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Abstract

Endometrial cancer accounts for ~76,000 deaths amongst women worldwide. Disease mortality 

and the increasing number of new diagnoses make endometrial cancer an important consideration 

in women’s health, particularly in industrialized countries, where the incidence of this tumor type 

is highest. Most endometrial cancers are carcinomas, with the remainder being sarcomas. 

Endometrial carcinomas can be classified into several histological subtypes including 

endometrioid, serous and clear cell carcinomas. Histological subtyping is currently routinely used 

to guide prognosis and treatment decisions for endometrial cancer patients, while ongoing studies 

are evaluating the potential clinical utility of molecular subtyping. In this review we summarize 

the over-arching molecular features of endometrial cancers and highlight recent studies assessing 

the potential clinical utility of specific molecular features for early detection, disease risk 

stratification, and directing the use of targeted therapies.

Introduction

Uterine corpus cancer is the 6th leading cause of cancer death amongst women in the US and 

the 8th leading cause of cancer-related death amongst European women1,2. Most uterine 

cancers are endometrial carcinomas (ECs), originating from the uterine epithelium (Fig. 

1A). The vast majority of ECs are sporadic, with an estimated 5% occurring in the context of 

inherited cancer susceptibility syndromes3, most commonly Lynch Syndrome (Box 1)4–6. 

ECs are classified into various histological subtypes, including endometrioid EC (EEC), 

serous EC (SEC), clear cell EC (CCEC), mixed EC, and uterine carcinosarcoma [G] (UCS), 

which differ in their frequency, clinical presentation, prognosis and associated 

epidemiological risk factors (BOX 1)7–9. Importantly, the incidence of EC is rising in the US 

and more than 20 other countries10; recent data correcting for hysterectomy [G] rates in the 

US and Denmark indicates that the incidence of non-EECs, which are generally more 

clinically aggressive, is increasing while the incidence of EECs has remained stable or 

decreased over time11,12.
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EECs constitute more than 80% of newly diagnosed EC cases, are generally estrogen-

dependent tumors, and have a mean age at diagnosis of 62 years8. In contrast, SECs and 

CCECs are relatively uncommon, accounting for ~10% and 3% of newly diagnosed ECs, are 

generally estrogen-independent, and are diagnosed later in life (mean of 66.5 and 65.6 years, 

respectively)8. Uterine carcinosarcomas (UCSs), which are biphasic tumors composed of 

both carcinomatous and sarcomatous cells, represent <2% of ECs13. The prognosis for most 

newly diagnosed EC patients is good, with a relative 5-year survival rate of 81.1% (2008–

2014)14. The generally high survival rate for EC is largely driven by the frequent early 

detection of EECs, coupled with the effectiveness of surgery for treating many early-stage, 

low-grade EECs. However, considerably poorer outcomes are associated with high-grade, 

recurrent, or metastatic EEC, as well as certain non-endometrioid histologies (SEC, CCEC 

and UCS).

Research conducted over the last two decades, fueled by the need to identify biomarkers to 

predict disease recurrence and druggable targets, has revealed critical insights into the 

molecular landscape of ECs (Table 1). We now know that low grade EECs and SECs have 

distinguishing molecular features, while the mutational profiles of CCECs overlap with that 

of EECs and SECs15–25. Although UCSs most closely resemble SECs molecularly, these 

highly aggressive tumors exhibit unique somatic changes including whole genome doubling 

and variable epithelial-to-mesenchymal transition [G] (EMT) gene signature scores16. 

Herein, we review the major molecular characteristics of ECs and UCSs, as well as recent 

efforts to translate this knowledge into clinical actionability.

The molecular etiology of endometrial cancers

Endometrioid endometrial cancer

The development of EEC is strongly associated with epidemiological risk factors leading to 

an excess of estrogen relative to progesterone (Box 1)8,9,26–28. Unopposed estrogen 

stimulation of the uterine epithelium can result in the outgrowth of endometrial hyperplasia, 

which may further evolve into complex atypical hyperplasia [G] (CAH), the precursor lesion 

for EEC (FIG. 1B). Molecular studies of EEC, its precursor lesions, and morphologically 

normal endometrial glands have inferred the timing of somatic mutations in tumor initiation 

and progression, which proceeds via branched evolution29–3233–35. Such studies have shown 

that PTEN mutation, the most frequent somatic mutation among EECs (Table 1), is an early 

but insufficient event in the initiation of tumorigenesis. This observation is corroborated and 

complemented by genetically engineered mouse models of EC, which have demonstrated 

that biallelic Pten loss leads to development of CAH, whereas biallelic Pten loss together 

with mutational activation of Pik3ca results in progression of CAH to EC36. These findings 

add context to the fact that PTEN mutations commonly co-occur with PIK3CA and PIK3R1 
mutations in human EECs15,37–40. Genetically-engineered mouse models have also inferred 

co-operativity between Pten loss and Ctnnb1 (which encodes β-CATENIN) mutation (exon 

3 deletion, resulting in β-catenin stabilization) or Mlh1 inactivation. Specifically, Ctnnb1 
exon 3 deletion synergizes with biallelic Pten loss and Pik3ca activation to promote EC and 

myometrial invasion in the setting of ovarian insufficiency [G]41, and endometrial 

tumorigenesis is accelerated in Pten+/−/Mlh1−/− mice as compared to Pten+/− mice42. In the 
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context of human EC, gain-of-function missense mutations in CTNNB1 exon 3, resulting in 

β-catenin stabilization, and epigenetic silencing of MLH1, leading to mismatch repair [G] 
deficiency (MMR-D), are frequent aberrations in EEC that often independently co-occur 

with PTEN inactivating mutations (Table 1)15,43. The pathogenicity of MMR-D in EC is 

further underscored by the inherited predisposition to EC in MMR gene mutation carriers in 

Lynch Syndrome families (Box 1). Another common aberration among EECs is mutational 

inactivation of the ARID1A tumor suppressor gene [G] (Table 1). Although loss of Arid1a is 

insufficient to induce endometrial hyperplasia or carcinoma in mouse models44,45, 

immunohistochemical analyses of human CAHs have shown that endometrial glands with 

loss of both ARID1A and PTEN expression have higher proliferative indices than adjacent 

glands with loss of only PTEN46. This finding has led to the proposal that ARID1A acts as a 

“gatekeeper” to suppress the transition of PTEN-deficient CAH to EEC46.

