Skip to main content
. 2020 Aug 4;9(9):6. doi: 10.1167/tvst.9.9.6

Table A1.

Derivation of the X, Y, and Z Components of P3W

Solving for the x-component:
P3W|X=LP|X+zC+rsin(θELEV)-SHzC+rsin(θELEV)(P2|X-LP|X)P3W|X=rcos(θELEV)+zC+rsin(θELEV)-SHzC+rsin(θELEV)(0-rcos(θELEV))P3W|X=rcos(θELEV)-(zC+rsin(θELEV)-SH)rcos(θELEV)zC+rsin(θELEV)P3W|X=(zC+rsin(θELEV))rcos(θELEV)zC+rsin(θELEV)-(zC+rsin(θELEV)-SH)rcos(θELEV)zC+rsin(θELEV)P3W|X=(zC+rsin(θELEV))rcos(θELEV)-(zC+rsin(θELEV)-SH)rcos(θELEV)zC+rsin(θELEV)P3W|X=(zC+rsin(θELEV)-zC-rsin(θELEV)+SH)rcos(θELEV)zC+rsin(θELEV)P3W|X=SHrcos(θELEV)zC+rsin(θELEV)(A5)
Solving for the y-component:
P3W|Y=LP|Y+zC+rsin(θELEV)-SHzC+rsin(θELEV)(P2|Y-LP|Y)P3W|Y=0+zC+rsin(θELEV)-SHzC+rsin(θELEV)(yT-0)P3W|Y=yTzC+rsin(θELEV)-SHzC+rsin(θELEV)(A6)
And by definition, the P3W lies on the z = SH plane, thus P3W|Z=SH.