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Abstract
BACKGROUND 
Early diagnosis of hepatocellular carcinoma may help to ensure that patients have 
a chance for long-term survival; however, currently available biomarkers lack 
sensitivity and specificity.

AIM 
To characterize the serum metabolome of hepatocellular carcinoma in order to 
develop a new metabolomics diagnostic model and identifying novel biomarkers 
for screening hepatocellular carcinoma based on the pattern recognition method.

METHODS 
Ultra-performance liquid chromatography-mass spectroscopy was used to 
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characterize the serum metabolome of hepatocellular carcinoma (n = 30) and 
cirrhosis (n = 29) patients, followed by sequential feature selection combined with 
linear discriminant analysis to process the multivariate data.

RESULTS 
The concentrations of most metabolites, including proline, were lower in patients 
with hepatocellular carcinoma, whereas the hydroxypurine levels were higher in 
these patients. As ordinary analysis models failed to discriminate hepatocellular 
carcinoma from cirrhosis, pattern recognition analysis was used to establish a 
pattern recognition model that included hydroxypurine and proline. The leave-
one-out cross-validation accuracy and area under the receiver operating 
characteristic curve analysis were 95.00% and 0.90 [95% Confidence Interval (CI): 
0.81-0.99] for the training set, respectively, and 78.95% and 0.84 (95%CI: 0.67-1.00) 
for the validation set, respectively. In contrast, for α-fetoprotein, the accuracy and 
area under the receiver operating characteristic curve were 65.00% and 0.69 
(95%CI: 0.52-0.86) for the training set, respectively, and 68.42% and 0.68 (95%CI: 
0.41-0.94) for the validation set, respectively. The Z test revealed that the area 
under the curve of the linear discriminant analysis model was significantly higher 
than the area under the curve of α-fetoprotein (P < 0.05) in both the training and 
validation sets.

CONCLUSION 
Hydroxypurine and proline might be novel biomarkers for hepatocellular 
carcinoma, and this disease could be diagnosed by the metabolomics model based 
on pattern recognition.

Key words: Hepatocellular carcinoma; Pattern recognition; Metabolomics; Biomarkers
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Core tip: We used ultra-performance liquid chromatography-mass spectroscopy to 
characterize the metabolome of serum samples from patients with hepatocellular 
carcinoma. We processed multivariate data using pattern recognition analysis and 
established a diagnostic model that included hydroxypurine and proline. The accuracy and 
area under the curve were 95.00% and 0.90 for the training set, respectively, and 78.95% 
and 0.84 for the validation set, respectively. The Z test revealed that the area under the 
curve of the model was significantly higher than that of α-fetoprotein. The results suggest 
that hydroxypurine and proline might be novel biomarkers for hepatocellular carcinoma, 
and the pattern recognition metabolomics model could be used to diagnose hepatocellular 
carcinoma.

Citation: Zhou PC, Sun LQ, Shao L, Yi LZ, Li N, Fan XG. Establishment of a pattern 
recognition metabolomics model for the diagnosis of hepatocellular carcinoma. World J 
Gastroenterol 2020; 26(31): 4607-4623
URL: https://www.wjgnet.com/1007-9327/full/v26/i31/4607.htm
DOI: https://dx.doi.org/10.3748/wjg.v26.i31.4607

INTRODUCTION
Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third 
leading cause of death due to cancer worldwide[1]. In particular, approximately 50% of 
the total patients with HCC in the world are from China, owing to the highest carrier 
prevalence of hepatitis B[2-4]. Early diagnosis of HCC offers patients a better chance for 
long-term survival[5]. Although imaging technologies such as magnetic resonance 
imaging and ultrasonography, and serum biomarkers [notably α-fetoprotein (AFP)] 
are widely used to diagnose HCC in the clinic[6], they are far from satisfactory because 
they lack sensitivity and specificity[7]. Therefore, there is an urgent and unmet desire 
for novel screening methods and new biomarkers.

