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Abstract
Background: Computer-aided diagnosis (CAD) systems are 
being applied to the ultrasonographic diagnosis of malig-
nant thyroid nodules, but it remains controversial whether 
the systems add any accuracy for radiologists. Objective: To 
determine the accuracy of CAD systems in diagnosing ma-
lignant thyroid nodules. Methods: PubMed, EMBASE, and 
the Cochrane Library were searched for studies on the diag-
nostic performance of CAD systems. The diagnostic perfor-
mance was assessed by pooled sensitivity and specificity, 
and their accuracy was compared with that of radiologists. 
The present systematic review was registered in PROSPERO 
(CRD42019134460). Results: Nineteen studies with 4,781 
thyroid nodules were included. Both the classic machine 

learning- and the deep learning-based CAD system had 
good performance in diagnosing malignant thyroid nodules 
(classic machine learning: sensitivity 0.86 [95% CI 0.79–0.92], 
specificity 0.85 [95% CI 0.77–0.91], diagnostic odds ratio 
(DOR) 37.41 [95% CI 24.91–56.20]; deep learning: sensitivity 
0.89 [95% CI 0.81–0.93], specificity 0.84 [95% CI 0.75–0.90], 
DOR 40.87 [95% CI 18.13–92.13]). The diagnostic perfor-
mance of the deep learning-based CAD system was compa-
rable to that of the radiologists (sensitivity 0.87 [95% CI 0.78–
0.93] vs. 0.87 [95% CI 0.85–0.89], specificity 0.85 [95% CI 
0.76–0.91] vs. 0.87 [95% CI 0.81–0.91], DOR 40.12 [95% CI 
15.58–103.33] vs. DOR 44.88 [95% CI 30.71–65.57]). Conclu-
sions: The CAD systems demonstrated good performance in 
diagnosing malignant thyroid nodules. However, experi-
enced radiologists may still have an advantage over CAD sys-
tems during real-time diagnosis.

© 2019 European Thyroid Association
Published by S. Karger AG, Basel
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Introduction

With the development of imaging techniques and 
popularized medical surveillance, more thyroid nodules 
are detected [1, 2]. Among the general population, the 
incidence of thyroid nodules ranges from 19 to 68% [3], 
and 9–15% are determined to be malignant [4–6]. Ultra-
sound is the first-line method for identifying malignant 
thyroid nodules [3], but the diagnostic performance of 
ultrasound relies heavily on the clinical experience of the 
radiologists.

To improve the diagnostic accuracy and efficiency, ma-
chine learning-based computer-aided diagnosis (CAD) 
systems are being introduced in the diagnosis process. Cur-
rently, two types of machine learning method are adopted: 
(1) the classic machine learning method, which is based on 
features identified by human experts, and (2) the deep 
learning technique, which takes raw image pixels and cor-
responding class labels from medical imaging data as inputs 
and automatically learns feature representation in a general 
manner [7]. Theoretically, CAD systems may improve di-
agnostic accuracy by decreasing radiologists’ subjectivity. 
However, it is unclear whether the CAD systems provide 
any help to radiologists in increasing diagnostic accuracy in 
clinical practice. Some studies were performed without ex-
ternal validation, and potential overfitting cannot be ex-
cluded [8–10]; some studies may have underestimated the 
diagnostic performance of radiologists by setting rigid di-
agnostic criteria and providing static ultrasound images, 
and the superiority of CAD systems over radiologists should 
be reconsidered. Additionally, it is also unclear whether 
deep learning-based CAD systems outperform classic ma-
chine learning-based systems in diagnosis.

Accordingly, it remains to be determined whether 
there is adequate evidence to support any clinical applica-
tion of the current CAD systems. The present systematic 
review and meta-analysis was performed to assess the ac-
curacy of CAD systems in diagnosing malignant thyroid 
nodules, and to compare the diagnostic performance of 
the CAD systems with that of radiologists.

