional modulation differs from one another (Fig. 3c).

If this is the case, then directional tuning of fields from the same
cell would on average show little or no correlation. In contrast, if
directional modulation is non-local, then head direction tuning
of fields from the same cell should be correlated. We found that
fields from the same pure grid cell on average showed weak or
no correlation in their directional firing (median correlation for

between fields from similarly sampled conjunctive cells were
clearly detectable (median correlation for mice: 0.82 % 0.067;
rats: 0.72 + 0.26; Fig. 4a, b). Furthermore, when comparing fields
from the first and second half of the recording session (Fig. 4c),
correlations were detectable for the same field but were absent
between different fields from the same cell (median correlation
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Fig. 3 Individual firing fields are modulated by head direction. a Firing rate map of the mouse grid cell from Fig. 1b with colour-coded automatically
detected firing fields. b Schematic of shuffling method (upper), example directional firing rate histogram for observed and shuffled spikes (middle) for the
highlighted field from ¢ (yellow box) and distribution of the number of significant bins from the shuffled data (grey) and the observed data (blue) (lower).
The error bars represent the 90% confidence interval of the shuffled distribution and the measure of centre is the mean. Asterisks indicate bins in which
the observed data differs significantly from the shuffled data (p < 0.05, two-tailed p value calculated from the shuffled distribution and corrected for
multiple comparisons with the Benjamini-Hochberg procedure). ¢ Distributive plots for each firing field (coloured according to a, field in yellow box also
shown in b). The maximum firing rates are shown above the head direction plots. Significantly directional bins (p < 0.05, two-tailed p value calculated from
the shuffled distribution and corrected for multiple comparisons with the Benjamini-Hochberg procedure) are marked with an asterisk (*). d The number of
directional bins (out of 20 bins) that differ significantly (threshold p < 0.05 after correction for multiple comparisons) from the shuffled data. The numbers
of significant bins differed between observed and shuffled data (mice: n = 44 fields from 13 grid cells, p =5.1x 1023, U = 9.88, rats: n = 83 fields from 25

grid cells, p=1.2x10"18, U= 8.81, two-sided Mann-Whitney U test).

for mice: —0.025+0.31; for rats: —0.087 +0.39), and the
correlations between different fields differed from the within-
field correlations (for mice: D =10.38, p = 3.3 x 10~ for rats:
D =0.53, p=0.018; Kolmogorov-Smirnov test). The relatively
small difference here for data from rats likely reflects the smaller
number of spikes available for the analysis. Directional firing
remained uncorrelated between fields when considering only
fields adjacent to the walls of the arena, or only fields in the
centre of the arena, indicating that the location dependence of

directional tuning is also not related to the proximity of fields to
the borders of the arena (Fig. 4d and Supplementary Fig. 9).
Examination of correlations between fields as a function of their
distance from one another also did not reveal any local patterns
in their directional modulation (Supplementary Fig. 10).
Together, these analyses indicate that individual firing fields
from pure grid cells are modulated by head direction, with many
fields having multiple preferred directions. As directional modula-
tion within each grid field is independent of direction modulation
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Fig. 4 Directional modulation depends on location. a Example of pairwise correlation of directionally binned firing of a pure grid cell (left) and a
conjunctive cell (right). b Distribution of the coefficients obtained by Pearson correlation between different fields from the same grid or conjunctive cells
calculated as in a. The distribution for grid cells differed from the distribution for conjunctive cells (for mice: D=0.98, p =15 x10-8; for rats: D=0.72,
p=2.2x10716; two-sided Kolmogorov-Smirnov test). ¢ Correlations between firing rate histograms for the same field (blue) and between different fields
(grey) generated from data from the first and second halves of each session. The distribution of correlation coefficients for the within-field correlations
differed from the between-field correlations (for mice: p=3.3%x10~6, D= 0.38; for rats: p=0.018, D = 0.53; two-sided Kolmogorov-Smirnov test).

d Border and centre fields were defined based on whether they contacted the border of the enclosure (left). Cumulative histograms show the distribution of
correlation coefficients calculated as in b but with central and border fields shown separately.

of other fields from the same grid cell, these data indicate that
directional modulation of grid cell firing depends on location.

Stability of directional modulation. To assess the stability of
directional modulation of pure grid cells, we first quantified the
correlation between global classic head direction plots generated
from the first and second half of each recording session (Fig. 5a—c).
Across the population of pure grid cells from mice, the correlation
coefficients were skewed to positive values (median Pearson cor-
relation = 0.47 + 0.39) and differed significantly from zero (Fig. 5¢).
To address the possible contribution of biases in the running
direction between different parts of the firing field (cf. ref. 18), we
compared correlations for shuffled and observed data from dis-
tributive plots for the two halves of each recording session (Fig. 5d).
We found that 16/34 mouse grid cells had percentile scores in the
top 95% of correlation scores generated from the shuffled data. For

