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Abstract

Exome sequencing is now mainstream in clinical practice. However, identification of pathogenic Mendelian variants
remains time-consuming, in part, because the limited accuracy of current computational prediction methods requires
manual classification by experts. Here we introduce CAPICE, a new machine-learning-based method for prioritizing
pathogenic variants, including SNVs and short InDels. CAPICE outperforms the best general (CADD, GAVIN) and
consequence-type-specific (REVEL, ClinPred) computational prediction methods, for both rare and ultra-rare variants.
CAPICE is easily added to diagnostic pipelines as pre-computed score file or command-line software, or using online
MOLGENIS web service with API. Download CAPICE for free and open-source (LGPLv3) at https://github.com/molgenis/

capice.
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Background

The past decades have seen rapid advances in genetic
testing and increasing numbers of trial studies aimed at
using genetic testing to facilitate rare disease diagnostics,
and many studies have now demonstrated the unique
role whole exome and genome sequencing can play in
improving diagnostic yield [1-7]. However, the vast
amount of genomic data that is now available has cre-
ated large interpretation challenges that can be alleviated
using computational tools. Nonetheless, variant inter-
pretation in particular still remains time-consuming, in
part because of the limited accuracy of current
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computational prediction methods and the manual work
required to identify large numbers of false positives pro-
duced by those methods [8-10].

Existing prediction methods can be categorized into
two groups. One group of methods [11, 12] focuses on
specific types of variants. The majority of these methods
can only classify non-synonymous single nucleotide vari-
ants (nsSNVs) [13, 14]. Successful methods of this group
include Clinpred [15], which has the best current per-
formance validated in multiple datasets, and REVEL
[16], which specifically targets rare variants. However,
these methods cannot give pathogenicity predictions
and, hence, may miss the diagnosis when the causal vari-
ant is not an nsSNV, which is the case for 76% of re-
ported pathogenic variants [17]. The other category of
prediction methods provides predictions of selective
constraints without the limitation of nsSNVs. However,
they only indirectly predict the variant pathogenicity,
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using selective constraints to indicate the pathogenicity
[18-21]. A method that is widely used and acknowl-
edged for performance is CADD [22], which estimates
the deleteriousness of SN'Vs and short insertions and de-
letions (InDels). These methods can introduce ascertain-
ment bias for variants that are under high evolutionary
pressure (such as nonsense and splicing variants) even
though these variants can also be observed in healthy
populations, and they can neglect rare and recent vari-
ants that have not undergone purifying selection but are
still found to contribute to diseases [23].

New computational prediction methods need to be
assessed for their ability to reduce the number of vari-
ants that require time-consuming expert evaluation as
this is currently a bottleneck in the diagnostic pipeline.
With hundreds to thousands of non-pathogenic variants
identified in a typical patient with a rare genetic dis-
order, it is important to restrict the false-positive rate of
computational prediction methods, i.e., reduce the num-
ber of neutral variants falsely reported as pathogenic.
However, new methods are not often evaluated for their
ability to recognize neutral variants. Indeed, a recent re-
view [24] found that commonly used variant interpret-
ation tools may incorrectly predict a third of the
common variations found in the Exome Aggregation
Consortium (ExAC) to be harmful. We speculate that
this may be explained by the bias in training data selec-
tion because the neutral set used in different tools can
be biased towards common neutral variants [15, 25, 26],
which in practice means that the pathogenicity of rare
and ultra-rare variants cannot be accurately estimated.
Therefore, it is important to avoid bias in data selection
and evaluate false-positive rate of the prediction
methods in clinical setting where rare and ultra-rare
neutral variants are frequently encountered using neutral
benchmark datasets [27, 28] and clinical data.