Serous endometrial cancers

SECs are generally estrogen-independent and arise in the setting of the atrophic 

endometrium [G] (FIG. 1C). They are high-grade tumors, preceded by serous endometrial 

intraepithelial carcinoma [G] (SEIC) (FIG. 1C), that are often diagnosed at a late stage with 

a high risk of recurrence. The occurrence of TP53 mutations and/or p53 stabilization in 

SEIC, is evidence for this aberration being an early event in SEC pathogenesis47,48. 

Consistent with this idea, aged transgenic mice with conditional deletion of Trp53 in the 

genitourinary tract develop SEC, as well as other ECs49. However, this phenotype is in 

contrast to the lack of endometrial tumors in mice with endometrial-specific deletion of 

Trp5350. One possible explanation for this difference is the variable ages at which mice were 

assessed for tumor development in each model (1 year versus 5 months, respectively). The 

frequent occurrence of FBXW7, PIK3CA, and PPP2R1A somatic mutations (Table 1) as 

well as CCNE1 amplification in SEC15,17,24,37,51–53, and in adjacent SEIC, indicates that 

these are also early events in disease pathogenesis24,51. The functional impairment of SEC-

associated recurrent mutations in FBXW7, PIK3CA, and PPP2R1A has been established 

experimentally5453,55, and the pathogenicity of cyclin E dysregulation in cancer is well-

recognized. However, the precise role of these events in the initiation and progression of 

SEC, both by themselves and in conjunction with TP53 mutations, would be aided by the 

development of appropriate mouse models.

Uterine carcinosarcomas

Most (but not all) UCSs are believed to be monoclonal, originating from high grade EEC, 

SEC or other aggressive histotypes that have undergone a metaplastic transition to form the 

sarcomatous component of these biphasic tumors (FIG. 1B,C). Supporting their derivation 

from aggressive ECs, the most frequently somatically mutated genes in UCSs are also 

commonly mutated in other ECs (Table 1)16,18,20,23,56; in fact, UCSs most closely resemble 

SECs molecularly15,16,18,20,56–58. However, unlike most other subtypes of EC (except grade 

3 EEC) where PTEN and TP53 mutations tend to be mutually exclusive15,19, a majority of 

UCSs with PTEN mutations also have TP53 mutations16,20,56. The co-occurrence of PTEN 
and TP53 mutations is not likely due to the biphasic nature of UCSs since the carcinoma [G] 
and sarcoma [G] components of most UCSs share mutations23,56,59,60.
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Also distinguishing UCSs from other tumor types, whole-genome-doubling occurs in 90% 

of UCSs, and UCSs exhibit highly variable EMT transcriptomic gene signature scores16, 

which may reflect the transient nature of EMT and/or the presence of intermediate EMT 

states61. Although EMT scores have not been shown to correlate with outcome in UCSs16, 

EMT has been associated with metastasis and therapy resistance in other tumor types61,62, 

thus maintaining the possibility that EMT contributes to the poor prognosis for women with 

UCSs.

Clear cell endometrial cancers

The exact molecular etiology of CCECs remains unclear but multiple studies have shown 

that clinically diagnosed CCECs share mutational features with both EECs and 

SECs19,21,63,64 (Table 1). However, a clinical diagnosis of CCEC represents a conundrum 

because accurate histopathological classification of this tumor is challenging, even for 

specialty gynecologic pathologists, and some shared molecular features likely reflect a 

misclassification65. CCECs have been the subject of targeted gene sequencing and exome 

sequencing studies19,21,63,64,66, but thus far have not been scrutinized using integrated multi-

platform analyses akin to methods used by The Cancer Genome Atlas [G] (TCGA).

Molecular classification

The main molecular characteristics of EECs, SECs, and UCSs have been revealed through 

targeted molecular studies, whole exome sequencing, and TCGA’s integrated genomic 

analyses (Table 1). While UCSs were characterized by TCGA independently16, TCGA 

assimilated EECs and SECs into four distinct molecular subgroups with prognostic 

significance15: The first subgroup is formed by POLE-mutated (ultramutated) tumors, which 

were characterized by POLE exonuclease domain (ED) mutations, predominantly recurrent 

POLEP286R or POLEV411L, and an excess of G:C>T:A transversions. Women in this 

subgroup exhibited the best progression-free survival [G] (PFS). The second subgroup is 

formed by hypermutated tumors, which were characterized by microsatellite instability [G] 
(MSI) and hypermethylation of the MLH1 promoter. Forming the third subgroup, copy 

number low/microsatellite stable (MSS) tumors were characterized by low copy number 

aberrations, MSS, and exhibited frequent CTNNB1 (β-catenin) mutation. Tumours in the 

fourth subgroup were copy number high (serous-like) tumors and were characterized by 

frequent TP53 mutation and high-level somatic copy number alterations. Women in this 

subgroup exhibited the worst PFS15.

EECs were distributed among all four subgroups, whereas SECs were almost exclusively in 

the serous-like subgroup (FIG. 1D). Paradoxically, the POLE-mutated subgroup exhibited 

the best PFS but was enriched for high-grade EECs15. Several subsequent studies confirmed 

significant associations between POLE-ED mutations and favorable clinical outcomes for 

high-grade EEC15,67–71. POLE-mutated ECs have high neoantigen [G] loads and markers of 

enhanced immune response72,73. Whether the favorable prognosis associated with POLE-

mutated EC is attributed to these characteristics, aggressive therapeutic regimens 

administered to high-grade patients, or increased sensitivity to chemotherapy remains 

unclear72–77. However, recent studies indicate that the favorable prognosis for POLE-mutant 

Urick and Bell Page 4

Nat Rev Cancer. Author manuscript; available in PMC 2020 August 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ECs is not likely due to differential treatment response or tumor immunogenic 

phenotype78,79.