individual fields, their classic head direction plots were also posi-
tively correlated (median Pearson correlation =0.29+0.31;
Fig. 5e-g) and 8/44 fields had correlation scores in the 95th per-
centile of the shuffled data (Fig. 5h). These results are similar to
predictions from ‘ground truth’ data generated by simulations of
spiking models of directionally modulated pure grid cells (see below
and Supplementary Fig. 14). These simulations predicted correla-
tion scores between the first and second half of each session for
global (median =0.38+0.27) and local (median=0.58+0.30)
directional modulation that were comparable to the experimental
data (Supplementary Fig. 14). They also predicted a similar pro-
portion of correlation scores in the 95th percentile of the corre-
sponding scores generated from the shuffled data (all cells: 12/19;
fields: 29/106; Supplementary Fig. 14). Thus global directional
modulation of pure grid cell firing appears stable at the time scale of
single recording sessions.
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Fig. 5 Stability of head direction preferences. a, b Example firing rate map (a) and classic head direction plots for the first (green) and second half (blue)
of the recording session (b). ¢ Cumulative probability of Pearson correlation coefficients (mean = 0.47 £ 0.39) calculated as in b for all pure grid cells from
mice. The median of the distribution of correlation coefficients differed from O (Wilcoxon one-sample signed-rank test, p =4 x 10~5, T = 23). d Distributive
head direction plots for spikes from the first and second half of the session for the neuron in a and comparison of the correlation coefficient for the
observed data (blue) with the distribution of coefficients generated from the shuffled data (grey). e, f Firing rate map colour coded by field (e) and
corresponding classic head direction plot for the first (green) and second half (blue) of the recording session (f) for the pink grid field shown from

e. g Distributions of Pearson correlation coefficients for all fields calculated as in f. The median (0.29 + 0.31 for mice) differed from zero (two-sided
Wilcoxon test p=3.37 x10~9, T =321, n=44). h Distributive head direction plots for the first and second half of the session for the field in f and
comparison of the correlation coefficient for the observed data (blue) with the distribution of coefficients generated from the shuffled data (grey).

Models for directional modulation of grid fields. Our analyses
imply that spatially modulated multi-directional firing is a core
feature of the activity of pure grid cells that does not appear to be
predicted by existing models for grid firing®~13-*2 (Supplementary
Table 1). For example, a requirement of many continuous
attractor models is that each grid cell has a single preferred
direction of input®!1. Consistent with this intuition, simulations
using experimentally recorded trajectories as input to each of two
previously described continuous attractor models®!3 and two

previous oscillatory interference models'?23 did not generate
directionally modulated grid firing fields (Fig. 6 and Supple-
mentary Fig. 11). Because these simulations used real trajectories,
their results also provide further evidence against the hypothesis
that directional tuning identified in our analyses of experimental
data is a result of movement-related variables.

What mechanisms might then explain the local directional
firing of pure grid cells? We reasoned that three ingredients may
be important (Fig. 7a). First, upstream directional grid signals,
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Fig. 6 Existing models do not account for directional modulation of grid firing. a, b Firing rate map (upper left), autocorrelogram (lower left),
detected fields (upper centre) and distributive plots for the colour-coded fields for two types of grid models ran on our trajectory data. ¢ Number of
significant bins per field compared across previous grid cell models and experimental data. Each of the previous models (Burgess, Giocomo, Guanella and
Pastol|®1213.23) differed significantly from the mouse data (p=5.7x10"8, p=9.6 X105, p=3.4x10"8, p=4.2 %107, respectively, one-way ANOVA
with Games-Howell test), and each of the models differed significantly from the rat data, with the exception of Giocomo (p=6.7x10~4, p=0.32, p=
41x1075, p=6.1x10"3, respectively). d Proportion of directionally modulated fields compared across existing grid cell models and experimental data.

which may originate from conjunctive cells®. Second, differences
between fields of the upstream cells in their mean firing rate. This
is consistent with grid fields encoding positional information in
their local firing rate?*. Third, convergence of multiple upstream
signals that have co-aligned spatial firing fields and different head
direction preferences. This is consistent with the prominent
projections from deep layers of MEC, where conjunctive cells are
most frequently found, to superficial layers where pure grid cells
are most frequently found®2>-27. Models have been proposed
previously that combine the first and third ingredients to account
for firing of pure grid cells (cf. refs. 152%). We refer to these as
spatially uniform conjunctive cell input models as each of the
upstream conjunctive cells’ fields has similar mean firing rates.
We consider here the possibility that introducing the second
ingredient would account for the experimentally observed local
directional tuning of pure grid cells. We refer to this new model
as a spatially non-uniform conjunctive cell input model (Fig. 7a).
We simulated both classes of model using an anatomically
reconstructed stellate cell configured to account for experimen-
tally recorded excitable properties and with synaptic inputs from
conjunctive cells distributed across its dendritic tree (Fig. 7a and
Supplementary Fig. 12). Because the strength of in vivo synaptic
inputs to stellate cells is unknown, we simulated versions of the
uniform and non-uniform input model with relatively low and
relatively high synaptic conductances.