The emergence of metabolomics has provided a powerful tool for discovering novel 
biomarkers and revealing metabolic pathways of cancer and liver diseases[8,9]. A 
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metabolomics approach to screen individual metabolites or their combinations for the 
diagnosis of HCC[10] identified a series of potential biomarkers including phenylalanyl-
tryptophan, glycocholate, concanavanine succinic acid, bile acid, long chain fatty acid, 
and so on for future clinical application[5,7,11]. However, none of these markers have 
thus far been validated for clinical applications. Metabolomics datasets commonly 
contain hundreds to thousands of variables; however, biomarkers are identified using 
conventional data processing methods such as principal component analysis (PCA), 
partial least squares discriminant analysis (PLS-DA), orthogonal partial least squares 
discriminant analysis (OPLS-DA), and binary logistic regression[11,12]. With the advent 
of data processing technology to handle big data, it is incumbent upon researchers in 
this area to adopt advanced methods such as pattern recognition to seek new 
biomarkers and to establish mathematical models that facilitate screening for HCC.

In previous studies, we established a pattern recognition metabolomics method 
based on sequential feature selection combined with linear discriminant analysis 
(LDA) to evaluate the severity of fulminant hepatic failure and for the differential 
diagnosis of Clostridium difficile infection[13,14]. In the current study, ultra-performance 
liquid chromatography-mass spectroscopy (UPLC-MS) was used to characterize the 
serum metabolomes of patients with HCC, patients with cirrhosis, and healthy 
controls. Furthermore, the pattern recognition method developed herein was used to 
process multivariate data with the aim of developing a novel metabolomics diagnostic 
model and identifying novel biomarkers for HCC screening purposes.

MATERIALS AND METHODS
Patients and samples
Between March and August 2016, samples from patients who met the inclusion criteria 
of HCC diagnosis set by the Ministry of Health were collected[15]. HCC confirmation 
required histological evidence or two different imaging techniques, or the combination 
of one imaging technique and an AFP level of > 400 ng/mL. Patients with cirrhosis 
meeting the criteria described elsewhere[16] based on clinical manifestations, laboratory 
examinations, and imaging results were included. HCC patients (C group, n = 30) all 
had cirrhosis, and cirrhosis patients without HCC were included in Y group (n = 29). 
The Child-Pugh Score in patients in the C group and Y group patients was A or B. 
Healthy controls (N group, n = 31) were chosen from the general population. The 
exclusion criteria were Child-Pugh Score C patients, malignant neoplasm (except HCC 
for C group), metabolic diseases, autoimmune disease, excess alcohol consumption, 
and known history of toxic exposure. Whole blood samples (3-5 mL) were collected on 
an empty stomach in the morning in BD Vacutainer® blood specimen collection tubes 
(Weigao Group, Weihai, China). Whole blood samples were stored at 4°C immediately 
after collection and were transported to the laboratory in < 30 min. After 
centrifugation at 3000 × g for 10 min at 4°C, a portion of the serum from the samples 
was used for biochemical assays and the remaining serum was aliquoted into fresh 
Eppendorf® tubes and stored at -80°C for metabolomic analysis. Fresh surgical tumor 
tissue samples were obtained from patients following informed consent.

Virology, biochemical parameters, and histopathology assay
Hepatitis B virus (HBV) and HCV antigens and a biochemical panel including alanine 
aminotransferase, aspartate aminotransferase, glutamic-oxaloacetic transaminase, total 
bilirubin, direct bilirubin, total protein, and albumin were assayed in the clinical 
laboratory. Histopathological samples were prepared as described previously[13].

Chemicals and reagents
Acetonitrile and methanol (HPLC grade) were purchased from Merck (Darmstadt, 
Germany). Distilled water was purified using a Milli-Q system (Darmstadt, Germany). 
Fatty acids, amino acids, bile acid, and nucleotide standards were purchased from 
Sigma-Aldrich (St. Louis, MO, United States). Citric acid, pantothenic acid, and 
malonic acid were purchased from Supelco (Bellefonte, PA, United States). 
Lysophosphatidyl cholines (LysoPCs) and lysophosphatidyl ethanolamine were 
purchased from Avanti Polar Lipids, Inc. (AL, United States).

Sample preparation
Prior to the assay, all samples were thawed on ice. Pooled aliquots (1 μL) of each 
sample formed the quality control (QC) sample. Metabolites in serum were extracted 
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by methanol (serum/methanol (V/V) = 1:3). The mixture (100 μL) was vortexed for 60 
s, and then centrifuged at 14000 × g for 10 min at 4°C. Supernatants were dried by 
nitrogen flow and then re-dissolved in 100 μL methanol. The mixture was again 
centrifuged at 14000 ×g for 5 min at 4°C. The resulting clear supernatant was 
transferred into UPLC vials and stored at 4°C.