Methods

Search Strategy and Eligibility Criteria
The present systematic review was registered in PROSPERO 

(CRD42019134460). The PubMed, EMBASE, and Cochrane Li-
brary databases were searched from inception until May 5, 2019, 
for studies that assessed the performance of CAD systems in dif-
ferentiating malignant and benign thyroid nodules on ultrasound 
images. The search was updated on October 20, 2019. The details 

of the search strategy are available on https://www.crd.york.ac.uk/
prospero/display_record.php?ID=CRD42019134460.

Study Selection and Data Extraction
The general characteristics of the included studies, and the num-

bers of true-positive, false-positive, false-negative, and true-negative 
cases were collected. Only data from the validation cohort were in-
cluded in the meta-analysis to assess the diagnostic performance.

When multiple algorithms or radiologists were involved, only 
the one with the highest accuracy or largest AUC was selected for 
the analysis. When the performance of the CAD system was as-
sessed by multiple external validation groups, only the one with the 
largest cohort was selected for the analysis. When more than one 
radiologist participated in the assessment, only the most experi-
enced one was selected for the analysis. Both pathological exami-
nation of the surgical specimen and cytological examination of fine 
needle aspiration tissue were considered acceptable reference stan-
dards. A low-risk ultrasound index was also accepted as a reference 
standard for diagnosing benign nodules [11].

Grouping
According to whether the classification features were set in ad-

vance or automatically recognized, the CAD systems were classi-
fied into a classic machine learning group and a deep learning 
group. According to their availability for application in real-time 
clinical diagnosis, the CAD systems were further classified into a 
real-time subgroup and an ex post subgroup, and their diagnostic 
performances were assessed. We followed the Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses (PRISMA) state-
ment [12].

Study Quality Assessment
The methodological quality of each study was assessed by the 

Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) 
rating system [13].

Data Analysis
The statistical analysis was performed with STATA version 15.0 

software for Windows (StataCorp, College Station, TX, USA). Hier-
archical summary ROC curves were constructed. The pooled sensi-
tivity, specificity, diagnostic odds ratio (DOR), and AUC with 95% 
CI were calculated using the bivariate model. Meta-regression analy-
sis was not conducted, due to the small number of included studies. 
Publication bias was evaluated using Deeks’ test for funnel plot asym-
metry. Interstudy heterogeneity was assessed by the DerSimonian-
Laird random-effects model and the index of inconsistency (I2). The 
combined estimates for sensitivity and specificity were performed by 
a random-effects model if I2 < 50% and by a fixed-effect model if I2 
≥50%. A p value < 0.05 was considered statistically significant.

Results

Literature Searches and Description of Studies
The flow diagram of the literature search is shown in 

Figure 1. Nineteen studies with 4,781 nodules used in ex-
ternal validation sets were included in the study, includ-
ing 6 studies on classic machine learning-based CAD sys-
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tems [14–19] and 13 studies on deep learning-based CAD 
systems [7, 20–31]. The general characteristics of the in-
cluded studies are shown in Table 1, and the detailed 
characteristics are demonstrated in online supplementa-
ry Table 1 (see www.karger.com/doi/10.1159/000504390 
for all online suppl. material). No significant publication 
bias in the studies on deep learning-based CAD systems 
was demonstrated by Deeks’ funnel plot (p = 0.39) (online 
suppl. Fig. 1).

Methodological Quality of the Included Studies
The quality of the included studies is summarized in 

online supplementary Table 2. The risk of bias from pa-
tient selection was judged to be high or unclear in 13 of 
the included studies: 4 studies limited the nodule size 
within a certain scope [16, 17, 21, 25]; 5 studies excluded 
difficult-to-diagnose nodules [15, 25–27, 31]; and 4 stud-
ies were unclear about whether there were selected co-

horts and inappropriate exclusions [14, 19, 23, 29]. The 
risk of bias from the reference standard was considered to 
be unclear in 2 of the included studies [14, 23]. The risk 
of bias from flow and timing was considered to be high or 
unclear in 7 of the included studies, and these studies ad-
opted pathological examination, fine needle aspiration, 
and ultrasound as reference standards for diagnosing be-
nign nodules [19, 22, 25, 27, 28, 30, 31].

