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abstract

Drug development enterprise is struggling because of prohibitively high costs and slow progress. There is urgent
need for adoption of novel adaptive designs to improve the efficiency and success of clinical trials. A major
barrier is that many conventional designs are inadequate for modern drug development, yet most novel adaptive
designs are difficult to understand, require complicated statistical modeling, demand complex computation,
and need expensive infrastructure for implementation. The objective of this article is to introduce and review
a class of novel adaptive designs, known as model-assisted designs, to remove this barrier and increase the use
of novel adaptive designs. Model-assisted designs enjoy superior performance comparable to more compli-
cated, model-based adaptive designs, but their decision rule can be pretabulated and included in the pro-
tocol—thus implemented as simply as the conventional designs. We review state-of-the-art model-assisted
designs for phase I clinical trials for single-agent, drug-combination and late-onset toxicity scenarios. We also
briefly introduce model-assisted designs for phase II trials to handle binary, coprimary endpoints and delayed
response. Freely available user-friendly software and trial examples (trialdesign.org) facilitate the adoption of
model-assisted designs.
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INTRODUCTION

Despite rapid advancements in the knowledge of
biomedicine, current drug development is on an un-
sustainable path plagued by high costs, slow progress,
and a high failure rate.1,2 A recent survey reports that
the estimated average out-of-pocket cost per approved
new drug is 2.5 billion US dollars.3 To address this
pressing issue, one important approach embraced by
the US Food and Drug Administration is to use novel
adaptive designs.4

Numerous novel adaptive designs have been pro-
posed to improve the efficiency and accuracy of phase
I trials to find the maximum-tolerated dose (MTD)
and of phase II trials to identify effective treatments.5-7

Most of these novel designs, however, failed to be
translated into clinical trials,8,9 because they often are
difficult to understand and require complicated sta-
tistical modeling, demanding computation, and ex-
pensive infrastructure for implementation. As a result,
conventional designs (eg, the 3 + 3 design) are still
dominantly used despite relatively poor performance.
There is an urgent need to increase the adoption of
novel adaptive designs.

The objective of this article is to introduce and review
a class of novel phase I and II designs, known as
model-assisted designs,10-12 to overcome this quan-
dary of simplicity versus performance. Model-assisted
designs yield superior performance compared with the

conventional algorithm-based designs and are com-
parable to more complicated (model-based) designs.
With the model-assisted designs, the decision rule can
be pretabulated and included in the protocol and,
thus, implemented in as simple a way as the con-
ventional designs. By increasing the awareness of
model-assisted designs, we hope that more practi-
tioners will apply the novel designs to improve the
efficiency and success of early-phase trials.

PHASE I TRIAL DESIGNS

On the basis of their statistical foundation and
implementation approach, phase I trial designs can be
classified into three types: algorithm-based, model-
based, and model-assisted designs.10-12 Table 1
contrasts the characteristics of these three types of
designs.

ALGORITHM-BASED DESIGNS

Algorithm-based design is a class of conventional
design that uses a set of simple, prespecified rules to
determine the dose escalation and de-escalation.
Examples include the conventional 3 + 3 design13 and
its extensions, such as the accelerated titration
design14 and the rolling 6 design.15 It has long been
known that the 3 + 3 design has relatively poor op-
erating characteristics16,17; for example, it has no
specific target dose-limiting toxicity (DLT) rate (but has
a range of DLT rates between 17% and 33%), has poor
accuracy to identify the MTD, has poor precision to
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estimate the DLT rate, and has a greater tendency to
underdose patients (ie, it treats patients at the doses lower
than the MTD). However, because it is simple and easy to
implement, the 3 + 3 design is by far the most commonly
used phase I design in practice.