UPLC-MS assay
An aliquot (2 μL) of the clear supernatant obtained above was chromatographed on a 
Thermo Fisher Scientific UltiMate 3000 UPLC system using an ACQUITY UPLC BEH 
C18 analytical column (i.d. 2.1 mm × 100 mm, particle size 1.7 mm, pore size 130 A˚). 
Mobile phase A and mobile phase B were water/formic acid (99.9: 0.1, V/V) and 
acetonitrile/formic acid (99.9: 0.1, V/V), respectively, and the flow rate was 200 
μL/min. A linear gradient was optimized as follows: the initial composition of the 
mobile phase was 95% A and 5% B; 0-2 min, 95% A; 2-9 min, 95%-62% A; 9-14 min, 
62%–32% A; 14-22 min, 32%-0% A; 22-30 min, 0-95% A. The column eluent was 
directed to the mass spectrometer for analyses.

Mass spectrometry was performed on a Thermo Fisher Scientific Q-Exactive Focus 
Mass Spectrometer operating in positive ion electrospray mode. The instrument 
parameters were set as follows: Mass range scanned from 50 to 1000, spray voltage 
was 4000 V, atomization temperature was 300°C, nebulizer pressure was 45 bar, 
capillary temperature was 350°C, and the capillary voltage was set to 4.00 kV; the 
sampling cone voltage was set to 35.0 V. The instrument parameters for MS/MS 
analysis were set at different collision energies according to the stability of metabolites 
(collision energy was set from 15 to 35 eV).

Five injections of QC samples were performed to equilibrate the UPLC-MS systems 
prior to testing individual patient samples. QC samples were injected after every six 
patient samples at regular intervals throughout the analytical run. Patient samples 
were tested in a random manner.

Data processing and statistical analysis
The raw UPLC-MS data of the samples were extracted using MZmine2.3 software and 
Xcalibur software (Thermo Fisher Scientific), which enabled detection, integration and 
normalization of the intensities of the peaks to the sum of peaks within the sample and 
to create a multivariate dataset containing the retention time, m/z, and relative 
abundances. The parameters were set as follows: Retention time ranging from 0 to 30 
min, mass range m/z from 50 to 1000, and mass tolerance at 0.05 Da. For peak 
integration, peak width at 5% of the height was 1 s, peak-to-peak baseline noise was 0, 
peak intensity threshold was 100, and retention time window was 0.20 s.

The statistical analysis is shown in Figure 1. In brief, we used SIMCA-P + 12.0 
software (Umetrics, AB, Sweden) to perform PCA, PLS-DA, and OPLS-DA. Pattern 
recognition analysis based on sequential feature selection combined with LDA for 
diagnosis of HCC, and the Z test [for comparison of area under curve (AUC)] were 
performed using Matlab Version 8.1 (R2013a) software (MathWorks Inc., Natick, MA, 
United States). One-way ANOVA, the Chi-square test, and Kruskal–Wallis test were 
conducted using SPSS v16.0 software (SPSS Inc. Chicago, IL, United States). 
Differences were considered statistically significant at P < 0.05.

Marker identification
The compounds were identified by searching the Human Metabolome Database (
http://hmdb.ca/), PubChem compound database (http://www.ncbi.nlm.nih.gov), 
and our own compound database that includes metabolites previously identified by 
us. Finally, the compound was verified by comparing the mass spectra and retention 
time of potential biomarkers with authentic standards (Supplementary Figures 1-5).

RESULTS
Study population and clinical characteristics
Demographic data and clinical characteristics of the subjects are shown in Table 1. 
Thirty patients with HCC (all with cirrhosis, C group), 29 patients with cirrhosis (all 
without HCC, Y group), and 31 healthy controls (N group) were enrolled. There were 
no significant differences in age and sex among the three groups, and no significant 
differences in the causes of liver injury and Child-Pugh Score between C group and Y 
group. The levels of AFP, glutamic-oxaloacetic transaminase, and alanine 
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Table 1 General characteristics of patients and healthy controls

Characteristics C (n = 30) Y (n = 29) N (n = 31) P value

Sex (Male/Female) 25/5 21/8 25/6 0.565

Age (yr) 52.93 ± 11.01 56.63 ± 9.15 51.23 ± 11.79 0.148

HBV 25 24

HCV 1 2

HBV + HCV 1 0

Pathogens

None 3 3

/ 0.720

> 200 11 0

50-199 4 1

AFP (ng/mL)