Diagnostic Performance of Classic Machine Learning-
Based CAD Systems
There were 6 studies which investigated the perfor-

mance of classic machine learning-based CAD systems 
[14–19]. The CAD systems in 4 studies were developed 
according to similar parameters, such as shape, margin, 
composition, echogenicity, internal composition, micro-
calcification, and peripheral halo [15, 17–19]. The sensi-
tivity and specificity of the CAD systems ranged from 
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0.82 to 0.92 and from 0.65 to 0.97, respectively. The 
pooled sensitivity, specificity, AUC, and DOR are dem-
onstrated in Figure 2a.

Diagnostic Performance of Deep Learning-Based  
CAD Systems
Thirteen studies with 1,667 malignant and 1,415 be-

nign nodules were included in the analysis [7, 20–31]. The 
pooled sensitivity, specificity, AUC, and DOR are dem-
onstrated in Figure 2b. Eleven of the 13 studies compared 
the diagnostic performances of CAD systems and radi-
ologists [7, 20, 21, 23–28]. The pooled sensitivity, speci-
ficity, AUC, and DOR were comparable between the 
CAD systems and the radiologists (Fig. 2c, d).

Diagnostic Performance of the CAD System and  
Real-Time Diagnosis of Radiologists
Five studies with 237 malignant and 362 benign thy-

roid nodules were included in the analysis [25–28, 31]. All 
5 studies compared the diagnostic performances of CAD 
systems and radiologists. The pooled sensitivity, specific-
ity, AUC, and DOR were comparable between the CAD 
systems and the radiologists (Fig. 2e, f). However, in in-
dividual studies, the radiologists outperformed the CAD 

system either in sensitivity (0.79 vs. 0.21; p = 0.008) [26] 
or specificity (0.75 vs. 0.95, p = 0.002; 0.96 vs. 0.84, p = 
0.016; and 0.96 vs. 0.83, p < 0.001) [25, 27, 31] or in the 
positive predictive value (0.93 vs. 0.83, p = 0.076) [28].

Discussion and Conclusion

The present study reviewed the current research on the 
performance of CAD systems in differentiating malig-
nant and benign thyroid nodules, and the results suggest 
that CAD systems, both classic machine learning- and 
deep learning-based systems, demonstrate comparable 
diagnostic accuracy to that of radiologists with 5–20 years 
of experience in thyroid ultrasound scanning. Nonethe-
less, experienced radiologists may retain a diagnostic ad-
vantage over CAD systems in real-time diagnosis.

The good performance of classic machine learning-
based CAD systems may benefit from the automatic and 
mandatory standardized diagnostic process they follow. 
The strategies for nodule character classification were 
based on several classic parameters, such as shape, margin, 
composition, echogenicity, internal composition, micro-
calcification, and peripheral halo [15, 17, 18]. These char-

Table 1. Study characteristics

Study [Ref.] Year Country Design Nodule 
size, mm

Real-time 
diagnosis

Deep 
learning

Training 
set size

Validation set size

M B

Zhu et al. [18] 2013 China R 4–52 No No 464 148 77
Song et al. [14] 2015 China R NR No No 155 21 20
Wu et al. [15] 2016 China R NR No No 485 260 225
Yu et al. [16] 2017 China P >2 No No 610 17 33
Thomas et al. [19]a 2017 USA R NR No No 410 11 61
Zhang et al. [17] 2019 China R ≤25 No No 1,238 118 708
Choi et al. [25] 2017 South Korea P ≥5 Yes Yes – 43 59
Jeong et al. [27] 2019 South Korea P ≥10 Yes Yes – 44 56
Yoo et al. [28] 2018 South Korea P ≥5 Yes Yes – 50 67
Gitto et al. [26] 2019 Italy R 18±7 Yes Yes – 14 48
Kim et al. [31] 2019 South Korea R 1.2±0.9 (B)

1.2±0.9 (M)
Yes Yes – 86 132

Gao et al. [20] 2018 China R 17±14 (B)
10±7 (M)