Early detection of endometrial cancer

Early detection of EC can increase the likelihood of women achieving disease-free survival 

[G]. The most common symptom of EC is post-menopausal vaginal bleeding (PMB). 

However, although 90% of women with EC (irrespective of tumor stage) exhibit PMB, this 

symptom is not a specific indicator of the disease: only 9% of women with PMB are 

diagnosed with EC80. Similarly, methods used to screen for EC, most commonly cytology 

and transvaginal ultrasound, lack specificity22. Thus, accurate screening tests that detect EC 

in women with early stages of the disease are needed.

In 2013 it was reported that EC-associated mutations could be detected in DNA extracted 

from specimens collected during routine Papanicolaou (Pap) tests [G]22. This led to the 

development of a prototype test (the “PapGene” test) that sequenced frequently mutated 

regions of 12 genes, with the potential to be incorporated into routine medical exams at a 

cost equivalent to HPV analysis22. In 2018, this test was advanced closer to commercial 

availability under the name of the “PapSEEK” test, which detects mutations in targeted 

regions of 18 genes as well as aneuploidy; a test is positive for cancer if a mutation or 

abnormal chromosome arm number is detected (Fig. 2)81. Of 382 women with EC, 81% 

tested positive with PapSEEK (78% with stage I/II tumors, 92% with stage III/IV tumors, 

and 85% with high-grade ECs confined to the endometrium). Furthermore, 93% of 123 EC 

patients sampled with Tao brushes [G] tested positive with PapSEEK (90% of stage I/II 

tumors, 98% of stage III/IV tumors, and 89% of high-grade tumors confined to the 

endometrium). The most commonly mutated genes detected by PapSeek in EC patient Pap 

and Tao brush samples [G] were PTEN, TP53, PIK3CA, and PIK3R1; the most commonly 

altered chromosomal arms in Pap samples were 4p, 7q, 8q, and 9q. Importantly, in 125 

women without cancer, 0% of Tao brush and 1.4% of Pap samples, respectively, tested 

positive using PapSEEK, indicating increased specificity over alternate screening methods81. 

These results confirm earlier reports of sensitivity and specificity ranges for EC detection in 

Tao brush samples of 95–100% and 66–100%, respectively82–85. The PapSEEK test now 

needs to be evaluated in prospective studies.

The sensitivity and specificity of PapSEEK testing of Tao brush samples are currently the 

best reported values, but other promising methods for early detection of EC are also in 

development. The PapSEEK test has shown increased specificity over the use of next 

generation sequencing [G] (NGS) on uterine lavage [G] samples86,87 (FIG.2), but it is 

possible that a “false positive” may reflect the detection of somatic driver aberrations in non-

cancerous endometrium, a phenomenon reported by several groups86,88–90, or actually may 

be accurate early identification of EC. For example, PTEN mutations were detected in the 

uterine lavage of an asymptomatic woman with no clinical evidence of cancer 10 months 

prior to the identification of a single microscopic focus of EC91. An endometrial tumor 

<1mm in diameter contained within a polyp was also identified in the lavage fluid of another 

woman86, highlighting the sensitivity of genomic analysis of uterine lavage fluid for early 

detection of EC. Another potentially promising uterine sampling method is vaginal 
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tampon92,93. Increased methylation of 11 genes has been detected in DNA extracted from 

vaginal tampons and may be particularly useful to identify stage I EECs, although it is 

unclear what methylation levels would be used to distinguish ECs from non-cancerous 

endometrium and whether increased methylation would be detectable in women pre-

biopsy92,93. Furthermore, it is unclear if other aberrations are detectable from vaginal 

tampon samples. Despite the needed fine-tuning of this method, the potential use of tampons 

as screening tools for high risk women is particularly enticing because it could enable 

samples to be mailed in for testing similar to currently available Cologuard® [G] tests for 

colorectal cancer screening. Collectively, recent advancements indicate that the addition of 

genomic analyses to minimally invasive uterine sampling is a move in the right direction 

toward early detection of women with EC.

Molecular tests for risk stratification

While early detection of EC is ideal, the current reality is that the most clinically aggressive 

subtypes of EC are commonly diagnosed at advanced stages and identification of women at 

risk of developing aggressive disease is arguably a more pressing challenge than early 

detection. These facts have driven the quest to identify actionable genomic aberrations in 

ECs, which may ultimately be revolutionary for risk stratification and treatment of women 

with EC. The prognostic significance of TCGA-based molecular subgroups represented a 

paradigm-shifting development towards the use of molecular information to refine EC risk 

stratification. Independent groups have confirmed the prognostic significance of the TCGA-

based subclasses66,94,95, and have proposed classification systems that are more feasible for 

routine clinical use than TCGA’s comprehensive molecular analysis (FIG. 3). Although an 

extensive expanse of literature describes molecular biomarkers for EC risk stratification, 

here we focus on the two most current pragmatic molecular classification schemes: the 

Translational Research in Post-Operative Radiation Therapy in EC (TransPORTEC) 

molecular classification system and the Proactive Molecular Risk Classifier for EC 

(ProMisE) (FIG. 3).

The original TransPORTEC model stratified high-risk EC patients into four subgroups, 

which are defined as p53 mutant, MSI, POLE-mutant, or No Specific Molecular Profile 

(NSMP)66. Patients were not classified if molecular testing was only partially performed or 

if they harbored more than one abnormality. When TransPORTEC was used to classify 116 

EC patients deemed high-risk based on clinicopathological features, only patients in the p53 

mutant (n=39) and NSMP (n=44) groups were shown to be truly high-risk; they exhibited 

significantly higher rates of distant metastases and lower 5-year RFS compared to those in 

the POLE-mutant (n=14) and MSI (n=19) groups (who had favorable prognoses)66 (FIG. 