MODEL-BASED DESIGNS

Model-based design is a class of novel adaptive designs
that uses a statistical model (eg, a logistic model) to de-
scribe the dose-toxicity curve and guide dose transition.
Examples include the continuous reassessment method
(CRM)17 and its various extensions (eg, dose escalation with
overdose control),18 Bayesian logistic regression model,19

and Bayesian model averaging CRM.20 As information
accrues during the trial, the CRM continuously updates the
estimate of the model after each cohort and then uses the
updated estimate to determine the dose for the next cohort.
Numerous studies have shown that the CRM significantly
outperforms the 3 + 3 design,16,21 with higher accuracy to
identify and allocate more patients to theMTD as well as the
ability to target any prespecified DLT rates. Despite de-
cades of advocacy by statisticians, the use of the CRM,
however, is still limited because of statistical and compu-
tational complexity of the design.8,9 For appropriate use, the
CRM requires specialized expertise to choose and calibrate
the dose-toxicity model and to re-estimate the model at
each decision of dose escalation/de-escalation. It remains
a challenge to communicate to clinicians how the design
works, which leads them to perceive dose allocations as
coming from a black box.

MODEL-ASSISTED DESIGNS

Model-assisted designs were developed to combine the
advantages of algorithm-based designs and model-based
designs.10,12,22 Similar to the model-based design, the
model-assisted design uses a statistical model (eg, the
binomial model) to derive the design for efficient decision
making; however, like the algorithm-based design, its dose
escalation and de-escalation rule can be predetermined
before the onset of the trial and, thus, can be implemented

in as simple a way as the algorithm-based designs. Ex-
amples of model-assisted designs include the modified
toxicity probability interval (mTPI) design23 and its variation,
mTPI-224; Bayesian optimal interval (BOIN) design25,26;
and keyboard design22 (Fig 1). Zhou et al11,12 and Ruppert
and Shoben27 conducted comprehensive numeric studies
to compare the model-assisted designs with the 3 + 3
design and several model-based designs (eg, CRM and
escalation with overdose control).12 The results showed that
the model-assisted designs substantially outperformed the
3 + 3 design and yielded a performance comparable to
model-based designs on several metrics, including the
accuracy of identification of the MTD and allocation of
patients to the MTD and the risk of overdosing patients (ie,
treatment of a patient at a dose greater than the MTD).
Among the model-assisted designs, BOIN stands out; it
outperforms the mTPI with higher accuracy identifying the
MTD and a lower risk of overdosing patients, and it is
simpler and more transparent than the mTPI-2 and key-
board designs.12 BOIN is also more versatile; it can handle
drug-combination trials,28 late-onset toxicity,29 low-grade
toxicities,30 and toxicity and efficacy jointly.31,32 Therefore,
in what follows, after a brief review of the mTPI/mTPI-2 and
keyboard designs, we use BOIN as an example to illustrate
the features and advantages of model-assisted designs.

The mTPI design starts with a definition of three toxicity
probability intervals: underdosing, proper dosing, and
overdosing intervals—for example, (0, 0.2), (0.2, 0.4), and
(0.4, 1), respectively. Given the data observed at the
current dose, mTPI makes the decision of dose escalation
and de-escalation on the basis of the unit probability mass
(UPM) of the three intervals. Let p denote the true DLT
probability of the current dose. The UPM of an interval is
defined as the posterior probability that p is within the
interval divided by the length of the interval, calculated
according to a statistical model known as the beta-binomial
model. If the UPM associated with the underdosing (or
overdosing) interval is the largest among the three UPMs,
the design escalates (or de-escalates) the dose; otherwise,

CONTEXT

Key Objective
Is there any novel adaptive design that is simple to implement?
Knowledge Generated
This article introduces and reviews a class of novel phase I and II designs, known asmodel-assisted designs, to provide a state-

of-the-art approach to overcome the quandary of simplicity versus performance that hinders the adoption of novel adaptive
designs. Model-assisted designs yield superior performance compared with more complicated model-based designs, but
the decision rule can be pretabulated and included in the protocol and, thus, implemented in as simple a way as the
conventional designs.

Relevance
Model-assisted designs are easy to implement and have great potential to improve the efficiency and success rate of early-

phase trials.