We found that the spatially non-uniform conjunctive cell input
model accounted well for the global and local directional
modulation of pure grid cell firing fields. When we simulated
this architecture with experimentally recorded trajectories as

inputs, the firing of the model grid cell across an environment
was directionally modulated (Fig. 7b) and each of its fields had a
distinct directional modulation (Fig. 7c), resembling the experi-
mentally recorded directional modulation of pure grid cells
(Supplementary Fig. 6 and cf. Fig. 7c with Fig. 3c). The
proportion of directionally modulated fields and the number of
significant bins per field in their distributive plots generated by
the low- and high-conductance versions of the non-uniform
model spanned the range of the experimental observations from
rats and mice (Fig. 7d). Similar to our experimental observations
(cf. Fig. 4b), correlations between fields from the same simulated
pure grid cell were weak in this model (median correlation =
—0.0061 + 0.11; Fig. 8b) and between-field correlations differed
from the within-field correlations (Fig. 8c), also resembling the
experimental data (cf. Fig. 4c; p=2.2x10"10, D=10.62). In
contrast to the non-uniform input models, versions of the models
with spatially uniform conjunctive cell input generated fewer
directional fields with fewer significant directional bins per fields
(Supplementary Fig. 13). Despite their weaker directional
modulation, the fields generated by the spatially uniform
conjunctive cell input versions of the model were nevertheless
positively correlated (median correlation = 0.13 + 0.26), which is
consistent with a lack of local directional modulation (Fig. 8b),
and the between-field correlations did not differ from the
corresponding within-field correlations (Fig. 8b; p=0.14, D=
0.13). Thus integration of input from co-aligned conjunctive cells
can account for the local direction selectivity of grid cell firing,
but only when the conjunctive cells have fields that differ from
one another in their mean firing rates.
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Fig. 7 Integration of non-uniform conjunctive cell inputs accounts for directional modulation. a Rate map and head direction polar histograms of
conjunctive cell spike firing probabilities (with the peak probability listed above) were convolved with the head direction and position of experimentally
tracked mice to generate conjunctive cell firing fields (peak firing rates indicated above). Firing times of the simulated conjunctive cells were used to trigger
synaptic input to a compartmental model of a stellate cell. b Representative rate-coded firing fields and head direction histograms from a simulation with
five conjunctive cell inputs. ¢ Directionally binned firing rate for selected fields colour coded according to the accompanying rate map. Grey lines are the
corresponding shuffled distributions. Asterisks indicate bins in which the observed data differs significantly from the shuffled data (p < 0.05, two-tailed
p value calculated from the shuffled distribution and corrected for multiple comparisons with the Benjamini-Hochberg procedure). d Comparison of
conjunctive cell input models with experimental data, showing significant bins per field (left), and proportion of directional fields (right). The number of
significant bins per field in the high conductance (high ge,) non-uniform model was greater than for the rat data (p =5.7 x 10~2, one-way ANOVA with
Games-Howell test) but did not differ significantly from the mouse data (p = 0.299), whereas the low conductance (low ge,) non-uniform model had fewer
significant fields than the mouse data (p = 6.1x10-%) but not did not differ significantly from the rat data (p = 0.172). Both high- and low-conductance
uniform models had fewer significant bins per field than the mouse data (p=7.1x10"8 and p = 7.1x10~9, respectively) and rat data (p =1.8 x 10~4 and
p=1.3%x10"4%, respectively).

Because the models with uniform and non-uniform conjunc-
tive cell inputs generate spikes through biophysically plausible

between the first and second half of each recording session was
less reliable, with large variability in the correlation scores

integrative mechanisms, we used their outputs to further validate
the analyses of our experimental data. Systematic variation in
the length of the simulated recording indicated that the typical
duration of the recording sessions we used experimentally is
sufficient to reliably detect directional modulation at a population
and local level (Supplementary Fig. 14). Detection of correlations

obtained. This is also consistent with our experimental data
(cf. Fig. 5¢, g and Supplementary Fig. 14g, h).

Discussion
Our analyses show that the firing fields of pure grid cells are
locally modulated by head direction. This property of grid cells is
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Fig. 8 Location-dependent firing emerges when conjunctive cell activity is spatially non-uniform. a Schematic of uniform and non-uniform conjunctive
cell input models. b Distribution of average Pearson coefficients from correlation between fields of simulated grid cells calculated as in Fig. 4b. The
distribution of correlation coefficients differed between uniform and non-uniform conjunctive input models (p =3.99 x 10—¢, D = 0.21, two-sided
Kolmogorov-Smirnov test). ¢ Correlations between firing rate histograms for the same field (grey) and between different fields of the same cell (blue)
generated as in Fig. 4. The between- and within-field distributions differed from one another for the non-uniform model (p=2.2 %1016, D= 0.62, two-
sided Kolmogorov-Smirnov test) but not for the uniform model (p = 0.14, D = 0.13). The half-session between field distributions differed between the non-

uniform and uniform models (p=7.1x10-8, D= 0.17, KS test).

not predicted by existing models but can be accounted for by
integration of signals from conjunctive cells with spatially non-
uniform firing rates. Spatial signals that distinguish points of view
within an environment may be critical to downstream compu-
tations, for example, pattern separation functions of the dentate
gyrus and encoding of head direction by place cells.