3C). The TransPORTEC molecular classification system was subsequently revised to 

integrate clinicopathological factors96, and is now being prospectively tested as a means to 

stratify women with high-intermediate risk EEC for radiotherapy in the phase III 

PORTEC-4a trial97 (FIG. 3A). While the results of PORTEC-4a are undoubtedly highly 

anticipated, it is also of great interest to determine whether TransPORTEC could be useful 

for prospective stratification of EC patients for treatments other than radiotherapy. In the 

meantime, the TransPORTEC model continues to evolve; the most recent version was 

refined to incorporate markers of DNA damage repair98, but is not yet being tested clinically.
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ProMisE classifies EC patients based on testing of specimens for aberrations in the order of 

MMR-D, POLE mutation, and p53 mutation99 (FIG. 3B). Patients are not classified if they 

advance to a step for which they are unable to be tested, and those that harbor more than one 

aberration are classified based on the first positive test. ProMisE was shown to 

retrospectively enhance prediction of outcome in first a discovery cohort of 143 EC 

patients94, then on a confirmation cohort of 319 EC patients when combined with the 

European Society of Medical Oncology (ESMO) risk-stratification system99. In a validation 

cohort of 452 ECs, ProMisE was a significant prognostic marker of progression and disease-

specific survival, even after adjustment for known risk factors100 (FIG. 3C). Enhanced 

retrospective prognostic ability of ProMisE was observed when ESMO risk stratification or 

clinicopathological parameters were added. Most recently, ProMisE was retrospectively 

significantly correlated with overall and disease-specific survival in a cohort of 257 young 

(<50 yo) EC patients101. Compared to the other non-age-stratified cohorts tested, this 

younger cohort was distributed more in p53 WT and POLE mutated subgroups, and less in 

p53 abnormal and MMR-D (FIG. 3C)101.

The retrospective data for TransPORTEC and ProMisE indicates that either has potential to 

be implemented as standard practice for risk stratification of EC patients, but neither 

currently has clinically proven prospective utility. Although both classification schemes 

utilize similar core molecular features (FIG. 3), differences can be considered. For example, 

while TransPORTEC completes all molecular testing prior to patient stratification, ProMisE 

follows sequential molecular testing and stratification. TransPORTEC is already being tested 

prospectively in the PORTEC-4a trial (described above), but ProMisE was developed, 

confirmed, and validated following the US Institute of Medicine guidelines and is now ready 

to be tested in prospective trials100. ProMisE was validated to be performed on diagnostic 

biopsies; TransPORTEC was also shown to produce concordant results between diagnostic 

and hysterectomy specimens102, but is being prospectively tested on hysterectomy samples. 

The TransPORTEC model being tested in PORTEC-4a incorporates molecular testing 

beyond that used in ProMisE (TP53 and CTNNB1 sequencing, LSVI quantification, and 

MLH1, MSH2, and L1-CAM immunohistochemistry) (FIG. 3a) although key 

clinicopathological parameters available at diagnosis are being evaluated for use with 

ProMisE103. The inclusion of CTNNB1 sequencing reflects findings that CTNNB1 exon 3 

mutations have emerged as a prognostic marker for increased risk of disease recurrence 

among patients with low-grade and early-stage EEC104,105. However, substantive intratumor 

heterogeneity for CTNNB1 mutations observed in the molecular evolution of low-grade 

EECs from precursor lesions has been noted, prompting caution on the choice of clinical 

tissue sampling approaches for this marker34.

Implementation of either TransPORTEC or ProMisE would involve surmounting several 

challenges that include, but are not limited to, the cost and technical training required to 

perform and interpret genomic sequencing (with POLE being particularly challenging103), 

the development of methods for translation of genomic data to patients (most likely with the 

aid of genetic counselors), as well as risk of patient attrition while awaiting molecular 

profiling; pilot results of the PORTEC-4a trial indicated an average time of 10.2 days 

between randomization and molecular profile determination106. Furthermore, neither 

TransPORTEC or ProMisE currently incorporates histology, stage, or grade. Along these 
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lines, it is important to note that these pragmatic models were originally designed to 

recapitulate TCGA’s prognostic subgroups of EECs and SECs; therefore, it remains to be 

determined how prognostic these classifications are for other EC histological subtypes, 

including mixed and undifferentiated ECs. For now, the current recommendation for 

reporting of genomic classifiers are to include histology, stage, and grade107.

Matching patients to therapies

The practice of guiding cancer therapy based on molecular aberrations is gaining momentum 

across the field of oncology and has shown potential to improve patient outcomes, despite 

logistical hurdles. In addition to those mentioned in the preceding paragraph, common 

challenges of matching patients to targeted therapies are lack of availability of therapies or 

clinical trials, impaired geographic accessibility of trials, and lack of insurance 

coverage108–113. Cost increase, another potential challenge associated with matched targeted 

therapies, are mainly being attributed to increased treatment duration113. Further 

complicating the interpretation and translation of genomic results is the fact that therapies 

targeting identical aberrations in different tumor types have shown differing efficacy; 

likewise, different aberrations within the same gene have been shown to produce distinctive 

functional consequences. The contextual importance of mutations in preclinical design and 

interpretation is highlighted by the variability in synthetic lethal effects observed between 

EC cell lines with gain-of-function and loss-of-function TP53 mutations114–117. Despite the 

challenges associated with molecularly guiding therapies, three quarters of 1,281 US 

physician survey respondents in 2017 reported using NGS tests to guide treatment 

decisions118, and treatment of solid tumors based on matching actionable mutations to 

targeted therapies has resulted in improved outcomes of patients with advanced 

cancers109,110,119–123.

Counter to this optimistic data, clinical trials targeting aberrations in the PI3K pathway or 

ERBB2 (also known as HER2), which are some of the most common clinically actionable 

aberrations in advanced ECs112,123, have yielded modest results124. Lack of response could 

be due in part to initial or acquired drug resistance; in this respect it is noteworthy that a 

majority (70%; 14/20) of ERBB2 amplified ECs also harbor PI3K pathway aberrations15, 

raising the potential for combination therapies. Along these lines, whereas preclinical studies 

have produced variable reports of sensitivity to PARP inhibitors in PTEN-deficient 

EC125–127, treatment of a mouse model of EC with combined PARP and PI3K inhibitors has 

resulted in synergistic effects128. Relatedly, in an inducible PTEN knockout mouse model, a 

CDK4/6 inhibitor exhibited antitumor activity129.