No Yes 3,700 239 103

Song et al. [23] 2019 China R NR No Yes 6,228 180 187
Li et al. [7] 2019 China R NR No Yes 312,399 118 156
Ko et al. [21] 2019 China R 10–20 No Yes 594 100 50
Song et al. [22] 2019 South Korea P NR No Yes 1,358 50 50
Wang et al. [24] 2019 China R NR No Yes 5,007 242 109
Luo et al. [29]a 2018 China NR NR No Yes NR 292 208
Guan et al. [30] 2019 China R NR No Yes 2,437 209 190

B, benign; M, malignant; NR, not reported; P, prospective; R, retrospective. a Conference abstract.
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SENSITIVITY (95% CI)

Q =  1.96, df = 4.00, 
p =  0.74

I2 = 0.00 [0.00 − 100.00]

 0.83 [0.77 − 0.88]

0.88 [0.75 − 0.96]

0.79 [0.49 − 0.95]

0.84 [0.70 − 0.93]

0.85 [0.76 − 0.92]

0.80 [0.66 − 0.90]

StudyId

COMBINED

Choi YJ et al./2017

Gitto S et al./2019

Jeong EY et al./2019

Kim HL et al./2019

Yoo et al./2018

0.5 1.0
SENSITIVITY

SPECIFICITY (95% CI)

Q = 42.35, df = 4.00, 
p < 0.01

I2 = 90.55 [83.89 − 97.22]

 0.92 [0.81 − 0.97]

0.95 [0.86 − 0.99]

0.67 [0.52 − 0.80]

0.96 [0.88 − 1.00]

0.96 [0.91 − 0.99]

0.88 [0.78 − 0.95]

StudyId

COMBINED

Choi YJ et al./2017

Gitto S et al./2019

Jeong EY et al./2019

Kim HL et al./2019

Yoo et al./2018

0.5 1.0
SPECIFICITY

SENSITIVITY 
(95% CI)

Q =  9.27, df = 3.00, 
p =  0.03

I2 = 67.65 [33.09 − 
100.00]

 0.86 [0.79 − 0.92]

0.84 [0.77 − 0.89]

0.92 [0.88 − 0.95]

0.82 [0.48 − 0.98]

0.88 [0.81 − 0.93]

StudyId

COMBINED

Zhu LC et al./2013

Wu H et al./2016

Thomas J et al./2017

Zhang B et al/2019

0.5 1.0
SENSITIVITY

SPECIFICITY 
(95% CI)

Q = 16.80, df = 3.00, 
p <  0.01

I2 = 82.14 [65.20 − 99.08]

 0.85 [0.77 − 0.91]

0.82 [0.71 − 0.90]

0.76 [0.70 − 0.81]

0.97 [0.89 − 1.00]

0.84 [0.81 − 0.87]

StudyId

COMBINED

Zhu LC et al./2013

Wu H et al./2016

Thomas J et al./2017

Zhang B et al/2019

0.7 1.0
SPECIFICITY

SENSITIVITY (95% CI)

Q =124.93, df = 10.00, 
p <  0.01
I2 = 92.00 [88.54 − 95.46]

 0.87 [0.78 − 0.93]

0.91 [0.78 − 0.97]

0.83 [0.78 − 0.87]

0.21 [0.05 − 0.51]

0.89 [0.75 − 0.96]

0.84 [0.71 − 0.93]

0.97 [0.94 − 0.99]

0.98 [0.94 − 0.99]

0.85 [0.77 − 0.91]

0.84 [0.75 − 0.91]

0.90 [0.86 − 0.94]

0.80 [0.70 − 0.88]

StudyId

COMBINED

Choi YJ et al./2017

Luo Y et al./2018

Gitto S et al./2019

Jeong EY et al./2019

Yoo YJ et al./2018

Gao L et al./2018

Song W et al./2019

Li X et al. /2019

Ko SY et al./2019

Wang L et al./2019

Kim HL et al./2019

0.0 1.0
SENSITIVITY

SPECIFICITY (95% CI)

Q =157.64, df = 10.00, 
p <  0.01
I2 = 93.66 [91.10 − 96.22]

 0.85 [0.76 − 0.91]

0.75 [0.62 − 0.85]

0.70 [0.63 − 0.76]

0.81 [0.67 − 0.91]