The directional modulation of grid cell firing that we describe
here is qualitatively distinct from previously described properties
of conjunctive cells®. Whereas conjunctive cells are tuned to a
single preferred head direction, we find that pure grid cells show
preferred firing in multiple directions (Figs. 1-4). Whereas for
conjunctive cells directional tuning of individual firing fields is
strongly correlated and therefore global, for pure grid cells
directional modulation differs between individual fields and is
therefore local (Fig. 4). These differences suggest that directional
modulation of conjunctive cells and grid cells result from distinct
circuit mechanisms. They also suggest reasons why directional
modulation of pure grid cells has not previously been described.
For grid cells, summed directional preferences from several fields
generates global multi-directional modulation (cf. Fig. 1a) that is
not typically considered in analyses of directional firing and is
challenging to detect with shorter duration recordings (cf. Sup-
plementary Fig. 14).

Embedding of location-dependent directional information
within grid cell firing fields has implications for the organization
of spatial computations in entorhinal circuits and downstream
structures. While more complex models that account for location-
dependent directional modulation of pure grid cells could be
envisaged (Supplementary Table 1), integration of input from
conjunctive cells with spatially non-uniform firing rates provides
a parsimonious explanation for the location-dependent direc-
tional modulation of grid cell firing (Fig. 7). This explanation is
consistent with models in which grid codes originate in con-
junctive cells!>2>28 but differs in that in the model we propose

10

here each of a conjunctive cell’s firing fields has a different mean
firing rate. It is this difference in firing rate that leads to the
location-dependent directional modulation of pure grid cell fir-
ing. According to this scenario, investigation of the mechanisms
underlying the grid code would most productively focus on
conjunctive rather than pure grid cells. This scheme may also
resolve discrepancies between functionally and anatomically
defined cell types in MEC??. For example, entorhinal stellate cells,
which are a major input to the hippocampal dentate gyrus and
are required for spatial memory3%31, appear to be the most
numerous grid cell type, but less than half of stellate cells are grid
cells32. This functional divergence is consistent with all stellate
cells implementing similar cellular computations® but with the
emergence of grid firing patterns depending on the identity of
their dominant synaptic inputs.

A key future question is how directional information encoded
by pure grid cells is used by downstream neurons. Given the
variability in spiking at the level of single fields, it appears unli-
kely that downstream neurons could read out directional signals
from individual pure grid cells. However, if downstream neurons
receive sufficient convergent input, then local directional mod-
ulation of pure grid cells, by disambiguating different views at the
same location, may facilitate pattern separation functions of the
immediately downstream dentate gyrus>4-3¢ or CA1 place cells?’.
For example, recently described directional selectivity of place
cells is also multi-modal and location dependent3” and could be
driven by the location-dependent directional tuning of pure grid
cells that we describe here. In this case, direction-dependent
modulation of grid firing may be a computational feature of
representations of visual and conceptual scenes*3%37,

Methods
Animals. All animal procedures were performed under a UK Home Office project
license (PC198F2A0) in accordance with The University of Edinburgh Animal
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Welfare committee’s guidelines. All procedures complied with the Animals (Sci-
entific Procedures) Act, 1986 and were approved by the Named Veterinary Surgeon
and local ethical review committee.

We report data from 8 mice (4 males and 4 females) from a total of 16 that were
implanted with recording electrodes. For 7 of the 8 mice, the location of the
tetrodes in the MEC was confirmed anatomically after experiments were complete.
For the other mouse, the tetrode location could not be determined. The age of the
mice when tetrodes were implanted was 7-13 weeks (mean = 10.6 + 1.7 weeks).
Animals were excluded either because the recordings did not identify grid cells
(n=6) or because they had to be terminated before the end of the experiment,
because their implant came off (n = 2). The mice used were from the p038 line%(.
Before surgery, animals were group housed (3-5 mice per cage) in a standard
holding room on a standard 12-h on/off light cycle (dark from 7 p.m. to 7 a.m.).
After surgery, mice were single housed in a different holding room in otherwise
similar conditions (average temperature 20 °C, relative humidity 50%). Mice were
kept in individually ventilated cages containing sawdust, tissues, chewing sticks and
cardboard tubes, which after surgery were replaced by a larger cardboard igloo.
Two days after the surgery, a running wheel was placed in the cages. Standard
laboratory chow and water were given ad libitum.