< 50 15 28

/ 0.000

ALT (U/L) 162.32 ± 201.06 91.02 ± 156.39 20.34 ± 8.43 0.000

AST (U/L) 146.35 ± 112.70 114.49 ± 191.67 21.59 ± 4.51 0.012

TBIL (μmol/L) 39.21 ± 68.38 40.87 ± 42.41 9.66 ± 2.66 0.015

DBIL (μmol/L) 17.91 ± 34.43 17.90 ± 23.03 4.49 ± 1.38 0.044

TP (g/L) 62.42 ± 10.95 74.14 ± 8.05 72.31 ± 3.96 0.000

ALB (g/L) 33.51 ± 6.30 37.65 ± 7.64 45.36 ± 2.62 0.000

Child-Pugh score (A/B) 18/12 15/14 / 0.353

AFP: α-fetoprotein; ALB: Albumin; ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; DBIL: Direct bilirubin; TBIL: Total bilirubin; TP: 
Total protein.

aminotransferase were relatively higher and the level of albumin was relatively lower 
in patients with HCC than in patients with cirrhosis and healthy controls. The 
histopathology results of patients with HCC are shown in Supplementary Figure 6. We 
used the Chinese staging system to stage HCC[15], and 11 cases were stage IIIa, 12 cases 
were stageIIb, one case was stageIIa, 5 cases were stageIb, and one case was stageIa.

Quality control of UPLC-MS assay
QC samples clustered compactly in the middle of the PCA score plot (Figure 2A). The 
coefficient of variation (CV) of identified metabolites in QC samples ranged from 
2.09% to 16.27% with a median CV of 7.83% (Table 2).

Metabolic profiles of serum samples
Patients with HCC, patients with cirrhosis, and healthy controls showed no significant 
differences in the base peak intensity chromatogram (Supplementary Figure 7). The 
three groups intermixed with each other in the PCA score plot, although there was a 
tendency to separate along PC1 (Figure 2B). Characterization of metabolic differences 
among the three groups using PLS-DA and OPLS-DA showed that the three groups 
also intermixed with each other in the PLS-DA score plot (Supplementary Figure 8). 
The PLS-DA score plot of the HCC group vs the cirrhosis group also intermixed with 
each other (Supplementary Figure 9). Validation plots of the PLS-DA models acquired 
through 20 permutation tests were used for cross-validation purposes (Supplementary 
Figures 10 and 11). Analysis of the PLS-DA score plot for all three groups revealed that 
R2 = (0.0, 0.401) and Q2 = (0.0, -0.35); cross-validation of the PLS-DA score plot of C 
group and Y group revealed that R2 = (0.0, 0.645) and Q2 = (0.0, -0.507). Although the 
PLS-DA model showed intermixing of the three groups, they could be separated in the 
OPLS-DA model (Figure 3A). OPLS-DA score plots of the HCC group vs healthy 
controls (Figure 3B), the cirrhosis group vs healthy controls (Figure 3C), and the HCC 
group vs the cirrhosis group (Figure 3D) demonstrated very clear separation. 
However, the R2 and Q2 values were not high enough in the three OPLS-DA models.

Biomarkers for HCC
Potential biomarkers were characterized by variable importance in the projection 
values retrieved from the PLS-DA model combined with the Kruskal–Wallis test (P < 
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Table 2 Significantly altered metabolites