0.84 [0.72 − 0.92]

0.96 [0.87 − 0.99]

0.49 [0.39 − 0.59]

0.98 [0.95 − 0.99]

0.88 [0.82 − 0.93]

0.90 [0.78 −0.97]

0.90 [0.83 − 0.95]

0.83 [0.75 − 0.89]

StudyId

COMBINED

Choi YJ et al./2017

Luo Y et al./2018

Gitto S et al./2019

Jeong EY et al./2019

Yoo YJ et al./2018

Gao L et al./2018

Song W et al./2019

Li X et al. /2019

Ko SY et al./2019

Wang L et al./2019

Kim HL et al./2019

0.4 1.0
SPECIFICITY

SENSITIVITY (95% CI)

Q = 18.37, df = 10.00, 
p =  0.05
I2 = 45.57 [7.46 − 83.68]

 0.87 [0.85 − 0.89]

0.88 [0.75 − 0.96]

0.87 [0.83 − 0.91]

0.79 [0.49 − 0.95]

0.84 [0.70 − 0.93]

0.80 [0.66 − 0.90]

0.90 [0.85 − 0.93]

0.87 [0.81 − 0.92]

0.86 [0.78 − 0.91]

0.82 [0.73 − 0.89]

0.94 [0.90 − 0.96]

0.85 [0.76 − 0.92]

StudyId

COMBINED

Choi YJ et al./2017

Luo Y et al./2018

Gitto S et al./2019

Jeong EY et al./2019

Yoo YJ et al./2018

Gao L et al./2018

Song W et al./2019

Li X et al. /2019

Ko SY et al./2019

Wang L et al./2019

Kim HL et al./2019

0.5 1.0
SENSITIVITY

SPECIFICITY (95% CI)

Q = 52.00, df = 10.00, 
p <  0.01
I2 = 80.77 [70.13 − 91.41]

 0.87 [0.81 − 0.91]

0.95 [0.86 − 0.99]

0.83 [0.77 − 0.88]

0.67 [0.52 − 0.80]

0.96 [0.88 − 1.00]

0.88 [0.78 − 0.95]

0.77 [0.67 − 0.84]

0.86 [0.80 − 0.91]

0.79 [0.72 − 0.85]

0.90 [0.78 − 0.97]

0.78 [0.69 − 0.85]

0.96 [0.91 − 0.99]

StudyId

COMBINED

Choi YJ et al./2017

Luo Y et al./2018

Gitto S et al./2019

Jeong EY et al./2019

Yoo YJ et al./2018

Gao L et al./2018

Song W et al./2019

Li X et al. /2019

Ko SY et al./2019

Wang L et al./2019

Kim HL et al./2019

0.5 1.0
SPECIFICITY

SENSITIVITY (95% CI)

Q = 36.03, df = 4.00, 
p <  0.01

I2 = 88.90 [80.71 − 97.08]

 0.79 [0.55 − 0.92]

0.91 [0.78 − 0.97]

0.21 [0.05 − 0.51]

0.89 [0.75 − 0.96]

0.84 [0.71 − 0.93]

0.80 [0.70 − 0.88]

StudyId

COMBINED

Choi YJ et al./2017

Gitto S et al./2019

Jeong EY et al./2019

Yoo YJ et al./2018

Kim HL et al./2019

0.0 1.0
SENSITIVITY

SPECIFICITY (95% CI)

Q = 11.06, df = 4.00, 
p =  0.03

I2 = 63.82 [28.77 − 98.87]

 0.84 [0.77 − 0.90]

0.75 [0.62 − 0.85]

0.81 [0.67 − 0.91]

0.84 [0.72 − 0.92]

0.96 [0.87 − 0.99]

0.83 [0.75 − 0.89]

StudyId

COMBINED

Choi YJ et al./2017

Gitto S et al./2019

Jeong EY et al./2019

Yoo YJ et al./2018

Kim HL et al./2019

0.6 1.0
SPECIFICITY

SENSITIVITY (95% CI)

Q =133.31, df = 12.00, 
p < 0.01
I2 = 91.00 [87.32 - 94.68]