The challenge for rare disease research and diagnostics
is thus to find robust classification algorithms that per-
form well for all the different types of variants and allele
frequencies. To meet this challenge, we developed CAPI
CE, a new method for Consequence-Agnostic prediction
of Pathogenicity Interpretation of Clinical Exome varia-
tions. CAPICE overcomes limitations common in
current predictors by training a sophisticated machine-
learning model that targets (non-)pathogenicity using a
specifically prepared, high confidence and pathogenicity
versus benign balanced training dataset, and using many
existing genomic annotations across the entire genome
(the same features that were used to produce CADD). In
high-quality benchmark sets, CAPICE thus outperforms
existing methods in distinguishing pathogenic variants
from neutral variants, irrespective of their different mo-
lecular consequences and allele frequency. To our know-
ledge, CAPICE is also the first and only variant
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prioritization method that targets pathogenicity predic-
tion of all types of SNVs and InDels, irrespective of con-
sequence type.

Below we describe the results of our performance eval-
uations, discuss features and limitations of our method-
ology, and provide extensive details on the materials and
methods used, concluding that CAPICE thus offers high
accuracy pathogenicity classification across all conse-
quence types and allele frequencies, outperforming all
next-best variant classification methods. To make CAPI
CE easy to access, we have developed CAPICE as both a
command-line tool and a web-app and released it with
pre-computed scores available as ready-to-use annota-
tion files.

Methods

The flowchart of this study is shown in Fig. 1. Briefly, we
collected variant annotation and classification data from
multiple sources and used gradient boosting on decision
trees to train our pathogenic variant prioritizing model
with the same set of features used to build CADD
scores. We subsequently evaluated our model in a bal-
anced benchmark dataset and examined its performance
for subgroups of variants in that benchmark dataset.
Additionally, we tested our model on two benign bench-
mark datasets. To demonstrate its application in clinic,
we applied our model to data from 54 solved patients
and compared its prioritization results against those ob-
tained by CADD for the same data.

Data collection and selection

An overview of the training and benchmark datasets can
be found in Table 1. Training and benchmark data on
neutral and pathogenic variants were derived from vcf
files from the ClinVar database [17], dated 02 January
2019; from the VKGL data share consortium [30]; from
the GoNL data [31]; and from data used in a previous
study [29]. From the ClinVar dataset, we collected vari-
ants reported by one or more submitters to have clear
clinical significance, including pathogenic and likely
pathogenic variants and neutral and likely neutral vari-
ants. From the VKGL data consortium, we collected var-
iants with clear classifications, either (Likely) Pathogenic
or (Likely) Benign, with support from one or more
laboratories. The neutral variants from previous research
developing the GAVIN tool [29] were mainly collected
from ExAC without posing a constraint on allele fre-
quency. We also obtained two neutral benchmark data-
sets from a benchmark study by [24] and the GoNL
project.

In our data selection step, we removed duplicate vari-
ants located in unique chromosomal positions and those
with inconsistent pathogenicity classification across the
different databases. To reduce potential variants in
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Fig. 1 An overview of the study setup
A

general population datasets from carriers, we excluded
variants observed in dominant genes using inheritance
modes of each gene retrieved from the Clinical Genome
Database dated 28 February 2019 [32].

In total, we collected 80k pathogenic variants and
450k putative neutral variants, and the training and
benchmark datasets can be found online. After the initial
cleaning step described above, we built a training dataset
for model construction and a benchmark dataset that we
left out of the training procedures so it could be used
for performance evaluation later on.

Construction of the benchmark and training sets

To build a benchmark dataset for performance evalu-
ation that was fully independent of model construction
procedures, we selected high-confidence pathogenic var-
iants from the ClinVar and VKGL databases and neutral

variants from both the curated databases ClinVar and
VKGL, and from the population database ExAC. The
high-confidence pathogenic variants are ClinVar variants
with a review status of “two or more submitters provid-
ing assertion criteria provided the same interpretation
(criteria provided, multiple submitters, no conflicts),”
“review by expert panel,” and “practice guideline” in
ClinVar database and VKGL variants that are reported
by one of more laboratories without conflicting inter-
pretation in VKGL database. From the pathogenic vari-
ants that passed these criteria, we then randomly
selected 50% to add into the benchmark dataset, which
resulted in 5421 pathogenic variants. During our ana-
lysis, we found that variants’ molecular effects and allele
frequency influence the model performance. Therefore,
to enable unbiased comparison, we created benchmark
datasets with equal proportions of pathogenic and