Yuan et al

2 © 2019 by American Society of Clinical Oncology



the dose stays at the current dose. One deficiency of mTPI
is that it overly downweighs the overdosing probability,
because the overdosing interval is typically wider than the
proper dosing interval, which leads to a high risk of over-
dose of patients (ie, treatment of a high percentage of
patients at doses greater than the MTD).22

The keyboard design addresses the overdosing issue of
mTPI by defining a series of equal-width dosing intervals (or
keys) to represent the potential locations of p.22 The proper
dosing interval is called the target key. The design makes
the decision of dose escalation and de-escalation by ex-
amining the relative position between the target key and the
strongest key, in which the strongest key is defined as
the interval that the true DLT is most likely located. The
strongest key is identified using the beta-binomial model. If
the strongest key is on the left (or right) side of the target
key, the observed data suggest that the current dose is most
likely underdosing (or overdosing); thus, the design es-
calates (or de-escalate) the dose; otherwise, the dose stays
at the current dose. The keyboard design outperforms the
mTPI with substantially lower risk of overdosing patients
and better accuracy to identify the MTD.11,22 The variation
of the mTPI (ie, mTPI-224) adopts the same dose escala-
tion/de-escalation rule as the keyboard design but is less
transparent. ThemTPI-2 relies on complicated procedures,
such as Occam’s razor and model selection.

Compared with the mTPI/mTPI-2 and keyboard designs,
the BOIN design is more straightforward and transparent
(Fig 1). Let p̂ denote the observed DLT rate at the current
dose, defined as the number of patients experiencing DLT
at the current dose divided by the total number of DLT-
evaluable patients treated at the current dose.

The BOIN design makes dose escalation/de-escalation
recommendations simply by comparing p̂ with prespecified
dose escalation (λe) and de-escalation (λd) boundaries, as
illustrated in Figure 2 and described as follows:

1. Treat the first cohort of patients at the lowest dose, or the
clinician-specified starting dose.

2. Assign a dose to the next cohort of patients:
• If p̂ ≤ λe, escalate the dose to the next higher level.
• If p̂ ≥ λd, de-escalate the dose to the next lower level.
• Otherwise, stay at the current dose.

3. Repeat step 2 until the prespecified maximum sample
size is reached or the number of patients treated on
a single level reaches a certain number (eg, 12). At that
point, select the MTD as the dose at which the DLT
estimate is closest to the target.25,26

Figure 2 provides the default, optimal dose escalation and de-
escalation boundaries (λe, λd) for commonly used target DLT
rates,φ. These boundariesminimize the incorrect decisions of
escalating/de-escalating the dose when it actually is greater/
lower than the MTD according to a binomial model.26 Given
that φ = 0.3, the escalation and de-escalation boundaries are
λe = 0.236 and λd = 0.358, respectively. That is, at the current
dose, if the observedDLT rate is less than 0.236 (eg, 0/3 DLT),
we escalate the dose; if the observed DLT rate is greater than
0.358 (eg, 2/3 DLTs), we de-escalate the dose; otherwise, the
dose stays at the same level (eg, 1/3 DLT). For patient safety,
BOIN imposes an overdose control rule: If the observed data
indicate that there ismore than a 95%chance that the current
dose is higher than φ and at least three patients have been
treated, the current and higher doses are eliminated from the
trial. The trial is terminated if the lowest dose is eliminated.

TABLE 1. Comparison of Design Characteristics Among Algorithm-Based, Model-Based, and Model-Assisted Phase I Designs

Design Characteristic
Algorithm
Based

Model
Assisted

Model
Based

Transparency and simplicity

Dose escalation/de-escalation rule can be predetermined and included
in the protocol

Yes Yes No

Avoids computation-intensive, repeated estimation of the dose-toxicity
curve model to make interim decisions

Yes Yes No

Flexibility

Targets any prespecified DLT rate No Yes Yes

Allows decisionmaking when the cohort size deviates from the planned
size

No Yes Yes

No. of patients treated at the MTD can be . 6 No Yes Yes

Sample size can be calibrated to ensure good operating characteristics No Yes Yes