Microdrive design. We modified previous designs for 16-channel microdrives
consisting of 4 tetrodes and an optic fibre?#2. A 21-gauge 9 mm long inner
cannula (Stainless Tube & Needle Co. LTD) was attached to an EIB-16 board
(Neuralynx) using epoxy (RS components 132-605). Tetrodes were made with

18 um HML-coated 90% platinum, 10% iridium wire (Neuralynx). We connected
grounding wires (1.5 cm long insulated part) to the reference and ground pins of
the EIB. The four tetrodes were threaded through the inner cannula, connected to
the pinholes of the EIB-16 board and fixed with gold pins (Neuralynx, EIB Pins). A
13-mm-long optic fibre stub (Plexon, PX.OPT-FS-Flat-200/230-13L) was threaded
through the inner cannula between the tetrodes. The wires on the board and the
optic ferrule were covered to about 2/5th of the length of the optic ferrule with
epoxy and the tetrodes glued (RS components, 473-455) to 4 sides of the optic fibre.
The tetrodes were cut using ceramic scissors (Fine Science Tools, Germany) to a
length of 0.5 mm from the tip of the optic fibre. The tips of the tetrodes were plated
in a non-cyanide gold plating solution (Neuralynx). Tetrodes were cleaned, by
applying 3 1-s 4 pA pulses with the tetrodes as an anode and then plated by passing
2 pA 1-s pulses with the tetrodes as a cathode until their impedance was between
150 and 200 KQ.

Microdrive implantation. General surgical procedures and stereotaxic viral
injections were carried out as described previously*’. We induced inhalation
anaesthesia using 5% isoflurane/95% oxygen and sustained at 1-2% isoflurane/
98-99% oxygen throughout the procedure (1 litre/min). Before implanting the
drive, we injected AAV9-tre-ChR2-mCherry (Gene Therapy Center, University of
Massachusetts Medical School; 800-2000 nl total injection volume, 3-5 injection
sites, 200-400 nl/site) for additional opto-tagging experiments (data not shown).
All animals were injected 3.4 mm lateral relative to bregma (Supplementary
Table 2). For electrical grounding, we drilled two small craniotomies and implanted
M1 x 4 mm screws (AccuGroup SFE-M1-4-A2) on both sides about 3.4 mm lateral
and 1 mm rostral relative to bregma.

We stereotaxically lowered the tetrodes 1.5 mm into the brain, beginning 3.4 mm
lateral from bregma (right hemisphere of two mice and left hemisphere of 14 mice)
and targeting the dorsal third of the MEC. We sealed the outer cannula with sterile
Vaseline and fixed the implant by putting dental acrylic (Simplex Rapid powder)
around the drive frame and the outer cannula, wrapped the grounding wires around
the grounding screws, fixed the wires with silver paint (RS components 101-5621)
and applied another layer of dental acrylic to cover the skull and the grounding
screws. Mice recovered on a heat mat for approximately 20 min and were given
Vetergesic jelly (0.5 mg/kg of body weight buprenorphine in raspberry jelly) for 12 h
after surgery.

Open field exploration task. All recordings from mice were performed in an open
field arena consisting of a box made from a black metal frame (parts from Kanya
UK, CO01-1, C20-10, A33-12, B49-75, B48-75, A39-31, ALU3), with removable
black metal walls, a polarizing cue (white A4 paper) on one wall, and a floor area of
1 m? A camera (Logitech B525, 1280 x 720 pixels Webcam, RS components 795-
0876) was mounted on the top of the frame for motion tracking. To record head
direction, we used a custom Bonsai script*4 to track red and green polystyrene balls
attached to either side of the mouse’s head on the left and right sides. The distance
between the polystyrene balls was approximately 3.5 cm.

Mice were handled three times a week for 5-10 min for 4 weeks following
surgery. For 3 consecutive days before recording, we habituated the mice by
allowing them to explore the open field arena for 5-10 min. For recording sessions,
mice explored the open field arena unrewarded until they covered the whole area or
for a maximum of 90 min. An opto-tagging experiment was performed at the end
of each session (data not shown). After each recording session, we lowered the
tetrodes by 50 um using the drive mechanism on the implant.

For electrophysiological recording, the 16-channel optetrode was connected to
an Open Ephys acquisition board#> and computer (HP Z440 Tower Workstation

i7, 16 GB, 512 GB SSD, Cat.: J9CO7EA#ABU) using an SPI cable (Intan
Technologies, RHD2000 6-ft (1.8 m) Ultra Thin SPI interface cable C3216) and via
a commutator (SPI cable adapter board, Intan Technologies C3430 and custom 3D
printed holder). Signals were filtered between 2.5 and 7603.8 Hz using a second-
order Butterworth filter implemented in Open Ephys. We aligned position and
electrophysiology data using light pulses generated at random intervals (20-60 s)
by a light-emitting diode attached to the side of the open field arena hidden from
the mouse but in the field of view of the camera.