Reliable biomarkers of response to therapies targeting the PI3K pathway or ERBB2 also 

need to be identified for EC patients. Biomarker identification could potentially be improved 

if trials are designed to accrue patients and report results by molecular and/or histological 

subtypes. For example, a recent study that accrued only SEC patients who overexpressed 

ERBB2, reported decreased risk of progression and increased PFS for patients treated with 

carboplatin-paclitaxel-trastuzumab [G] compared to those treated with carboplatin-

paclitaxel130. Independent of this study, effectiveness of trastuzumab in ERBB2 amplified 

SEC patients has been reported: one heavily pretreated woman achieved a durable complete 
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response to trastuzumab112, while another woman with recurrent disease achieved a 

complete response following the addition of trastuzumab to her carboplatin-paclitaxel 

regimen131. These results are evidence that trials designed to incorporate histological and/or 

molecular stratification could help identify EC patient populations most likely to respond to 

targeted therapies.

In this regard, it is noteworthy that in a recent prospective analysis, 47% (16/34) of EC 

patients who matched to a therapy after NGS panel tumor profiling experienced clinical 

benefit132, including 40% (2/5) of MSI-H patients treated with immune checkpoint 

inhibitors and 42% (8/19) of patients matched based on PIK3CA and PTEN mutations112. 

Of 189 EC patients within this study (75% of which had grade 3 EEC, SEC, CCEC or UCS), 

67% had at least one alteration for which a therapy was either FDA-approved or under 

clinical investigation. The most common clinically actionable aberrations among the entire 

cohort were PIK3CA or PTEN mutation, MSI, and ERBB2 amplification112. Importantly, of 

4 patients with matched primary and metastatic samples within this study, the mutational 

profiles differed between primary and metastatic sites; in 2 cases, metastases acquired 

potentially actionable mutations in MTOR and PIK3R1114. Indeed, discordance in 

mutations, and changes in the dominant mutational signature, between matched primary and 

metastatic ECs have been reported133,134,135. EC metastases gain aberrations in genes in 

multiple functional groupings including the PI3K pathway, WNT signaling, RAS-RAF 

pathways, transcriptional regulation, DNA damage response, and FBXW7-related genes 

(FIG. 4). Additionally, recurrent or metastatic EECs exhibit ~7% higher frequencies of MSI 

and/or MMR-D compared to matched primary tumors136,137. Discordance between 

aberrations found between primary tumors and metastases may reflect lack of representation 

of tumor heterogeneity in primary tumor biopsies, or the acquisition of novel aberrations, 

potentially due to a change in microenvironment encountered by metastatic lesions. 

Regardless of the biological explanation for this descrepancy, comprehensive molecular 

profiling of metastatic lesions may be key for treatment stratification of EC patients. 

Encouragingly, a recent mutational analysis of metastases from 20 untreated cancer patients 

(including 4 ECs lacking POLE mutation) indicated that all metastases within a patient share 

functional driver mutations138. If this holds true for other aberrations and for patients in 

relapse, it would decrease the need to evaluate multiple metastases from a single patient.

Targeted treatment of additional EC cohorts is needed to help assess the utility of matched 

therapies in this patient population. Treatment arms of the National Cancer Institute’s 

Molecular Analysis for Therapy of Choice (MATCH) trial comprise one such cohort139. 

Another is patients enrolled in the American Society of Clinical Oncology’s (ASCO’s) 

Targeted Agent and Profiling Utilization Registry (TAPUR) trial140. Importantly, and 

relevant to the next section of this review, EC patients that are MMR-D that enroll in the 

MATCH trial and those in the TAPUR trial that harbor POLE/POLD1 mutations, have a 

high mutational load, or are MSI-H have the potential to match to immunotherapies.

Immunotherapy for endometrial cancer

As of November 2018, clinicaltrials.gov141, which encompasses the US and 20 other 

countries worldwide, listed over 50 clinical trials testing various forms of immunotherapy 
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for which advanced EC patients were potentially eligible (Supplementary Table 1). Immune 

therapies have shown particular efficacy in solid tumors that are MSI-H, MMR-D and/or 

those with high concentrations of Tumor Infiltrating Lymphocytes [G] (TILs). In fact, the 

programmed cell death 1 (PD1) antibody pembrolizumab [G], received US food and drug 

administration (FDA) approval in 2017 for treatment of MSI-H or MMR-D cancers, 

regardless of tumor type. This landmark approval could be particularly beneficial for EC 

patients, given that 16–17% are MMR-D as detected by NGS112,142, ~34% of EECs have 

MSI15,143–145, 48–100% express PD1 ligand 1 (PDL1) or PDL2146,147, and equivalently 

high numbers of TILs are found in subsets of all molecular subgroups of EC79.

Pembrolizumab has been remarkably effective in small numbers of EC patients (Table 2), 

but definitive biomarkers of response remain elusive, a need several clinical trials are 

currently attempting to address (Supplementary Table 1). Treatment with pembrolizumab 

achieved a noteworthy 53% (8/15) overall response rate (ORR) in MMR-D EC patients142, 

and 43% (3/7) ORR when combined with the indoleamine 2,3-dioxygenase (IDO1) inhibitor 

epacadostat in ECs with unreported biomarker status148. Two separate cohorts of advanced 

EC patients each responded with ORRs of 13% to single-agent pembrolizumab and the PD-

L1 antibody atezolizumab [G]. The combined results of these cohorts may indicate that 

hypermutation or high TILs combined with PD-L1 positivity may predict response to PD-1 

blockade: of patients responding to atezolizumab, one exhibited 70% TIL, while the other 

was hypermutated and a patient that exhibited a prolonged (>14 month) partial response to 

pembrolizumab harbored POLE mutations; all three patients were PD-L1 positive (Table 

2)149,150.