Performance

Identifies the MTD accurately No Yes Yes

Allocates a high percentage of patients to the MTD No Yes Yes

Provides good overdose control Yes Yes Yes

Abbreviations: DLT, dose-limiting toxicity; MTD, maximum-tolerated dose.
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The simple and intuitive structure of BOIN gives it sev-
eral unique advantages. Because BOIN guarantees de-
escalation of the dose when the observed toxicity rate p̂ is
higher than the de-escalation boundary λd, it is particularly
easy for clinicians and regulatory agents to assess the safety
of a trial with BOIN. For example, given a target DLT rate of
φ = 0.25, we know a priori that a phase I trial using BOIN
guarantees de-escalation of the dose if the observed DLT
rate is higher than 0.298. Accordingly, BOIN also allows
users to easily calibrate the design to satisfy specific safety
requirements mandated by regulatory agents by choosing
an appropriate target DLT rate. Suppose that, for a phase I
trial with a new compound, the regulatory agencymandates
that the dose must be de-escalated if the observed toxicity
rate is higher than 0.25. We can easily fulfill that re-
quirement by setting the target DLT rate at φ = 0.21, such
that BOIN guarantees de-escalation of the dose if the
observed toxicity rate of p̂ ≥ 0.25. Such flexibility and
transparency are the important advantages of BOIN
compared with the other model-assisted designs, such as
mTPI/mTPI-2 and keyboard designs.

Because model-assisted designs are built upon rigorous
statistical theory, like model-based designs, they also enjoy
the same flexibility as the model-based designs. For ex-
ample, BOIN can target any prespecified DLT rate tailored
to the trial. For heavily treated patients with recurrent
cancer, a target DLT rate of greater than 0.3 may be an
acceptable tradeoff to achieve greater treatment efficacy;
conversely, for newly diagnosed patients with cancer,
a lower target DLT rate (eg, 0.15 or 0.2) may be more

appropriate. Similarly, we may tolerate higher rates of re-
versible DLTs, but drugs with serious irreversible toxicities
may mandate lower target rates. In contrast, the 3 + 3
design has no specific target DLT rate, but we must find
a dose with the DLT rate between 17% and 33%. In ad-
dition, unlike the 3 + 3 design, for which the dose escalation
and de-escalation decisions can be made only when we
have three or six evaluable patients, BOIN allows decision
making with incomplete cohorts in the face of dropouts as
a result of DLT inevaluability. This is because BOIN makes
decisions on the basis of the observed DLT rate at the
current dose, which can be calculated when given any
number of observations.

TRIAL EXAMPLES

BOIN design has been used in variety of oncology trials
including those for pediatric tumors33,34 (ClinicalTrials.gov
identifier: NCT02354547), adult tumors (ClinicalTrials.gov
identifiers: NCT03577704, NCT0302316, NCT02942264,
NCT03318900,NCT03600155,NCT0205075,NCT03740256,
NCT03330028, NCT03114462, NCT03036904,
NCT02705196, NCT02942095, NCT03740256,
NCT03784677, and NCT03760081), solid tumors (eg, breast
[ClinicalTrials.gov identifier: NCT0302316], brain [ClinicalTrials.
gov identifier: NCT02942264], ovarian [ClinicalTrials.gov iden-
tifier: NCT03318900], stomach [ClinicalTrials.gov
identifier: NCT03330028], neck [ClinicalTrials.gov
identifier: NCT03114462], lung [ClinicalTrials.
gov identifier: NCT02942095), bladder [ClinicalTrials.gov
identifier: NCT03740256], prostate [ClinicalTrials.gov
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FIG 1. Illustration of the (A) modified toxicity probability interval, (B) keyboard, and (C) Bayesian optimal interval designs. The curves in (A) and (B) are
the posterior distributions of the dose-limiting toxicity (DLT) probability at the current dose. To determine the next dose, the modified toxicity probability
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identifier: NCT03784677], and germ cell [ClinicalTrials.gov
identifier: NCT03760081]), and liquid tumors (eg, leukemia
[ClinicalTrials.gov identifier: NCT03600155], and lymphoma
NCT03114462]). BOIN design has been used for vari-
ous treatment agents, including chemotherapy (ClinicalTrials.
gov identifier:NCT02942264), radiotherapy (ClinicalTrials.gov
identifier: NCT03114462), checkpoint inhibitor (ClinicalTrials.
gov identifier: NCT03600155), monoclonal antibody
(ClinicalTrials.gov identifier: NCT03577704), oncolytic
virus (ClinicalTrials.gov identifier: NCT02705196), and T-cell
immunotherapy (ClinicalTrials.gov identifier: NCT03318900).
BOIN also has also been used in nononcology trials, such as
stem cell therapy for stroke patients with stroke.35