Post recording assessment of tetrode locations. To enable determination of
tetrode locations, after the last recording day we anaesthetised mice using an iso-
flurane chamber and pentobarbital (100-150 pl) and applied a 2-s ~20 A current to
burn the tissue at the tip of the electrodes. We then intracardially perfused
phosphate-buffered saline (PBS, Gibco, 70011044, 10 times diluted with distilled
water) for 2 min, then 4% paraformaldehyde (PFA, Sigma Aldrich, 30525-89-4) in
0.1 M phosphate buffer (PB, Sigma Aldrich, P7994) for 4 min at a 10 ml/min flow
rate. We left the brains in 4% PFA in 0.1 M PB for 16 h, then transferred them to
30% sucrose (Sigma Aldrich, S0389) in PBS until they sank.

We cut 50 um sagittal sections of the fixed brains using a freezing microtome.
Sections were processed to label them with primary antibody rat anti-mCherry
(Invitrogen M11217, 1:1000) followed by secondary antibody goat anti-rat Alexa
555 (Invitrogen A-21434, 1:1000) and stained with either NeuroTrace 640/660
(Invitrogen N21483, 1:500) or NeuroTrace 435/455 (Invitrogen N21479, 1:500)
following procedures described previously*. Images were taken on a Zeiss Axio
Scan Z1 using a x10 objective and visually inspected to determine the final position
of the recording electrodes (see Supplementary Note 1).

Data analyses. Analyses were carried out using Python (version 3.5.1 in Anaconda
environment 4.0) and R version: 3.3.1 (2016-06-21). All codes are available at
https:/github.com/MattNolanLab/grid_cell_analysis. Summary values are reported
as mean or median * standard deviation.

Spike sorting. To isolate spikes from electrophysiological data, we used an auto-
mated analysis and clustering pipeline based around MountainSort 3 (v 0.11.5 and
dependencies)*¢. Python scripts pre-processed the data by converting Open Ephys
files to mda format and organized these files together with spike sorting input
parameter files. We defined the four channels of each tetrode to be in the same
‘sorting neighbourhood’. We excluded broken channels identified during data
acquisition.

MountainSort filtered the data from 600 to 6000 Hz using a bandpass filter and
then performed spatial whitening over all 16 channels to remove correlated noise.
Events with peaks three standard deviations above average and at least 0.33 ms
away from other events on the same channel were detected. The first 10 principal
components of the detected waveforms were calculated. A spike sorting algorithm,
ISO SPLIT, was applied to the resulting feature space*.

Cluster quality was evaluated using metrics for isolation, noise overlap and peak
signal-to-noise ratio*®. Units that had a firing rate >0.5 Hz, isolation >0.9, noise
overlap <0.05 and peak signal-to-noise ratio >1 were accepted for further analysis.
Any units that did not have a refractory period or hyperpolarization component of
their spike waveform were discarded. These exclusions were based on visually
assessing output figures generated for sorted clusters. No additional manual
curation was used.

Classification of functional cell types. To classify recorded neurons, we used
established grid and head direction scores®. Grid scores were defined as the dif-
ference between the minimum correlation coefficient for rate map autocorrelogram
rotations of 60 and 120 degrees and the maximum correlation coefficient for
autocorrelogram rotations of 30, 90 and 150 degrees?’. The firing rate map was
calculated by summing the number of spikes in each location, dividing that by the
time the animal spent there and then smoothing the surface with a Gaussian
centred on each location bin3%. Autocorrelograms were calculated by shifting the
binned firing rate map3# into every possible binned position along both horizontal
and vertical axes and calculating correlation scores for each of these positions. This
autocorrelogram was converted into a binary array using a 20% threshold on
normalized data. If the binary array had more than seven local maxima, a grid
score was calculated. Subsequent parts of the analysis, where correlations between
the rotated autocorrelograms were calculated, only included the ring containing six
local maxima closest to the centre of the binary array, excluding the maximum at
the centre. The ring was detected based on the average distance of the 6 fields near
the centre of the autocorrelogram (middle border = 1.25 x average distance, outer
border = 0.25 x average distance).

To calculate head direction scores, the head direction angles corresponding to
the firing events of each neuron were first binned into 360 bins between 0 and 27.
The obtained polar histogram was smoothed by calculating a rolling sum over a 23
degree window. For angles between —179 and 180 degrees in steps of 1 degree, dx
and dy were calculated in a unit circle (radius = 1) as dy = sin(angle) x radius~!
and dx = cos(angle) x radius~1. To obtain the x and y components of the head
direction vector, the head direction polar histogram was multiplied by the dx and
dy values, respectively, and normalized to the number of observations in the polar
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head direction histogram, so that X1 = 2(dX HDhjstogram) X ZHDhistogram ~1and
Yrotal = 2(dy HDhjstogram) X ZHDnistogram —1, The head direction score was then
calcuzla/ted using the Pythagorean theorem as head direction score = (xiora® +

total?) -
? We defined grid cells as cells with a grid score 0.4, which was chosen as a
conservative threshold (cf. ref. 24). We defined head direction cells as cells with a
head direction score >0.5. We defined conjunctive grid cells as cells that passed
both head direction and grid cell criteria.