Coefficient of variation 
(%) Comparison

Retention 
time m/z Metabolites Adduction Adduct 

mass
Delta 
ppm

3.52 C vs 
N

Y vs 
N

C vs 
Y

9.57 166.0862 Phenylalanine M + H 166.0863 1.00 8.36 D U NS

3.49 118.0864 Valine M + H 118.0863 1.00 6.76 D NS NS

6.63 132.1019 Leucine M + H 132.1019 0.00 3.34 NS U NS

3.58 116.0708 Proline M + H 116.0706 1.00 14.23 D D D

5.42 182.0811 Tyrosine M + H 182.0812 0.00 6.12 NS U NS

6.05 132.1019 Isoleucine M + H 132.1019 0.00 3.37 NS U D

4.89 150.0583 Methionine M + H 150.0583 0.00 9.28 NS U NS

3.16 156.0766 Histidine M + H 156.0768 1.00 10.83 D U D

3.44 148.0602 Glutamic acid M + H 148.0604 2.00 6.38 U D U

3.32 106.0502 Serine M + H 106.0499 3.00 2.59 D U D

3.38 147.0762 Glutamine M + H 147.0764 1.00 11.41 NS D D

3.44 90.0554 Alanine M + H 90.0550 5.00 12.28 D D NS

5.43 165.0546 Hydroxycinnamic acid M + H 165.0546 0.00 16.17 D NS D

5.43 123.0442 Benzoic acid M + H 123.0441 1.00 10.11 D U NS

9.57 149.0596 Cinnamic acid M + H 149.0597 1.00 12.29 D U NS

24.40 190.0497 Kynurenic acid M + H 190.0499 1.00 6.51 D D U

26.39 169.0495 Vanillic acid M + H 169.0495 0.00 3.41 D D U

13.83 239.0912 Trimethoxycinnamic 
acid

M + H 239.0914 1.00 5.08 D U NS

18.85 279.2318 Linolenic acid M + H 279.2319 0.00 11.26 D NS D

3.10 130.0862 Pipecolinic acid M + H 130.0863 0.00 10.58 D U NS

29.42 494.3235 LysoPC 16:1 M + H 494.3241 1.00 4.32 NS D D

22.87 542.3234 LysoPC 20:5 M + H 542.3241 1.00 3.09 NS D NS

17.33 548.3705 LysoPC 20:2 M + H 548.3711 1.00 2.31 D D NS

21.65 550.3857 LysoPC 20:1 M + H 550.3867 2.00 5.58 D D NS

23.13 468.3078 LysoPC 14:0 M + H 468.3085 1.00 6.27 D D D

19.25 478.2926 LysoPE 20:1 M + H 478.2928 0.00 8.72 D NS NS

17.58 181.0857 Propylparaben M + H 181.0859 1.00 6.39 D NS NS

5.42 136.0756 Acetylarylamine M + H 136.0757 0.00 2.59 D U D

18.20 127.0390 Trihydroxybenzene M + H 127.0390 0.00 13.83 D U D

22.22 191.1428 Damascenone M + H 191.1430 1.00 10.02 U D NS

10.70 181.0718 Myoinositol M + H 181.0707 6.00 8.55 D NS NS

4.88 137.0457 Hydroxypurine M + H 137.0458 1.00 9.74 U D U

3.48 114.0664 Creatinine M + H 114.0662 2.00 7.83 D NS NS

3.82 72.0815 Pyrrolidine M + H 72.0808 10.00 2.09 U U NS

11.71 195.0875 Methyl lucopyranoside M + H 195.0863 6.00 12.43 D NS NS

LysoPC: Lysophosphatidyl choline; LysoPE: Lysophosphatidyl ethanolamine; U: Upregulated; D: Decreased; NS: No statistical difference.

0.05). Potential biomarkers were identified by a preliminary search of the HMDB and 
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Figure 1  Road map of data analysis. Road map of data analysis. Ordinary multivariate statistical analysis (principal component analysis, partial least squares 
discriminant analysis, and orthogonal partial least squares discriminant analysis) were used to describe the metabolome of the three groups. Pattern recognition 
analysis based on sequential feature selection combined with linear discriminant analysis were used to diagnose hepatocellular carcinoma. The Kruskal–Wallis test 
was used to identify differences in metabolites. PCA: Principal component analysis; PLS-DA: Partial least squares discriminant analysis; OPLS-DA: Orthogonal partial 
least squares discriminant analysis; LDA: Linear discriminant analysis; HCC: Hepatocellular carcinoma.

PubChem compound databases and verified by comparing the mass spectra and 
retention time of potential biomarkers with authentic standards. As shown in Table 2 
and Supplementary Figure 12, the levels of most metabolites, including proline, were 
lower in patients with HCC than in healthy controls and patients with cirrhosis 
(Figure 4A). However, the levels of glutamic acid, pyrrolidine, and damascenone were 
higher in patients with HCC than in healthy controls; glutamic acid, kynurenic acid, 
vanillic acid, and hydroxypurine (Figure 4B) were higher in patients with HCC than in 
patients with cirrhosis.