Table 1 Data source for the variants and pathogenicity interpretation

Data name Data source

Number of pathogenic variants Number of neutral variants

ClinVar (= 1 stars)

VKGL (= 1 lab support)
van der Velde et al. [29]
Total *

Training dataset

ClinVar (= 2 stars)
VKGL (= 2 lab support)
ExAC

Total

Benchmark dataset

Niroula et al. [24]
GoNL

Benign Benchmark dataset 1

Benign Benchmark dataset 2

10,370 14,954

581 11,129
30,187 274112
40,681 293,920
5421 20

187 11

0 5392

5421 5421

0 60,699

0 14,426,914

*The total numbers of variants are smaller or equal to the sum of variants from all data sources due to the removal of duplicated variants
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neutral variants for each type of molecular conse-
quences, with the additional requirement that the patho-
genic and neutral variants share similar distributions in
allele frequency. An overview of the allele frequency dis-
tribution of the pathogenic and neutral variants for each
type of molecular effects is in Additional File 1: Fig. S1.

In total, our benchmark set contained 10,842 variants
and our training set contained 334,601 variants.

For our training dataset, we combined the collected
high-confidence variants that are not present in the
benchmark datasets, the low-confidence variants in Clin-
Var and VKGL, the variants from [29], and the neutral
variants from ExAC that are not present in the bench-
mark dataset. The training set had 32,783 high confi-
dence variants and 301,819 lower confidence variants.
The high-confidence training variants were 12,646
pathogenic variants and 20,137 neutral variants. The
lower confidence variants were 28,035 pathogenic vari-
ants and 273,783 neutral variants.

The two neutral benchmark datasets are those taken
from a previous benchmark study and the GoNL dataset.
The previous benchmark study [24] selected neutral vari-
ants from the ExAC dataset and only included common
variants with allele frequencies between 1 and 25%. For
this dataset, we removed variants seen in the training set.
In total, there were 60,699 neutral variants in our bench-
mark dataset. To build the neutral benchmark dataset
from GoNL data, we selected all the variants that passed
the assessment of the genotype variant calling quality.
Concretely, we selected all variants with a “PASS” re-
corded in the “QUAL” column in the VCF files down-
loaded from the data source. Then we calculated the
variants’ allele frequency within the GoNL population and
selected those with an allele frequency < 1% that had not
been seen in the training set. In total, there were 14,426,
914 variants involved (Additional File 1: Table S2).

Data annotation and preprocessing

The collected variants in both the training and test data-
sets were annotated using CADD web service v1.4, which
consists of 92 different features from VEP (version 90.5)
[33] and epigenetic information from ENCODE [34] and
the NIH RoadMap project [35]. A detailed explanation of
these features can be found in Kircher et al’s [21] CADD
paper. For each of the 11 categorical features, we selected
up to five top levels to avoid introducing excessive spars-
ity, which could be computationally expensive, and used
one-hot encoding before feeding the data into the model
training procedures [36]. For the 81 numerical variables,
we imputed each feature using the imputation value rec-
ommended by Kircher et al. [21]. The allele frequency in
the population was annotated using the vcfTool [37] from
GnomAD r2.0.1 [38]. We assigned variants not found in
the GnomAD database an allele frequency of 0.
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Model construction and training