Information revealed in recent studies considering ECs along with other cancer types, so-

called “pan-cancer studies”, has supported a potential importance of immune response in 

ECs and may also aid in identification of novel treatment strategies151. For example, 

unsupervised clustering of TCGA’s Pan-Gyn cohort [G] based on 16 molecular features 

revealed that 16.5% of SEC-like EECs, SECs, and UCSs group within a cluster 

characterized by high leucocyte infiltration, which supports immunotherapy as a potential 

treatment option. It was further speculated that tumors within two other clusters 

encompassing 32.5% and 36.9% of SEC-like EECs, SECs, and UCSs might respond to 

HER2 targeted therapy (discussed above as a potential promising treatment strategy for 

ERBB2 amplified SECs) or therapies targeting the DNA damage response151. A second pan-

cancer clustering based on 5 immune suppression gene signatures revealed that the vast 

majority of CN-high ECs, SEC-like ECs, and UCSs populated “wound healing” and “IFNγ 
dominant” clusters, raising the possibility that molecular targets involved in the 

physiological response to wounds or IFNγ signaling could be therapeutically relevant for 

clinically aggressive ECs152. Finally, a large-scale functional genomics screen of pan-cancer 

cell lines revealed that WRN (Werner syndrome RecQ like helicase) is a synthetic lethal 

target in MSI (but not POLE mutated153) ECs153–156. These discoveries open up promising 

new avenues for future preclinical exploration of rational drug development for ECs.
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Concluding remarks

The current molecular portraits of the most common ECs, and of rare but clinically 

aggressive forms of the disease, have revealed shared and distinguishing features, as well as 

prognostically distinct subgroups. This knowledge has inspired ongoing efforts to develop 

diagnostic tests to facilitate the early detection of EC and clinically feasible molecular 

classifiers that may be used for disease risk stratification, to prevent both under- and over-

treatment of women with EC. Future challenges in the field include: overcoming difficulties 

associated with incorporation of molecular subtyping in the clinic; more extensive genomic 

characterization of CCECs and of EC metastases; functional characterization of mutations in 

novel driver genes; proteomic studies to provide a global view of the net impact of genomic, 

transcriptomic and translational perturbations in ECs; and high throughput screens for 

druggable targets and synthetic lethal interactions in this disease. It is hoped that these 

efforts, together with strategies to reduce obesity, will ultimately reduce the impact of EC on 

women’s health.
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Glossary

atezolizumab
Humanized, monoclonal antibody of programmed cell-death ligand 1.

atrophic endometrium
Thin layer of nonpoliferative epithelial cells lining the uterus; characteristic of 

postmenopausal women

carboplatin
Chemotherapy drug that inhibits cell growth and/or causes apoptosis by inducing DNA-

DNA and DNA-protein crosslinks.

Carcinoma
Cancer caused by uncontrolled proliferation of epithelial cells.

Carcinosarcoma
Tumor comprised of both carcinoma and sarcoma.

clear cell endometrial cancer
(CCEC) rare histopathological subtype of endometrial cancer that typically arises from 

atrophic endometrium and includes large clear eosinophilic cells (basic cells that stain with 

the acidic dye eosin).
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Cologuard® test
Colorectal cancer screening test which enables patients to collect stool samples in-home; 

samples are mailed to a lab where they are analyzed for presence of blood and DNA 

abnormalities.

complex atypical hyperplasia of the endometrium
(CAH) precancerous changes in the epithelial cells lining the uterus characterized by 

abnormal growth and acquisition of somatic genomic aberrations.

driver genes
Pathogenic aberrations of these genes contribute to the initiation and/or progression of 

cancer.

disease-free survival
Length of time a patient lives without signs of disease.

endometrioid endometrial cancer
(EEC) most common histopathologic subtype of endometrial cancer.

epithelial-to-mesenchymal transition
(EMT) process by which epithelial cells acquire characteristics of mesenchymal cells, 

including but not limited to, decreased cell-to-cell adhesion, decreased polarity and 

increased motility.

Hysterectomy
Surgical removal of the uterus.

lymphovascular space invasion
(LSVI) spreading of cancer to the lymphatic system or blood vessels.

microsatellite instability
(MSI) alteration of the number of short, repeated sequences of DNA because of a defect in 

DNA mismatch repair.

mismatch repair
(MMR) type of DNA repair that corrects base-base mismatches and insertions/deletions.

Neoantigen
Antigens not previously recognized by the immune system.

next generation sequencing
(NGS) high-throughput technologies (also known as massively parallel or deep sequencing) 

that enable faster determination of DNA or RNA base pair codes than previously-used 

technologies (e.g. Sanger Sequencing).

ovarian insufficiency
Loss of normal ovarian function.

Paclitaxel
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Chemotherapy drug that binds tubulin and inhibits cell division; also induces apoptosis 

through binding and inhibition of Bcl-2 (B-cell leukemia 2).

Papanicolaou (Pap) test
Routine screening tool in which cervical cells are collected using a small brush and analyzed 

microscopically for signs of disease (e.g. irregular cell morphology).

pap brush
Flexible brush used to sample the inside of the cervix.

Pembrolizumab
Humanized, monoclonal antibody of programmed cell-death ligand 1.

progression-free survival
(PFS) length of time a patient lives without objective worsening of disease.

Sarcoma
Cancer caused by uncontrolled proliferation of connective tissue.

serous endometrial cancer
(SEC) rare histopathologic subtype of endometrial cancer that typically arises in atrophic 

endometrium, usually with well-formed papillae.

serous endometrial intraepithelial carcinoma
(SEIC) noninvasive malignant precursor to SEC (serous endometrial cancer).

somatic aberration
Genomic change that occurs spontaneously; is not present in germline.

Synthetic lethality
Occurs when multiple genomic aberrations combine to cause cell death, while the 

independent aberrations do not.

Tao brush
Flexible brush used to sample the inside of the uterus.

The Cancer Genome Atlas
(TCGA) NIH (National Institutes of Health)-funded initative that molecularly characterized 

over 20,000 primary cancer and matched normal samples covering 33 cancer types.

The Cancer Genome Atlas’ Pan-Gyn cohort
1,087 invasive breast carcinomas, 308 endocervical adenocarcinomas, 579 high-grade serous 

ovarian cystadenocarcinomas, 548 uterine corpus endometrial carcinomas, and 57 uterine 

carcinosarcomas molecularly characterized by TCGA.