Pattern recognition for diagnosis of HCC
We intended to establish a PLS-DA model or OPLS-DA model with the aim of 
distinguishing patients with HCC from patients with cirrhosis. However, as the 
metabolomes of HCC and cirrhosis are not very different, the efficiency of the models 
was not robust enough to discriminate the two groups using ordinary PLS-DA or 
OPLS-DA models. Therefore, we used pattern recognition, an advance data processing 
method, to achieve our aim. To enable this, the dataset was randomly split into a 
training set and a validation set. The training set comprised 20 HCC samples and 20 
cirrhosis samples, and the validation set comprised 10 HCC samples and nine cirrhosis 
samples. We used sequential feature selection to select the most suitable metabolites 
for constructing the best performing LDA model based on the training set. The 
validation set was used to confirm the reliability of the model for discriminating 
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Figure 2  Principal component analysis. A: The principal component analysis score plot of all samples including quality control samples. R2X = 0.134 cum, 
Q2 = 0.106 cum; and B: The principal component analysis score plot of all three groups, hepatocellular carcinoma group (C group) cirrhosis group (Y group), and 
healthy controls (N group). R2X = 0.139 cum, Q2 = 0.103 cum. QC: Quality control; PCA: Principal component analysis; HCC: Hepatocellular carcinoma.

patients with HCC from patients with cirrhosis. When the metabolites hydroxypurine 
and proline were included in the LDA model, a differential distribution pattern 
between HCC and cirrhosis began to emerge in the LDA plot (Figure 5). The leave-
one-out cross-validation analysis provided accuracy, sensitivity, specificity, a positive 
predictive value, and a negative predictive value of 95.00%, 100.00%, 90.00%, 0.91, and 
1.00, respectively, for the training set, and 78.95%, 100.00%, 60.00%, 0.69, and 1.00, 
respectively, for the external validation set (Table 3). Validation of AFP as a biomarker 
to discriminate HCC and cirrhosis provided accuracy, sensitivity, specificity, a positive 
predictive value, and a negative predictive value of 65.00%, 30.00%, 100.00%, 1.00 and 
0.59, respectively, for training samples, and 68.42%, 40.00%, 100.00%, 1.00 and 0.60, 
respectively, for test samples. For the training samples, the AUC in the LDA model 
(AUCLDA) was 0.90 (95%CI: 0.81–0.99, P < 0.05, Figure 6A), and AUCAFP was 0.69 
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Table 3 The efficiency of the diagnostic model

Model Accuracy 
(%)

Sensitivity 
(%)

Specificity 
(%)

Positive predictive 
value

Negative predictive 
value

ROC-AUC 
(95%CI)

P 
value

LDA 95.00 100.00 90.00 0.91 1.00 0.90 (0.81-0.99)Training set

AFP 65.00 30.00 100.00 1.00 0.59 0.69 (0.52-0.86)

< 0.05

LDA 78.95 100.00 60.00 0.69 1.00 0.84 (0.67-1.00)Validation 
set

AFP 68.42 40.00 100.00 1.00 0.60 0.68 (0.41-0.94)

< 0.05

LDA: Linear discriminant analysis; ROC: Receiver operating characteristic curve; AUC: Area under curve.

(95%CI: 0.52–0.86, P < 0.05, Supplementary Figure 13); AUCLDA was significantly more 
than AUCAFP (P < 0.05, Z test). For validation samples, AUCLDA was 0.84 (95%CI: 
0.67–1.00, P < 0.05, Figure 6B), and AUCAFP was 0.68 (95%CI: 0.41–0.94, P = 0.191, 
Supplementary Figure 14); AUCLDA was significantly larger than AUCAFP (P < 0.05, Z 
test).

DISCUSSION
In this study, the serum metabolomes of patients with HCC, patients with cirrhosis, 
and healthy controls were profiled by UPLC-MS to establish a metabolomics model for 
the diagnosis of HCC. This approach not only enabled elucidation of HCC 
pathogenesis but also provided a mathematical model based on possible biomarkers 
for screening HCC.

The stability of metabolomics data and the comparability of demographic data are 
the two crucial issues that should be considered prior to statistical analysis[17]. In this 
study, the reproducibility and stability of metabolomics data are reflected in the 
compact clustering of QC samples in the PCA score plot, as well as in the low CV of 
specific metabolites of the QC samples. There were no statistical differences in age and 
sex among the patients with HCC, patients with cirrhosis, and healthy controls. Also, 
the constituent ratio of etiology of liver injury (pathogenesis) was comparable between 
the HCC and cirrhosis groups, all of which confirm the reliability of the UPLC-MS 
assay and optimal homogeneity of baseline characteristics[9].