We trained a gradient-boosting tree model using the
XGBoost (version 0.72) Python package. The hyper-
parameters, n_estimators, max_depth, and learning_rate
were selected by 5-fold cross-validation using the Ran-
domSearchCV function provided by the scikit-learn (ver-
sion 0.19.1) Python package. Within each training fold,
we used an early stopping criteria of 15 iterations. We
then used the model trained with the best set of hyper-
parameters (0.1 for learning_rate, 15 for max_depth, and
422 for n_estimators) for performance measurement.
For fitting the model, we also used the sample weight
assigned to each variant. The sample weight is a score
ranging from O to 1 that reflects the confidence level of
the trustworthiness of the pathogenicity status of that
variant. High-confidence variant, as described previously,
are given a sample weight of 1, and the low-confidence
variants were given a lower sample weight of 0.8. A vari-
ant with a high sample weight will thus contribute more
to the loss function used in the training procedure [36].
To test the assigned sample weights, we used the best
set of parameters returned from the previous fine-tuning
process and tried three different conditions in which we
set the sample weights of the lower confidence variants
to 0, 0.8, and 1. We then selected the model with the
highest AUC value for the cross-validation dataset.

Threshold selection strategies

For comparing the false-positive rate in the neutral
benchmark dataset and comparing the classification re-
sults, we tested different threshold-selection strategies
for both CAPICE and CADD. For CAPICE, we obtained
the threshold from the training dataset that results in a
recall value within 0.94-0.96. To calculate the threshold,
we searched for all possible threshold value from 0 to 1
and selected the first threshold for which the resulting
recall value fall between 0.94 and 0.96. This method re-
sulted in a general threshold of 0.02. For CADD, we
tested two different threshold-selection methods. The
first threshold was a default value of 20. The second
method used GAVIN [29] to provide gene-specific
thresholds. For other machine learning methods that
returned a pathogenicity score ranging from 0 to 1, and
no recommended threshold was given in the original
paper, we selected a default value of 0.5. This includes
the following methods: REVEL, ClinPred, SIFT, and
FATHMM-XF. For PROVEAN, we used a default score
of — 2.5 as the threshold.

Evaluation metrics

For model performance comparison, we used receiver
operating characteristic (ROC) curve, AUC value [39],
and measurements in the confusion matrix together with
the threshold-selection strategies mentioned above. For



Li et al. Genome Medicine (2020) 12:75

measuring model performance in the neutral benchmark
dataset, we examined the false-positive rate. The false-
positive rate is the number of true neutral variants but
predicted as pathogenic divided by the number of true
neutral variants. To evaluate the robustness of the model
predictions, we performed bootstrap on the benchmark
dataset for standard deviation measurement for 100 rep-
etitions, with the same sample size of the benchmark
dataset for each repetition [40].

To evaluate performance in solved patients, we used
the previously diagnosed patients with clear record of
the disease-causing variant from University Medical
Center in Groningen. A description of the solved pa-
tients can be found in [41]. For examining CAPICE’s
performance, we first eliminated all variants with an al-
lele frequency >10% and then predicted the pathogen-
icity for the remaining variants. Subsequently, we sorted
the variants of each individual by their pathogenicity
score assigned by the respective predictors and used the
ranking of the disease-causing variant found within that
individual as the measurement.

Results

CAPICE is a general prediction method that provides
pathogenicity estimations for SNVs and InDels across
different molecular consequences. We used the same set
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of features that the CADD score was built upon and
trained a gradient-boosting tree model directly on the
variant pathogenicity. In our performance comparison,
we compared CAPICE against recently published
methods and those that showed best performance in
benchmark studies. Below we report performance ana-
lysis of CAPICE using gold standard benchmark sets,
analysis of the classification consistency of CAPICE
across different allele frequency ranges and across differ-
ent types of variants, and a small practical evaluation
where we applied CAPICE to a set of patient exomes.

CAPICE outperforms the best current prediction methods
In our benchmark datasets, CAPICE performs as well or
better than other current prediction methods across all
categories (Fig. 2, Additional File 1: Fig. S2, Fig. S3 Table
S2, Table S3). Because most prediction methods are
built specifically for non-synonymous variants, we per-
formed the comparison for both the full dataset and the
non-synonymous subset. For the case where a tool was
not able to provide a prediction, we marked it as “No
prediction returned.” We also examined the robustness
of CAPICE’s performance for rare and ultra-rare variants
and variants that lead to different consequences.