We used an ongoing National Cancer Institute phase I to
II trial (ClinicalTrials.gov identifier: NCT02942264) to il-
lustrate the design. One of the trial’s objectives of was to
identify the MTD of TG02, a pyrimidine-based multikinase

inhibitor combined with temozolomide in adult patients
with recurrent anaplastic astrocytoma or glioblastoma.
Because of lack of effective treatments for this patient
population, the target DLT rate was set at a relatively high
value of 0.35. Four doses (ie, 150, 200, 250, and 300
mg) of TG02 were investigated. The maximum sample
size for dose finding was 24 patients, treated in cohorts of
three patients each. According to the toxicity profile of
TG02 in other patients with cancer, the principal in-
vestigator chose 200 mg of TG02 as the starting dose.
According to the BOIN design, the dose will be escalated
if the observed DLT rate at the current dose is lower than
λe = 0.276, and it will be deescalated if the observed DLT
rate is greater than λd = 0.419 (Fig 2). For the purpose of
overdose control, if the observed data suggest that there
is more than a 95% chance that a dose is greater than the
MTD—that is, Pr(p . .35 | data) . 0.95—that dose and
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higher doses will be eliminated from additional exami-
nation. When the lowest dose is eliminated, the trial will
be stopped for safety. The 3 + 3 design could not be used
to find the MTD appropriately for this trial, because it
deemed a DLT rate of 33% or greater to be unacceptably
high.

LATE-ONSET TOXICITY

Late-onset toxicity is common in targeted therapies and
immunotherapies.36,37 It causes major logistic difficulty
for aforementioned phase I designs, which require that
a DLT must be observed soon enough to apply decision
rules to choose doses for new patients. For example, if
the DLT takes up to 8 weeks to evaluate and the accrual
rate is one patient per week, on average, then five new
patients could be accrued while investigators wait to
evaluate the previous three patients’ outcomes. The
question is this: How can new patients receive timely
treatment when the previous patients’ outcomes are
pending?

A fewmodel-based designs have been proposed to address
this logistic issue, including the time-to-event CRM (TITE-
CRM)38 and data-argumentation CRM (DA-CRM).39 These
designs support continuous accrual and yield superior
performance in finding the MTD.39,40 However, like the
CRM, they are statistically and computationally complex
and require repeated model fitting after each cohort, which
limits their use.

Model-assisted designs, including time-to-event BOIN
(TITE-BOIN)29 and time-to-event keyboard (TITE-Keyboard)
designs,41 provide a well-performing and yet easy-to-
implement approach to address late-onset toxicity. The
TITE-BOIN works by predicting the unobserved, pending
DLT data according to a time-to-event model. Thereby, the
BOIN dose escalation/de-escalation rule described pre-
viously can be applied in real time to choose a dose for new
patients. The TITE-BOIN uses amodel for prediction, but its
decision rule can be pretabulated, similar to the algorithm-
based rolling 6 design. Table 2 shows the TITE-BOIN
decision rule with a cohort size of three patients, which can
be generated easily using the software described in the
Software section. During the trial, at the current dose, we
counted the number of patients, the number of patients
who experienced DLT, and the number of pending patients
and their standard total follow-up times (STFT); we then
used the table to make the dose escalation/de-escalation
decision. The STFT was computed as the sum of the follow-
up times for all pending patients at the current dose divided
by the DLT assessment window. To illustrate the use of the
TITE-BOIN decision table, suppose that three patients have
been treated at the current dose: one had a DLT, one had
no DLT, and one has DLT data pending. According to
Table 2, if the STFT of the pending patient is greater than
0.88, we treat the next cohort at the same dose; otherwise,
we de-escalate the dose. Suppose that the next cohort

of three patients is treated at the same dose and that,
among the six treated patients, one patient had a DLT, two
had no DLT, and three have DLT data pending. Given that
the DLT assessment window is 3 months and that, at
the current dose, three pending patients have been ob-
served for 1, 1.6, and 2.5 months, respectively, the STFT is
(1 + 1.6 + 2.5)/3 = 1.7. To treat the next cohort, because
the STFT of the three patients with data pending is less than
1.96, we keep the current dose. Numeric study shows that
TITE-BOIN yields superior performance compared with
model-based designs (eg, TITE-CRM), and outperforms the
rolling 6 design with higher accuracy to identify the MTD
and allocate more patients to the MTD.29

Another model-assisted design that is capable of handling
late-onset toxicity is the TITE-Keyboard design.41 Rather
than predicting the pending DLT data, the TITE-Keyboard
design takes a different statistical approach by discounting
the observed data information, statistically known as the
likelihood, to reflect that some observations are pending.
Nevertheless, the TITE-Keyboard produces a decision table
similar to Table 2 and yields performance that is compa-
rable to that of the TITE-BOIN.