The liver is the principal organ for metabolism of carbohydrates, lipids, amino acids 
etc[18]. Particularly in HCC, liver disease always results in apparent metabolic 
dysregulation[19], as in the case of glutamine addiction, a hallmark feature of HCC[20]. 
The decrease in serum metabolites in patients with HCC is largely due to uptake and 
utilization of metabolites by the tumor to feed its malignant behavior, as in the case of 
glutamine addiction[20]. This is evident in HCC tissue that has 20 times higher 
glutaminase 1 concentration than normal liver tissue[21], leading to 10 times faster 
consumption of glutamine resulting in diminished glutamine levels in the serum of 
patients with HCC. On the contrary, an increase in the concentration of serum 
metabolites in HCC may reflect tumor necrosis. The best illustration of this process is 
the increase in hydroxypurine in the serum of patients with HCC, likely due to the 
release of nucleic acids from tumor tissues, which then metabolizes into 
hydroxypurine under necrotic conditions[22].

Our findings are in line with previous studies that demonstrated diminished levels 
of serum phospholipid metabolites in patients with liver diseases (including HCC, 
liver cirrhosis, hepatitis, and liver failure)[7,9]. Indeed, through an untargeted 
metabolomics approach, we found significantly reduced amounts of phospholipid 
metabolites in patients with HCC. Reduced serum LysoPC, a molecule associated with 
malignancies, autoimmune disease, inflammation, and cell signaling[23], is an indicator 
of liver injury; LysoPC correlates with model for end-stage liver disease score, 
independently of age, sex, and diet. As the patients with HCC in our cohort also had 
concurrent liver cirrhosis, the serum LysoPC of C group was lower than that of 
healthy controls. However, since the severity of liver injury was similar between C and 
Y groups, the serum LysoPC concentration was not significantly different between 
these groups. Low levels of LysoPC may be attributed to the inhibition of 
phospholipase A2 or LCAT activity or perturbed LysoPC acyltransferase activity[7]. 
More recently, based on studies from our group and others, it was postulated that 

https://f6publishing.blob.core.windows.net/16358038-c0cb-43cb-801b-2c3298d92385/WJG-26-4607-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/16358038-c0cb-43cb-801b-2c3298d92385/WJG-26-4607-supplementary-material.pdf
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Figure 3  Metabolic profiles of serum from hepatocellular carcinoma patients, cirrhosis patients and healthy controls. A: The orthogonal 
partial least squares discriminant analysis (OPLS-DA) score plot for all the three groups. Model efficiency: R2X = 0.370 cum, R2Y = 0.838 cum, Q2 = 0.467 cum; B: 
The OPLS-DA score plot of C group and N group. R2X = 0.187 cum, R2Y = 0.790 cum, Q2 = 0.603 cum; C: The OPLS-DA score plot of Y group and N group. R2X = 
0.559 cum, R2Y = 0.962 cum, Q2 = 0.696 cum; and D: The OPLS-DA score plot of C group and Y group. R2X = 0.274 cum, R2Y = 0.812 cum, Q2 = 0.358 cum. 
OPLS-DA: Orthogonal partial least squares discriminant analysis.

excessive consumption of LysoPC results in an anti-inflammatory response, leading to 
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Figure 4  The relative abundance of proline and hydroxypurine in hepatocellular carcinoma patients, cirrhosis patients and healthy 
controls. A: Proline; B: Hydroxypurine. P < 0.05 in Kruskal-Wallis test in all three comparisons (C vs N, Y vs N, and C vs Y) of each metabolite.

low levels of serum and severe immunosuppression in patients with liver diseases[9,23].
The reduced levels of serum creatinine found in patients with HCC in this study 

may be attributed to the diminished hepatic conversion of creatine to creatinine in 
patients with hepatic disease[5]. Another reason may be the decrease in levels of serine 
and alanine, involved in the synthesis of creatine, in HCC[5]. Down regulation of fatty 
acids was also found in patients with HCC compared with cirrhotic patients and 
heathy controls. Fatty acids can be transported into the mitochondria for beta-
oxidation to generate adenosine triphosphate (ATP) energy, and its metabolism could 
be perturbed in patients with chronic liver disease[24]. Thus, we hypothesized that 
differential levels of metabolites in HCC may enable biomarker identification for the 
diagnosis of HCC.