Trastuzumab
Recombinant human monoclonal HER2 (human epidermal growth factor receptor 2) 

antibody.
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tumor infiltrating lymphocytes
White blood cells (immune cells) found within tumor tissue.

tumor suppressor gene
Gene which normally functions to prevent uncontrolled growth of cells.

uterine lavage
Process by which the uterus is flushed with a sterile solution.
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Box 1.

Epidemiological and genetic risk factors for endometrial cancer

Epidemiological risk factors:

Increased risk for developing endometrioid endometrial cancer (EC), an estrogen 

dependent tumor type, is associated with obesity, diabetes, unopposed estrogen use, 

nulliparity, early menarche, and late menopause8. Increasing age is a risk factor for 

serous and clear cell ECs8. Tamoxifen use increases risk of developing EC; histological 

subtypes enriched in users of tamoxifen are serous EC, high-grade endometrioid ECs and 

carcinosarcomas9.

Genetic risk factors:

Increased genetic risk for developing EC is associated with Lynch Syndrome, Polymerase 

Proofreading Associated Polyposis, and Cowden Syndrome.

• Lynch Syndrome is a highly penetrant, autosomal dominant cancer 

predisposition syndrome caused by monoallelic germline mutation in a 

mismatch repair gene, specifically MLH1, MSH2, MSH6 or PMS2, or by 

germline deletion within EPCAM that leads to epigenetic silencing of the 

adjacent MSH2 gene4. Mutation carriers are at increased risk of developing 

colorectal cancer and ECs, the two major component tumors of Lynch 

Syndrome, as well as cancers of the ovary, stomach, kidney, urinary tract, 

biliary tract, small intestine and skin4. Approximately 2–6% of ECs are 

attributed to Lynch Syndrome157.

• Polymerase Proofreading Associated Polyposis is an autosomal dominant 

cancer susceptibility syndrome attributed to germline mutations in the 

exonuclease domain of POLD1 or POLE. POLD1 mutation carriers are at 

increased risk of developing attenuated adenomatous polyposis of the 

colorectum and cancers of the colorectum, endometrium, breast, and brain5. 

POLE mutation carriers are at increased risk of developing colorectal cancer. 

Predisposition to EC has not been established in POLE mutation carriers.

• Cowden syndrome is a condition in which PTEN mutation carriers have an 

increased predisposition for developing multiple hamartomas, and cancers of 

the breast, thyroid, endometrium, colorectum, kidney, and skin6.
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Figure 1. Overview of endometrial carcinoma origin, development, and molecular classification.
(a) The image in this panel was deleted to comply with Nature Reviews Cancer policy on 

self-archiving. Schematic depiction of the initiation and progression of endometrioid (B) and 

serous (C) endometrial carcinomas (ECs) from the normal and atrophic endometrial 

glandular epithelium, via precursor lesions (CAH and SEIC). Columnar epithelial cells that 

have acquired somatic mutations are colored; intratumoral heterogeneity is depicted by 

differentially colored epithelial cells. PTEN mutation and TP53 mutation are, respectively, 

early events in the etiology of many endometrioid and serous endometrial carcinomas. In 

some instances, carcinomas, particularly high-grade carcinomas, undergo an epithelial to 

mesenchymal transition to give rise to uterine carcinosarcomas, which are biphasic tumors 

consisting of epithelial carcinoma cells and sarcoma cells (blue). (D) Pie charts showing the 

distribution (% of tumors) of low grade (grade 1 and grade 2) endometrioid EC, high grade 

(grade 3) endometrioid EC, and serous EC among the four molecular subgroups delineated 

in The Cancer Genome Atlas15.
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Figure 2. Minimally invasive sampling methods for endometrial cancer (EC) patients. (a.) Tao 
brush sampling with PapSEEK test:
women testing positive for aneuploidy in any of ~38,000 loci of long interspersed nucleotide 

elements or mutation in any of 18 genes would be sent for confirmatory testing81. PapSEEK 

testing of Tao brush samples accurately detected EC in 93% of women tested with EC; out 

of 125 women without EC, none tested positive81. (b.) Uterine lavage samples analyzed on 

a 12 gene next generation sequencing panel detected cancer in 7 women with EC; mutations 

in the 12 genes were also detected in 51 of 95 women with a non-cancerous uterus86. Two 

images in this Figure were deleted to comply with Nature Reviews Cancer policy on self-

archiving.
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Figure 3. Molecular-based risk/treatment stratification strategies for endometrial cancer (EC) 
patients.
(a.) The TransPORTEC molecular classification system currently being tested in the 

PORTEC-4a clinical trial97 and (b.) the Proactive Molecular Risk Classifier for EC 

(ProMisE)100. (c.) Distribution of endometrial cancer patients in molecular subgroups. Each 

cohort consisted of the following EC patients: TCGA (n=232: 186 EEC, 42 SEC, 4 Mixed 

ECs)15, TransPORTEC high risk (n=116: 86 high risk EEC, 12 SEC, 18 CCEC)66, 

TransPORTEC early stage (n=834 early stage EEC)98, ProMisE discovery (n=143: 119 

EEC, 15 SEC, 8 mixed, 1 undif; 64 ESMO high risk)94, ProMisE confirmation (n=319; 

215 EEC, 5 CCEC, 89 SEC, 10 other; 173 ESMO high risk)99, ProMisE validation (n=452; 

397 EEC, 34 SEC, 21 CCEC/mixed; 131 ESMO high risk)100, ProMisE young (n= 257 <50 

yo: 225 EEC, 17 NEEC, 15 unknown; 21 ESMO high risk)101.
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Abbreviations: Clear Cell Endometrial Cancer (CCEC); Catenin Beta 1 (CTNNB1); 

Exonuclease Domain Mutation (EDM); Exonuclease Domain Wildtype (EDWT); 

Endometrioid Endometrial Cancer (EEC); European Society of Medical Oncology (ESMO); 

Immunohistochemistry (IHC); lymphovascular space invasion [G] (LVSI); MicroSatellite 

Instable (MSI); Mismatch Repair-Deficient (MMR-D); No Specific Molecular Profile 

(NSMP); polymerase-ε mutated (POLE); Proactive Molecular Risk Classifier for 

Endometrial Cancer (ProMisE); Serous Endometrial Cancer (SEC); The Cancer Genome 

Atlas (TCGA); Translational Research in Post-Operative Radiation Therapy in Endometrial 

Carcinoma (TransPORTEC); tumor protein 53 (p53); Undifferentiated (undif); wild-type 

(WT); year-old (yo).
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Figure 4. Functional grouping of genes in which aberrations are acquired in metastases of 
endometrial cancer (EC)
112,133–135,138.
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Table 1.