DRUG COMBINATION TRIALS

Designing combination trials is more challenging. Unlike
single-agent trials with a string of ordered doses, combi-
nations in the dose matrix are only partially ordered in
toxicity, and multiple MTDs (ie, the MTD contour) may exist
in the dose matrix (Appendix Fig A1). Numerous designs
have been proposed to find an MTD or the MTD contour for
combination trials.28,42-52 Almost all are model-based de-
signs using a strategy similar to that of a CRM: devise
a model to describe the dose-toxicity surface and then, on
the basis of accumulating data, continuously update the
model estimate to select a dose for the new patient. Be-
cause of their statistical and computational complexity,
despite good performance, these model-based designs are
rarely used for conducting trials.

Model-assisted designs provide a simple and robust ap-
proach to phase I combination trials.43 One example is the
BOIN combination design,28 which makes the decision of
dose escalation/de-escalation according to the same rule
as the single-agent BOIN design described in the Model-
Assisted Designs section, and thereby inherits the single-
agent design’s simplicity and good performance. The only
difference is that, in combination trials, when we decide to
escalate or de-escalate the dose, there is more than one
neighboring dose to which we can move. For example,
when we escalate/de-escalate the dose, we can escalate/
de-escalate either the dose of drug A or the dose of drug B.
The BOIN combination designmakes this choice according
to how likely a dose combination is to be located within the
acceptable region (λe, λd) given the observed data.28

Simulation study shows that the BOIN combination de-
sign yields competitive performance comparable to more
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TABLE 2. Dose Escalation And De-Escalation Rule for TITE-BOIN With a Target DLT Rate of 0.3 and a Cohort Size of Three Patients, With up to
Nine Patients Treated at a Dose

No. Treated No. With DLTs No. With Data Pending

Decision

Escalate Stay De-Escalate

3 0 ≤ 1 Yes

3 0 ≥ 2 Suspend accrual

3 1 0 Yes

3 1 1 STFT . 0.88 STFT ≤ 0.88

3 1 ≥ 2 Suspend accrual

3 2 ≤ 1 Yes

3 3 0 Yes and eliminate*

6 0 ≤ 3 Yes

6 0 ≥ 4 Suspend accrual

6 1 ≤ 1 Yes

6 1 2 STFT ≥ 0.60 STFT , 0.60

6 1 3 STFT ≥ 1.96 STFT , 1.96

6 1 ≥ 4 Suspend accrual

6 2 0 Yes

6 2 1 STFT . 0.73 STFT ≤ 0.73

6 2 2 STFT . 1.80 STFT ≤ 1.80

6 2 3 STFT . 2.87 STFT ≤ 2.87

6 2 ≥ 4 Suspend accrual

6 3 ≤ 3 Yes

6 ≥ 4 ≤ 2 Yes and eliminate*

9 0 ≥ 4 Yes

9 0 ≥ 5 Suspend accrual

9 1 ≤ 4 Yes

9 1 ≥ 5 Suspend accrual

9 2 0 Yes

9 2 1 STFT ≥ 0.59 STFT , 0.59

9 2 2 STFT ≥ 1.65 STFT , 1.65

9 2 3 STFT ≥ 2.71 STFT , 2.71

9 2 4 STFT ≥ 3.77 STFT , 3.77

9 2 ≥ 5 Suspend accrual

9 3 0 Yes

9 3 1 STFT . 0.58 STFT ≤ 0.58

9 3 2 STFT . 1.65 STFT ≤ 1.65

9 3 3 STFT . 2.72 STFT ≤ 2.72

9 3 4 STFT . 3.79 STFT ≤ 3.79

9 3 ≥ 5 Suspend accrual

9 4 ≤ 5 Yes

9 ≥ 5 ≤ 4 Yes and eliminate*

NOTE. No. treated is the total number of patients treated at the current dose level; No. with DLTs is the number of patients who experienced
DLT at the current dose level; No. with data pending denotes that number of patients whose DLT data are pending at the current dose level.