As the PCA and PLS-DA models suffered from relatively poor efficiencies in our 
study and were overfit for the dataset, they were therefore unable to discriminate 
patients with HCC from patients with cirrhosis. Hence, a pattern recognition 
approach, based on sequential feature selection combined with LDA, was adopted to 
find the most suitable combination of biomarkers. This resulted in the generation of an 
LDA model for the diagnosis of HCC, which included two novel biomarkers, 
hydroxypurine and proline, highlighting the rapid growth and necrotic characteristics 
of HCC. As the accuracy, sensitivity, negative predictive value, and AUCLDA were 
higher in the LDA model compared to those in the AFP diagnostic model, the 
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Figure 5  Pattern recognition for the diagnosis of hepatocellular carcinoma. Pattern recognition analysis based on sequential feature selection 
combined with linear discriminant analysis (LDA) was used to find the most suitable biomarkers for discriminating hepatocellular carcinoma patients from cirrhosis 
patients in the training set. The validation set was used to confirm the reliability of the model. Hydroxypurine and proline were included in the LDA model. Function 1 
and function 2 are the first two eigenvectors. Hepatocellular carcinoma samples and cirrhosis samples demonstrated different distributions in the LDA plot.

relatively better efficiency of the LDA model could ensure proper discrimination of 
patients with HCC. However, the specificity and positive predictive value of the LDA 
model were lower than those in the AFP diagnostic model, suggesting that AFP 
remains a useful biomarker for discriminating patients with HCC from those with 
cirrhosis. If AFP levels reach the threshold of ≥ 400 ng/mL[15], patients are very likely 
to be diagnosed with HCC. Our results suggest that the two methods are 
complementary to each other, and the combination of the two approaches may offer 
better validation of diagnostic results. Further more, our findings indicated that 
pattern recognition analysis was better than conventional multivariate statistical 
analysis for data processing.

In conclusion, competitive access to nutrition and necrosis can be identified in HCC 
using a metabolomics model based on sequential feature selection combined with 
LDA, which may be an ideal method for novel biomarker discovery.
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Figure 6  Receiver operating characteristic curve of the pattern recognition diagnostic model. A: Receiver operating characteristic curve for the 
training set of the linear discriminant analysis model. Area under the curve for the training set was 0.90 (95%CI: 0.81-0.99); B: Receiver operating characteristic for 
the validation (test) set of the linear discriminant analysis model. Area under the curve for the validation set was 0.84 (95%CI: 0.67-1.00).
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ARTICLE HIGHLIGHTS
Research background
Early diagnosis of hepatocellular carcinoma (HCC) offers patients a better chance for 
long-term survival. The current biomarkers are far from satisfactory as they lack 
sensitivity and specificity. The emergence of metabolomics has provided a powerful 
tool for discovering novel biomarkers. In previous studies, we established a pattern 
recognition metabolomics method based on sequential feature selection combined 
with linear discriminant analysis for differential diagnosis.

Research motivation
There is an urgent and unmet desire for novel screening methods and new biomarkers 
for the diagnosis of HCC. Whether the pattern recognition method mentioned above 
could be used to establish a metabolomics model for the diagnosis of HCC is still 
unknown.

Research objectives
We aimed to use the pattern recognition method to develop a metabolomics diagnostic 
model and identify new biomarkers for HCC screening.

Research methods
We used ultra-performance liquid chromatography-mass spectroscopy to characterize 
the serum metabolome of HCC and cirrhosis patients. We then processed the 
multivariate data using sequential feature selection combined with linear discriminant 
analysis.

Research results
The concentrations of most metabolites, including proline, were lower in patients with 
HCC, whereas hydroxypurine levels were higher in these patients. As ordinary 
analysis models failed to discriminate hepatocellular carcinoma from cirrhosis, pattern 
recognition analysis was used to establish a pattern recognition model that included 
hydroxypurine and proline. The leave-one-out cross-validation accuracy and area 
under curve (AUC) were 95.00% and 0.90 (95% confidence interval (CI): 0.81–0.99) for 
the training set, respectively, and 78.95% and 0.84 (95%CI: 0.67–1.00) for the validation 
set, respectively. The Z test revealed that the AUC of the model was significantly 
higher than the AUC (P < 0.05) in both the training and validation sets.

Research conclusions
Hydroxypurine and proline might be novel biomarkers for HCC, and the disease 
could be diagnosed by the metabolomics model based on pattern recognition.

Research perspectives
This study determined the applicability of the pattern recognition metabolomics 
model for the diagnosis of HCC. Two novel biomarkers for HCC were also found. 
Future studies should verify the validity of the model and the applicability of the 
biomarkers in the early diagnosis of patients with HCC.
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