 0.89 [0.81 - 0.93]

0.91 [0.78 - 0.97]

0.83 [0.78 - 0.87]

0.21 [0.05 - 0.51]

0.89 [0.75 - 0.96]

0.84 [0.71 - 0.93]

0.97 [0.94 - 0.99]

0.98 [0.94 - 0.99]

0.85 [0.77 - 0.91]

0.94 [0.83 - 0.99]

0.84 [0.75 - 0.91]

0.90 [0.86 - 0.94]

0.93 [0.89 - 0.96]

0.80 [0.70 - 0.88]

StudyId

COMBINED

Choi YJ et al./2017

Luo Y et al./2018

Gitto S et al./2019

Jeong EY et al./2019

Yoo YJ et al./2018

Gao L et al./2018

Song W et al./2019

Li X et al. /2019

Song J et al./2019

Ko SY et al./2019

Wang L et al./2019

Guan Q et al./2019

Kim HL et al./2019

0.0 1.0
SENSITIVITY

SPECIFICITY (95% CI)

Q =177.33, df = 12.00, 
p < 0.01
I2 = 93.23 [90.69 - 95.78]

 0.84 [0.75 - 0.90]

0.75 [0.62 - 0.85]

0.70 [0.63 - 0.76]

0.81 [0.67 - 0.91]

0.84 [0.72 - 0.92]

0.96 [0.87 - 0.99]

0.49 [0.39 - 0.59]

0.98 [0.95 - 0.99]

0.88 [0.82 - 0.93]

0.56 [0.41 - 0.70]

0.90 [0.78 - 0.97]

0.90 [0.83 - 0.95]

0.87 [0.82 - 0.92]

0.83 [0.75 - 0.89]

StudyId

COMBINED

Choi YJ et al./2017

Luo Y et al./2018

Gitto S et al./2019

Jeong EY et al./2019

Yoo YJ et al./2018

Gao L et al./2018

Song W et al./2019

Li X et al. /2019

Song J et al./2019

Ko SY et al./2019

Wang L et al./2019

Guan Q et al./2019

Kim HL et al./2019

0.4 1.0
SPECIFICITYa b

c d

e f

(For legend see next page.)
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acteristics are very similar to features that are proposed by 
the thyroid imaging reporting guidelines [3, 32, 33], and 
the diagnostic accuracy may be improved by systemati-
cally perceiving and interpreting all the features. The stan-
dardized process will benefit inexperienced or nonspecial-
ist radiologists in improving their diagnostic accuracy 
[15]. However, classic machine learning-based CAD sys-
tems merely simulate the presentational diagnostic strat-
egy of radiologists, and it is difficult to transcend the lim-
its of their human teachers, the experienced radiologists.

Compared with classic machine learning, deep learning 
may further improve the diagnostic performance of CAD 
systems by further decreasing subjectivity during the diag-
nostic process. The deep learning technique can automati-
cally extract multilevel features that are not limited by the 
engineered features used by radiologists [7]. However, in 
actual fact, sensitivity, specificity, and accuracy values 
comparable to those of radiologists were achieved by deep 
learning-based CAD systems, and no significant superior-
ity in accuracy over radiologists was demonstrated. This 
negative result may be related to the small sample sizes of 
the training sets used in most of the included studies, in 
which the number of images ranged from 594 to 6,228 for 
the training set (Table 1). Generally, hundreds of thou-
sands of well-selected images are required to develop sta-
ble, high-performance systems. In the only study with a 
larger training set, including 312,399 images [7], the deep 
learning-based CAD system outperformed most of the ex-
perienced radiologists. However, the ex post test and the 
rigid cutoff levels for diagnostic interpretation may under-
estimate the diagnostic performance of radiologists. First, 
the performance of the radiologists was likely to have been 
limited by the static images provided during the ex post 
tests. The overall characteristics of one nodule may not be 
well reflected by merely one or several images. During real-
time clinical diagnosis, ultrasound image segments are dy-
namically observed, and other characteristics beyond nod-
ule images, such as cervical lymph nodes, age, and medical 
history, were also considered. Second, the rigid cutoff lev-
els that were adopted to determine the diagnostic conclu-
sion of the radiologists may also have influenced the per-

formance of the radiologists. For instance, points 4a, 4b, 
and 5 of the TI-RADS criteria were adopted by researchers 
to determine the conclusion of radiologists during the di-
agnostic process [7, 21, 24]. It is probable that a different 
conclusion would have been drawn if the cutoff level had 
been adjusted.