For the full data, CAPICE outperformed CADD, the
mostly used “general” prediction method, and achieved

a) Variants of various molecular effects
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Fig. 2 CAPICE outperforms other predictors in discriminating pathogenic variants and neutral variants. a True/false classification for all predictors tested against
the full benchmark set that contains all types of variants. Top bar shows the breakdown of the test set. Other bars show the classification performance for each
method. Purple blocks represent correct classification of pathogenic variants. Dark-blue blocks represent neutral variants. Pink and light-blue blocks denote false
classifications. Gray blocks represent variants that were not classified by the predictor tested. Threshold selection methods are described in the “Methods”
section. b Receiver operating characteristic (ROC) curves of CAPICE with AUC values for a subset of the benchmark data that only contains non-synonymous
variants (the ROC curve for the full dataset can be found in Additional File 1: Fig. S2). Each ROC curve is for a subset of variants displaying a specific molecular
consequence. AUC values for the different methods are listed in the figure legend
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an area under the receiver operating characteristic curve
(AUC) of 0.89 as compared to 0.53 for CADD (shown in
Additional File 1: Fig. S2). For the non-synonymous sub-
set, CAPICE outperformed all the other prediction
methods and achieved an AUC of 0.97 (shown in
Fig. 2b). The majority of other methods we examined
are built specifically for non-synonymous variants, with
the exception of FATHMM-XF, which was developed
for point mutations. For the non-synonymous subset,
REVEL, which was built for rare variants, produced the
second best result and achieved an AUC of 0.90.

To assess the impact of this difference in practice, we
assumed a clinical setting with the aim to recognize 95%
of the pathogenic variants (which is a very high standard
in current practice). When using a threshold of 0.02 on
CAPICE classification score, CAPICE correctly recog-
nized 95% of pathogenic variants in the full test dataset
and wrongly classified 50% of the neutral variants as
pathogenic—which was the lowest number of misclassi-
fied variants among all the predictors we tested. In con-
trast, CADD with a score threshold of 20 achieved a
comparable recall of 94%, but wrongly classified 85% of
neutral variants as pathogenic. When using gene-specific
CADD score thresholds based on the GAVIN method
[29], the performance of CADD was better but still
much worse than CAPICE. All other tested methods
could give predictions less than 30% of the full dataset.

We also examined how well the prediction methods
can recognize neutral variants in two neutral benchmark
datasets. For both datasets, CAPICE’s performance was
comparable to or better than the current best prediction
methods (Additional File 1: Table S2, Table S3).

CAPICE outperforms other current predictors for rare and
ultra-rare variants
CAPICE performs consistently across different allele fre-
quencies and especially well for rare and ultra-rare vari-
ants. Here we repeated the evaluation strategy for the
same benchmark dataset grouped into five allele fre-
quency bins (For the full benchmark dataset, CAPICE
performed consistently above 0.85 of AUC for variants
with an allele frequency < 1%, while the performance of
CADD version 1.4 [42], the current best method for in-
dicating the pathogenicity of variants throughout the
genome compared to LINSIGHT [43], EIGEN [44], and
DeepSEA [45] dropped significantly in case of rare vari-
ants (Fig. 3a). For the non-synonymous subset, CAPICE
consistently performed better or comparably to the
next-best method, REVEL, for variants within different
allele frequency ranges, and better than all other
methods (Fig. 3b).

For common variants (defined here as having an allele
frequency > 1%), the number of available pathogenic
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variants was too small (14 pathogenic variants) to get an
accurate and robust performance measurement.

CAPICE shows consistent prediction performance for
different types of variants

CAPICE outperforms the best current computational
prediction methods for variants that cause different mo-
lecular consequences (Fig. 4 and Additional File 1: Fig.
S2). For these variants, CAPICE has an AUC of 0.92 for
canonical splicing variants and an AUC of 0.97 for non-
synonymous variants in the independent test dataset.
Compared to CADD, CAPICE performs significantly
better for multiple types of variants, particularly canon-
ical splicing, stop-gained and frameshift variants.