Abbreviations: DLT, dose-limiting toxicity; STFT, standard total follow-up time for the patients with data pending, defined as the total follow-up
time for the patients with data pending divided by the length of the DLT assessment window; TITE-BOIN, time-to-event Bayesian optimal interval.

*When a dose is eliminated, all higher doses should also be eliminated.
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complicated, model-based designs.28 Another model-
assisted combination design is the keyboard combina-
tion design, which adopts similar dose escalation/de-
escalation strategy as the BOIN combination design and
yields competitive performance.52 Model-assisted designs
also were developed to find multiple MTDs (or the MTD
contour) for combination trials (eg, the waterfall design).51

MODEL-ASSISTED PHASE II DESIGNS

The concept of model-assisted design is also applicable to
phase II trials. For example, Simon’s optimal (or minimax)
two-stage design53 could be classified as a model-assisted
design in the sense that it is derived from a statistical model
(ie, a binomial model for response), but its go/no-go de-
cision rule can be predetermined when the design pa-
rameters are specified. During the trial conduct, users only
must evaluate whether the number of responses passes the
predetermined stopping boundaries to make go/no-go
decisions. Simon’s optimal two-stage designs are appro-
priate for the simple setting in which the end point is binary
and quickly ascertainable, and these designs allow only one
interim look.

Phase II trials sometimes are more complicated and have
more than one end point. Table 3 provides four trial ex-
amples with different types of end points (eg, ordinal end
point and coprimary end points).54-56 In addition, multiple
interim looks are useful to improve the flexibility and effi-
cacy of the trial, especially in basket and platform trials.57-59

The Bayesian optimal phase II (BOP2) design60 provides
a simple, flexible, and efficient model-assisted design to
allow multiple interims and handle different types of phase
II trials under a unified framework.

The key feature of BOP2 is that, although the end points in
the four examples are clinically different, they all can be
represented using a variable Y with K distinct categories,
statistically known as a multinomial random variable. For
instance, in example 1, Y has K = 2 categories (1 = re-
sponse and 2 = no response); in example 3, Y has K = 4
categories (ie, 1 = [response, progression-free survival at

6months {PFS6}. 0.2met]; 2 = [response, PFS6 not met];
3 = [no response, PFS6 met]; and 4 = [no response, PFS6
not met]). This unified end point Y is modeled using
a Bayesian model, known as the Dirichlet-multinomial
model. The BOP2 design allows any arbitrary number of
interim looks. At each interim look, the go/no-go decision is
made on the basis of the evaluation of Bayesian stopping
criteria using posterior probabilities. As an example, con-
sider a treatment that is deemed ineffective if the objective
response rate (ORR) is ≤ θ, in which θ is a threshold
prespecified by clinicians (eg, θ = 20%). At each interim,
the go/no-go decision is made according to the follow-
ing Bayesian stopping criteria: Stop the trial if Pr(ORR ≤ θ|
Data) . Cn; otherwise continue. In the equation, the
posterior probability Pr(ORR ≤ θ|Data) represents, given
the interim data, how likely the true ORR is to be less than
the threshold θ; and Cn is an adaptive probability cutoff that
depends on the interim sample size n. Given the response
rate deemed ineffective (ie, the null hypothesis) and the
response rate deemed desirable (ie, the alternative hy-
pothesis), the value of Cn is chosen such that the type I error
rate is controlled at a prespecified level and the statistical
power is maximized. (See Zhou et al60 for details.) Similar
Bayesian stopping criteria can be applied to other types
of end points to determine whether the treatment is
promising.60

As amodel-assisted design, one important advantage of the
BOP2 design is that its stopping boundary can be enu-
merated and included in the trial protocol before the onset
of the trial. Table 4 presents the corresponding stopping
boundaries for each trial example. When they conduct the
trial, clinicians simply count the number of relevant events
and make the go/no-go decision according to whether that
count exceeds the boundary or not. If the end point requires
a long time to be scored, clinicians may have to suspend
the accrual and wait for the interim data mature to make
interim decisions. This is undesirable and prolongs the trial
duration. The time-to-event BOP2 (TOP) design was de-
veloped to address this issue and allow real-time interim

TABLE 3. Four Examples Considered by the BOP2 Design in Zhou et al60

Type End Point Study Setting Stopping Criterion

Example 1: Binary ORR, defined using RECIST,
version 1.1.