Radiologists may regain their competitiveness in real-
time clinical diagnosis, as suggested by the 5 studies com-
paring the diagnostic performance of a CAD system and 
real-time diagnosis by radiologists without fixed cutoff 
levels [25–28, 31]. During real-time diagnosis, radiolo-
gists demonstrated superior sensitivity [26] or specificity 
[25–27, 31], and no inferior diagnostic performance by 
any evaluation index was demonstrated in any individual 
study. The pooled result also demonstrated a potentially 
higher pooled sensitivity (0.83 vs. 0.79), specificity (0.84 
vs. 0.92), and DOR (55.93 [95% CI 17.72–176.54] vs. 
19.82 [95% CI 5.92–66.35]) of the experienced radiolo-
gists compared with the CAD system (Fig. 2e, f).

There are some limitations of the present study. First, 
various artificial intelligence models were combined in 
the meta-analysis, and this may have introduced statisti-
cal heterogeneity. To decrease this kind of heterogeneity, 
classic machine learning- and deep learning-based CAD 
systems were analyzed separately. Furthermore, a sub-
group analysis of studies applying the same CAD system 
(the S-Detect system) was also performed. Second, in 3 of 
the included studies [25, 28, 30], ultrasonic diagnosis was 
adopted as the reference standard for benign nodules; this 
might possibly be related to the increased diagnostic ac-
curacy of the radiologists. However, the benign nodule 
diagnosis was considered only if ultrasonic findings were 
of very low suspicion, and the risk of malignancy of such 
nodules is exceedingly low [11].

In conclusion, our results suggest that CAD systems 
may provide an accuracy comparable to that of radiolo-
gists with 5–20 years of experience in thyroid ultrasound 
scanning with regard to diagnosing malignant thyroid 
nodules using static ultrasound images. However, most of 
the CAD systems are currently unavailable for real-time 
clinical diagnosis. Considering the variation in classifica-

Fig. 2. Forest plots of computer-aided diagnosis (CAD) systems 
and the radiologist counterparts. The sensitivity and specificity of 
the individual studies are represented by gray squares, and the 
pooled results are represented by rhombi. The confidence interval 
(CI) is indicated by error bars. a Diagnostic performance of classic 
machine learning-based CAD systems: AUC 0.93 (95% CI 0.90–
0.95) and DOR 37.41 (95% CI 24.91–56.20). b Diagnostic perfor-
mance of deep learning-based CAD systems: AUC 0.93 (95% CI 

0.90–0.95) and DOR 40.87 (95% CI 18.13–92.13). c, d Comparison 
between deep learning-based CAD systems (c) and radiologists 
(d): AUC 0.93 (95% CI 0.90–0.95) versus 0.92 (95% CI 0.89–0.94) 
and DOR 40.12 (95% CI 15.58–103.33) versus 44.88 (95% CI 
30.71–65.57). e, f Comparison between deep learning-based real-
time CAD systems (e) and radiologists (f): AUC 0.88 (95% CI 
0.85–0.91) versus 0.88 (95% CI 0.85–0.91) and DOR 19.82 (95% CI 
5.92–66.35) versus 55.93 (95% CI 17.72–176.54).



Xu/Gao/Wang/Yin/Yu/Bai/Pei/Chen/
Yang/Wang/Wan

Eur Thyroid J 2020;9:186–193192
DOI: 10.1159/000504390

tion algorithms, sample sizes of training sets, clinical ex-
perience of the image-interpreting staff, diagnostic crite-
ria used by radiologists, clinical experience of the radiolo-
gists, and reference standards, the diagnostic conclusions 
drawn from any of the current CAD systems on thyroid 
nodules should be accepted with caution.
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