CAPICE performance in a clinical setting

To make our first assessment of clinical utility, we used
whole-exome sequencing data from 54 solved patients
from our diagnostics department and compared the rank-
ing of the disease-causing variant with scores from CADD
and CAPICE (Fig. 5). We did not compare to REVEL, the
second-best method from our previous evaluation, be-
cause a specific method for non-synonymous variants can
miss variants of other molecular effects. A description of
the solved patients’ can be found in [41]. For each disease-
causing variant discovered in that patient, we compared
the performance of CAPICE and CADD by comparing the
ranking of the particular variant among all variants ob-
served within that patient. For 83% of the cases, CAPICE
can prioritize the disease-causing variant within the 1% of
the total variants observed in whole exome sequencing ex-
periment, while CADD achieves the 1% performance for
only 60% of the cases. Consistent with results described in
previous sections that CAPICE achieves better AUC value
for frameshift variants, CAPICE performed better for all
cases with a disease-causing variant of frameshift effect.

Discussion
We have implemented a supervised machine-learning
approach called CAPICE to prioritize pathogenic SNVs
and InDels for genomic diagnostics. CAPICE overcomes
the limitations of existing methods, which either give
predictions for a particular type of variants or show
moderate performance because they are built for general
purposes. We showed in multiple benchmark datasets,
either derived from public databases or real patient
cases, that CAPICE outperforms the current best
method for rare and ultra-rare variants with various mo-
lecular effects. To compare CAPICE’s performance with
existing methods, we chose only recently published
methods that have consistently performed well in vari-
ous independent benchmark studies.

In this study, we used the same set of features as
CADD used for constructing their score but trained the



Li et al. Genome Medicine (2020) 12:75

Page 7 of 11

P
a) Variants of various molecular effects

CAPICE CADD
1.0
091¢ °
L]
9 0.8 1
¢
O
2 07
0.6 4
L]
0.5 1 ¢
0.4
b) Non-synonymous variants
CAPICE CADD REVEL PROVEAN

Allele Frequency Number of Variants Number of Variants

in the full dataset in non-synonymous

subset
<0.0001% 5089 195
0.001% ~ 0.0001% 1546 86
0.001% ~ 0.01% 2764 184
0.01% ~0.1% 1041 11
0.1% ~ 1% 374 39
FATHMM_XF SIFT ClinPred PON-P2

o
05 | + A |

0.6 1 1 1 E

AUC score
o
~
L

0.5 E E 1

0.4

Each dot represents the mean AUC value with standard deviation
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model directly on pathogenicity. The features enabled
CAPICE to make predictions for variants of various mo-
lecular effects. Its focus on pathogenicity helped CAPI
CE to overcome the challenges faced by CADD in pre-
dicting pathogenicity [46] in the clinic. As a result, CAPI
CE gives significantly better prediction for rare variants,
and various types of variants, in particular, frameshift,
splicing, and stop-gained variants. We also observed that
most current predictors have problems classifying rare
and ultra-rare variants, with the exception for REVEL,
an ensemble method that targets rare variants. We thus
adopted the same strategy as REVEL by including rare
variants when training CAPICE and thereby obtained a
comparable performance to that of REVEL for missense
rare variants and significantly better results than all the
other methods tested for ultra-rare variants. Tree-based
machine learning models have shown superior perform-
ance in classifying pathogenic and benign variants. For
instance, REVEL uses a random forest and ClinPred uses
a combined score from a random forest and gradient-
boosting trees. We compared the performance of both
methods as shown in Additional File 1: Fig. S6 and chose

gradient boosting for its better performance. We also
show that the choice of training dataset for pathogenic
variants, e.g., ClinVar or VKGL, does not greatly influ-
ence model performance (Additional File 1: Fig. S4).