Somatic aberration [G] frequencies for major driver genes in endometrial carcinomas

Somatic 
Aberration

Potential Clinical 
Actionability

EEC SEC UCS CCEC Refs

Mutated 
PTEN

• PI3K-AKT 
pathway 
inhibition

• Synthetic 
lethality [G] with 
PARP inhibition

• CDK4/6 
inhibition

• G1-G3, 
64–80%

• G1/G2, 
52–82%

• G3, 62–
90%

2–3% 11–
33%

0–21% 15,16,19,21–23,25,38,53,56,63,64,158

Mutated 
PIK3CA

PI3K-AKT-mTOR inhibition • G1-G3, 
22–59%

• G1/G2, 
38–54%

• G3, 45–
59%

15–
35%

22–
40%

24–
36%

15–19,21–25,38,43,52,53,56,158

Mutated 
PIK3R1

PI3K-AKT-mTOR inhibition • G1-G3, 
9–43%

• G1/G2, 
19–38%

• G3, 31–
41%

5–8% 6–
20%

7–18% 15,16,19,21–23,37,38,56,64

Mutated 
KRAS

MEK inhibition • G1-G3, 
19–43%

• G1/G2, 
17–23%

• G3, 7–
33%

2–6% 10–
17%

2–14% 15,16,19,21–23,25,38,43,52,53,56,64,158

Mutated 
FGFR2

FGFR inhibition • G1-G3, 
10–18%

• G1/G2, 
11–13%

• G3, 14–
16%

8% 0–
2%

0% 15,16,22,38,43,56,64,159

Mutated 
CTNNB1

Adverse prognosis in low-grade 
EEC

• G1-G3, 
19–37%

• G1/G2, 
24–28%

• G3, 19–
40%

0–3% 0–
5%

0% 15,16,21,22,25,43,56,158

MSI 
(MMR-D)

• Immunotherapy

• Synthetic 
lethality with 
WRN depletion

• G1-G3, 
34–35%

• G1/G2, 
34%

• G3, 44%

0–3% 3–
6%

11–
14%

15,16,18,19,43,63,144
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Somatic 
Aberration

Potential Clinical 
Actionability

EEC SEC UCS CCEC Refs

Mutated 
ARID1A

Multiple potential synthetic 
lethal interactions

• G1-G3, 
39–55%

• G1/G2, 
39–47%

• G3, 39–
60%

7–
11%

10–
24%

14–
21%

15,16,19,22,25,56,64,158

Mutated 
POLE

• Immune 
checkpoint 
inhibition

• Favorable 
prognosis in high 
grade EEC

• G1-G3, 
13–16%

• G1/G2, 
11%

• G3, 15–
20%

0–2% 3–
4%

2–7% 15,18,19,21,56,69,94,95,100,101,151

Mutated 
TP53

• Adverse 
prognosis

• Synthetic 
lethality with 
G2/M checkpoint 
inhibition and 
chemotherapy

• G1-G3, 
5–14%

• G1/G2, 
6–10%

• G3, 21–
35%

59–
93%

44–
91%

28–
46%

15–19,21,23–25,38,48,52,56,64,112,158,160

Mutated 
FBXW7

Undetermined • G1-G3, 
10–12%

• G1/G2, 
11–15%

• G3, 0–
14%

15–
29%

11–
39%

13–
25%

15–18,21,23,24,52,56

Mutated 
PPP2R1A

Undetermined • G1-G3, 
7–8%

• G1/G2, 
7%

• G3, 10–
13%

19–
43%

13–
28%

7–21% 15–19,23–25,52,56,64,158

Amplified 
ERBB2

ERBB2 inhibition • G1-G3, 
1%

• G1/G2, 
3%

• G3, 4%

26%
−44%

9% 11% 15,16,21,52
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Table 2.

Immunotherapy clinical trial results for endometrial cancer (EC) patients

Immunotherapy Patient Population ORR Responding Biomarker Status (response) Refs

Anti-PD1 (Pembrolizumab) MMR status:
100% (15/15) MMR-D 53% (8/15)

All MMR-D; other biomarker status not reported
3 (CR)
5 (PR)
3 (SD)

142,161

Anti-PD1 (Pembrolizumab) 
plus IDO1 inhibitor 
(epacadostat)

No information for EC patients 43% (3/7)
Biomarker status not reported
1 (CR)
2 (PR)

148,162

Anti-PD1 (Pembrolizumab)

MSI status:
5% (1/19) MSI-H
95% (18/19) MSS
Histology:
74% (17/23) EEC
9% (2/23) SEC
4% (1/23) UCS
13% (3/23) other
PDL1 status:
100% (23/23) +

13% (3/23)

1 PD-L1+, POLE muts
(PR >14months)
1 PD-L1+, MSS (PR)
1 PD-L1+ (PR)

146,149,163

Anti-PDL1 (Atezolizumab)

MSI status:
6% (1/15) MSI-H
47% (7/15) MSS
47% (7/15) unknown histology:
33% (5/15) EEC
33% (5/15) SEC
7% (1/15)
Leiomyosarcoma
27% (4/15)
Unknown
PDL1 status:
33% (5/15) +
67% (10/15) -

13% (2/15)

1 PD-L1+, MSS, 70%
TIL (PR)
1 PD-L1+, MSI, 10%
TIL,
hypermutated (PR)

150,164

IDO1, Indoleamine 2, 3-dioxygenase 1; MMR= Mismatch Repair; MSI= Microsatellite Instability; EEC= endometrioid EC; SEC= serous EC; 
UCS= uterine carcinosarcoma; PD1, programmed cell death 1; PDL1= PD1 Ligand 1; ORR=overall response rate; CR= complete response; PR= 
partial response; SD= stable disease.
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