Evaluate the efficacy of pembrolizumab in treating
patients with small bowel adenocarcinoma

ORR ≤ 0.2

Example 2: Ordinal CR, PR, PD, SD Evaluate the efficacy of nivolumab in in patients with
Hodgkin’s lymphoma54

CR + PR≤ 0.3 and CR≤ 0.15

Example 3: Coprimary ORR and PFS6 Evaluate the efficacy of trebananib administered at
15 mg/kg IV per week in patients with persistent or
recurrent carcinoma of the endometrium55

ORR ≤ 0.1 and PFS6 ≤ 0.2

Example 4: Efficacy and
toxicity

ORR and toxicity rate Evaluate the safety and efficacy of lenalidomide in
combination with rituximab; rituximab in patients
with recurrent indolent nonfollicular lymphoma56

ORR ≤ 0.45 or toxicity rate
≥ 0.3

Abbreviations: CR, complete remission; IV, intravenously; ORR, objective response rate; PD, progressive disease; PFS6, progression-free survival rate at 6
months; PR, partial remission; SD, stable disease.
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decisionmaking.61 The stopping boundaries of the TOP design
also can be enumerated and included in the trial protocol.

Simon’s two-stage, BOP2, and TOP designs focus on one-arm
trials. Brown et al62 provide a comprehensive review on phase II
trials in oncology, including randomized trials. The research on
model-assisted designs for randomized phase II trials has been
limited, and the designs warrant additional investigation.

SOFTWARE

The aforementioned model-assisted designs can be easily
implemented using aWindows desktop programor onlineWeb
applications (freely available at trialdesign.org). Each module
has an intuitive graphic user interface and rich documents to
help users navigate through the process. A phase I or II trial can
be designed easily by the following three steps:

1. Specify the design parameters (eg, sample size, cohort
size, target DLT rate).

2. Use the software to produce decision table, design di-
agram, and operating characteristics of the design. The
software also generates sample texts and protocol
template to facilitate the protocol write-up.

3. Use the design decision table to conduct the trial and
make adaptive decisions (eg, dose escalation/stay/de-
escalation or go/no-go).

DISCUSSION

One major barrier for the adaptation of novel adaptive
designs is that these designs often are complicated to
implement. Model-assisted designs provide an attractive
approach to remove this barrier and reconcile the conflict of
simplicity versus performance by seizing the best of the two
worlds. Model-assisted designs offer the superior perfor-
mance compared with themore complicated, model-based
adaptive designs but, once designed, can be implemented
in as simple a way as the conventional designs. Imple-
mentation is facilitated even more by freely available user-
friendly software. The approach establishes a new KISS
principle: keep it simple and smart!

As in all trial designs, the design parameters for model-
assisted designs must be carefully chosen to reflect the
clinical setting and the study objective. For the BOIN design,
the target DLT rate can vary with the type of phase I studies.
The maximum sample size must be realistic and attainable.
For the BOP2 design, the choice of using a binary end point
or coprimary end point, and their null and target rates, de-
pends on which disease type is studied and how effective the
standard of care is. The number of interim analyses should
account for both design efficiency and the logistic complexity.
The choice of designs parameters should be validated and
carefully calibrated through extensive computer simulation to
ensure that the design has desirable operating characteristics
under a variety of scenarios. The design parameters, study
conduct boundaries, and operating characteristics must be
spelled out and listed in the study protocol.
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FIG A1. Maximum-tolerated dose (MTD) contour in drug combi-
nation trials. Curved lines indicated the toxicity contours with true
toxicity rates of 0.1, 0.2, 0.3, 0.4, and 0.5, respectively. Combi-
nations located along the rows and columns are ordered in toxicity,
but, in other directions of the dose matrix (eg, along the diagonals
from the upper left corner to the lower right corner), the toxicity
order is unknown because of unknown drug-drug interactions.
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