We made full use of the large amount of data gener-
ated by other researchers. The evidence for a variant’s
clinical relevance reported in public databases such as
ClinVar can be conflicting or outdated [47]. The star
system used in ClinVar review status [48] serves as a
good quality check for estimating the trustworthiness of
the reported pathogenicity, and this quality estimation is
used by many researchers as a selection criteria for con-
structing or evaluating variant prioritization methods
[15, 49]. However, this method of data selection can
introduce biases and waste potentially important infor-
mation. In particular, neutral variants can be enriched
for common ones. These common variants can be easily
filtered out in a diagnostic pipeline using a general cut-
off or expected carrier prevalence for specific diseases
[50]. Using such a biased dataset could however lead to
a biased model or an overly optimistic performance esti-
mation. When training CAPICE, we did not exclude
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CAPICE consistently outperforms CADD for variants of various molecular effects
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Fig. 4 Performance comparison of CAPICE and CADD for variants of different molecular consequences
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lower-quality data, but rather assigned it a lower sample
weight during model training. We also showed that
training on high-quality data does not improve model
performance (Additional File 1: Fig. S5). This strategy
overcame the data selection bias mentioned above and
led to a model with equally good performance for both
rare and ultra-rare variants. When testing CAPICE, we
selected only high-quality data for the pathogenic set.
For the neutral set, we included rare and ultra-rare vari-
ants for all the types of variations found in general popu-
lation studies (after filtering for known pathogenic
variations and inheritance mode). This allowed us to
avoid the bias discussed above.

Current variant prioritization methods, including ours,
often neglect context information about a patient such
as phenotype, family history and the cell-type associated
with specific diseases. Moreover, the methods developed
are often evaluated in a stand-alone manner, and their
associations with other steps in a genome diagnostic
pipeline are not often investigated. In this study, we have
only shown preliminary evaluation results using solved
patient data. In future studies, we hope to include con-
text information to further improve CAPICE’s predictive
power. We also believe that the model’s performance
needs to be discussed in a broader context that includes
gene prioritization and mutational burden-testing.

Conclusions

We have developed CAPICE, an ensemble method for pri-
oritizing pathogenic variants in clinical exomes for Mendel-
jan disorders, including SNVs and InDels. CAPICE
outperforms all other existing methods, and it is our hope
that it greatly benefits rare disease research and patients
worldwide. By re-using the CADD features, but training a
machine-learning model on variants’ pathogenicity, CAPICE
consistently outperforms other methods in our benchmark
datasets for variants with various molecular effect and allele
frequency. Additionally, we demonstrate that predictions
made using CAPICE scores produce many fewer false posi-
tives than predictions made based on CADD scores. To en-
able its integration into automated and manual diagnostic
pipelines, CAPICE is available as a free and open source soft-
ware command-line tool from https://github.com/molgenis/
capice and as a web-app at https://molgenis.org/capice. Pre-
computed scores are available as a download at https://
zenodo.org/record/3928295.

Availability and requirements
Project name: CAPICE.

Project home page:
capice

Demo site for the web service: https://molgenis.org/
capice

Operating system(s): Platform independent.

https://github.com/molgenis/
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Programming language: Python 3.6.

License: GNU Lesser General Public License v3.0.

Any restrictions to use by non-academics: none.

Resources used in this study:

CADD: https://cadd.gs.washington.edu/score

REVEL: https://sites.google.com/site/revelgenomics/

PON-P2: http://structure.bmc.lu.se/PON-P2/

ClinPred: https://sites.google.com/site/clinpred/

PROVEAN and SIFT: http://provean.jcvi.org/genome_
submit_2.php?species=human

GAVIN: https://molgenis.org/gavin

FATHMM-XF: http://fathmm.biocompute.org.uk/
fathmm-xf/
ClinVar: https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_

GRCh37/archive_2.0/2019/clinvar_20190731.vcf.gz

GoNL: http://molgenis26.gcc.rug.nl/downloads/gonl_
public/releases/release2_noContam_noChildren_with_
AN_AC_stripped.tgz

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/513073-020-00775-w.
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