Identification and analysis of individual fields. We identified individual firing
fields using methods similar to those used previously to detect place fields*®. The
open field arena was divided into 42 x 42 bins, where each bin contained a
smoothed firing rate value calculated by summing the number of spikes at the
locations corresponding to each bin, dividing this by the time the animal spent in
the bin and then smoothing the surface with a Gaussian (e7**/?) centred on each
bin3%. We next identified the bin of the rate map with the highest firing rate. If the
rate was higher than the average firing rate plus the standard deviation of the rest of
the rate map, we then added adjacent bins if they had a firing rate >35% of the
maximum firing rate within the field. We recursively added to the field further bins
that satisfied these criteria with respect to the newly added bins. We accepted a
detected field if it had >45 bins, but it was smaller than half of the arena. After
successfully detecting a field, it was removed from the rate map by replacing the
values with zeros, and the analysis was repeated until we found no more fields. All
detected fields were visually assessed, and if a detected field appeared to be a
combination of two fields or only part of a field, it was tagged as a false positive to
be excluded from the analyses.

Analysis of head direction. Classic head direction polar plots (Figs. 1b and 5b, f)
were generated by dividing the histogram of head directions when the cell fired by
the histogram of head directions from the trajectory to obtain a firing rate (Hz) for
each angle. Each histogram has 1 degree bins with 23 degree smoothing.

Shuffled head direction polar plots (Figs. 2, 3, 5d, h, 6, and 7) were generated by
first dividing the histogram of head directions when the cell fired by the histogram
of head directions from the trajectory using 20 bins of width 18 degrees to generate
a directional firing rate plot. The shuffling procedure was designed to rule out the
possibility that directional firing is a result of different sampling of directions in
different bins of the rate map'®. Before generating shuffled data, the cell’s spatial
firing rate map was used to allocate firing probabilities to each point on the
trajectory such that the total probability was one and the local probability was
proportionate to that of the firing rate in the given bin of the firing rate map.
Shuffled spike locations were generated by random selection with replacement of
locations from the trajectory of the animal using the allocated probabilities. Each
shuffled data set was sorted into directional bins in the same way as the
experimental data. After generating 1000 shuffled data sets, the median and 90%
confidence intervals were calculated for each bin by ranking the shuffled data.

Two-sample Watson test: To evaluate whether head direction when the cell fired
differed from the head direction of the animal during the time spent in a field, or
arena, we performed Watson’s two-sample test*>>0 for homogeneity on the two
distributions using the R package circular (https://r-forge.r-project.org/projects/
circular/). To illustrate the distributions of head directions from the trajectory and
the normalized firing rate, we made smooth head directions plots (1 degree bins
and 23 degree smoothing). On plots where the firing rate and trajectory histograms
are shown, the trajectory histogram was re-scaled to fit the plot.

Shuffle tests: Analyses compared the observed data with 1000 shuffled data sets
generated as described above. For each bin, the percentile position of the observed
data relative to the randomized data was used to calculate a p value. The 20 p values
within a field were corrected for multiple comparisons using the
Benjamini-Hochberg procedure and the number of intervals where the corrected
p values were <0.05 were counted. To obtain null distributions, the same analyses
were performed for each of the 1000 randomized data sets, where each shuffle was
treated like the observed data and was compared to the distributions from the
1000 shuffles. Fields where the percentile score of the observed number of
significant bins relative to the null distribution from shuffles was >97.5 were
considered directional.

Correlation between directional firing histograms: To evaluate stability of firing
within a session, Pearson correlation coefficients were calculated using the SciPy
function scipy.stats.pearsonr for pairs of classic head direction polar plots.
Comparison of pure grid cell between- and within-field correlations used fields
with >500 spikes. To evaluate whether correlations are influenced by the
distributive hypothesis, we generated shuffled head direction polar plots for each
half of the session as described above for the whole session. We calculated Pearson
correlation coefficients between the distributive plots for the first and second halves
of the session for the experimental data and separately for all possible combinations
of the shuffled data (1000 x 1000 comparisons). We then determined the percentile
score of the Pearson correlation coefficient corresponding to the observed data
relative to the population of coefficients derived from the shuffled data.

Rat data. Data from rats® was downloaded from the Kavli Institute’s online
database (https://www.ntnu.edu/kavli/research/grid-cell-data). The data were

available in a format that contained the trajectory of the animal and firing times of
sorted cells in MATLAB files. The MATLAB files were converted into a spatial data
frame similar to the mouse data so the same analysis scripts could be used to
perform all analyses. Our analyses use 32 conjunctive cells and 68 pure grid cells
identified in this data set.

Simulation of previous grid cell models. We simulated four previous grid cell
models with experimentally recorded behavioural trajectories as inputs. Code for
the Guanella, Giocomo and Burgess models was adapted from ref. >! (hosted at
ModelDB, accession number: 144006), and the Pastoll model was hosted on
ModelDB (accession number: 150031). We extracted spike times as outputs from
the simulations and matched these to corresponding head directions and x, y
positions from the trajectory. These model results were converted into a format
used by our analysis pipeline and underwent the same standardized analysis as
experimental data.

Stellate cell model. All simulations were performed in the NEURON simulation
environment®2. Simulation code will be available at https://github.com/
MattNolanLab.

The model stellate cell used a previous morphological reconstruction of a mouse
MEC layer 2 stellate cell>>. Voltage-gated sodium and potassium channels were
inserted into the soma and axons (channel models from ref. >4), hyperpolarization-
activated cyclic-nucleotide-gated channels were inserted into the dendrites and
soma (channel models from ref. 5°) and leak channels were inserted into all
compartments. Maximum channel conductances were adjusted so that
electrophysiological properties of the neuron were similar to the experimentally
determined properties of stellate cells®®, with the resting membrane potential
(RMP), input resistance, sag, rheobase spike peak and half-width fit within the
range of experimental values3. The best fit for voltage threshold that could be
achieved was within 30% of the mean experimentally determined values. RMP was
defined as the average membrane potential over 4 s with no current input. Spike
peak and half-width were determined from a single suprathreshold response to a
20-ms depolarizing current, where peak potential was the maximum voltage and
half-width was the width of the spike at a voltage halfway between RMP and the
peak. Sag ratio was determined in response to a 40-pA hyperpolarizing current step
and defined as the ratio between the peak decrease and steady-state decrease in
voltage. Voltage threshold was defined as the highest voltage reached without
spiking and was determined from responses to a series of 3-s duration current steps
with progressively increasing amplitude. Rheobase was defined as the current
required to initiate a spike and was determined using a current ramp increasing
linearly from 0 to 150 pA over 2 s. Input resistance was determined as the slope of
the line fitted to the voltage increase resulting from current injections between
0.0016 and 0.048 nA.

The modelled cell received simulated synaptic input from conjunctive cells.
Synapses were randomly localized to dendritic locations with nine synapses per
input cell. The probability of synapse placement on a dendrite was given by the
ratio of the dendrite length to the total basal or apical dendritic length. Synapses
generated fast conductance changes with an instantaneous rise and exponential
decay of 2 ms (cf. ref. >3). All synapses had the same maximal conductance. We
evaluate a ‘low-conductance’ version of the model in which maximal synaptic
conductance was 0.603 nS, and a ‘high-conductance’ version in which the maximal
synaptic conductance was 250 nS.

Simulation of conjunctive cell input models. To simulate firing of conjunctive
cells, we first generated for each cell a grid pattern and a head direction tuning
curve. For the grid pattern, the centre of each field was specified from the vertices
of equilateral triangles with a length of 50 cm that were aligned to tessellate the
simulated environment. Each cell had the same spatial phase. Each firing field was
described by a circular Gaussian distribution with a full width at half maximum
(FWHM) of 20.0 cm. To generate non-uniform field maxima (cf. ref. 24), the peak
for each field was scaled by a random value from a uniform distribution between 0
and 1. The grids were then scaled to have a peak height of 1. The head direction
tuning curve consisted of a Gaussian centred around a preferred direction with an
FWHM of 141 degrees and a height of 1. The preferred head directions were evenly
distributed between 0 and 360 degrees. For each simulated conjunctive cell, firing
probability distributions were calculated from the grid pattern and a head direction
tuning curve at a spatial resolution of 1 cm. The probability of firing was deter-
mined as 0.28 x the probability of grid x 0.12 x the probability of head direction
firing. These values resulted in peak spatial firing rates of around 12 Hz in the low-
conductance version and 28 Hz in the high-conductance version. Peak head
direction firing rates were around 5 Hz in the low-conductance version and 10 Hz
in the high-conductance version, which are comparable to experimental data8.

Conjunctive cell spike times were generated for a behavioural trajectory within a
1 m x 1 m open field. The x and y position was determined every millisecond, and if
the probability of each cell firing was greater than a random number between 0 and
1, the cell spiked. For 100 simulated conjunctive cells, the peak spatial firing rate
was 12.3 +2.71 Hz, and the normalized peak head direction firing rate was 4.94 +
1.04 Hz.
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Each conjunctive cell was connected at nine synapses to the downstream stellate
cell. To evaluate representations generated in the stellate neuron model, we
simulated 20 trials for each model configuration. Each trial differed in the
randomly determined synapse placement of each conjunctive input and in the
randomly determined peaks of the conjunctive cell fields.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

All data will be made available from the Nolan Lab repository on the University of
Edinburgh’s DataShare site (https://datashare.is.ed.ac.uk/handle/10283/777, https://doi.
org/10.7488/ds/2855).

Code availability
All analysis code will be made available from the Nolan Lab GitHub site (https://github.
com/MattNolanLab/grid_cell_analysis).
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