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Specifying the True- and False-
Positive Rates in Basket Trials

In the clinical evaluation of anticancer therapies,
after identification of a recommended dose, in-
vestigators typically seek evidence of drug efficacy
in populations of patients hypothesized to benefit
from it. The purpose of these signal-finding stud-
ies is to prioritize additional development and to
determine whether drugs should be tested in ran-
domized phase III trials and, if so, in which pop-
ulations of patients. In studying modern targeted
agents, investigators frequently have been able to
identify groups of patients with remarkably im-
pressive tumor responses.Because these identified
populations usually are small and efficacy often is
substantially better than that for available thera-
pies, conclusionsfromsingle-armtrialsof thisnature
can be used to inform off-label treatment decisions
and sometimes lead to inclusion in treatment guide-
lines or regulatory approvals. An understanding of
the performance characteristics of the novel clinical
trial designs commonly used in this setting is critical
to avoid inappropriate clinical decision making on
the basis of false-positive clinical trial results.

The group of patients in whom a therapy is
hypothesized to have activity can be identified
in a number of ways, including genomic and
proteomic profiles, and activity of the drug can
be influenced by histology or the primary tumor
site. The combination of a hypothesized mecha-
nism of action and uncertainty around the pop-
ulations of patients who would likely benefit has
encouraged a trend toward more-complex early-
phase trials.1 A major challenge is the desire to
study the effects of the drug simultaneously in
patients with different primary sites of disease or
histologies with the goal of evaluating the efficacy
of the drug in these contexts, often referred to as
baskets.2-9 A related recent trend in clinical trial
design has been increasing enthusiasm for the use
of adaptive designs, whereby design parameters
can be changed dynamically as the trial progresses
and evidence about efficacy gradually emerges.10

A final important trend has been the use of Bayes-
ian design as a tool to evaluate the emerging evi-
dence in a formal statistical model.11-15 Many of
these methods are predicated on the underlying
expectationofbroadlysimilarefficacyacrossbaskets

because the statistical model allows the sharing of
information across baskets with the purpose of
completing the trial in a shorter time frame with
fewer patients than a traditional strategy whereby
each basket is regarded as an independent phase II
trial. This combination of design complexity with
sophisticated statistical modeling has led to situa-
tions in which important clinical trials are being
launched without a broad understanding of the
implications of the novel methods used, an issue
that has been identified previously in the context of
novel phase I study designs.16 In this commentary,
we examine the properties of a particular Bayesian
adaptivedesign that increasingly is beingused in the
context of basket trials, and we use the clinical
setting of a completed basket trial to demonstrate
that the design is heavily tilted toward positive
conclusions about the efficacy of the drug.17

The complexity of these modern methods makes
having a clear understanding of the properties of
design, characterized by easily interpretable mea-
sures, essential when planning a new clinical trial.
Although Bayesian statistical analyses generally
focusonreportingtheprobability thatan individual
drug works (the so-called posterior probability),
we believe that the evaluation of properties of de-
signs in terms of the familiar metrics used in the
context of clinical trials is important. These prop-
erties are the true-positive rate (the probability
that a truly effective agent will be shown to be
effective [often referred to as power]) and the false-
positive rate (the probability that an ineffective
agent is erroneously judged to be effective [often
referred toas the type I error]).Wegenerally like to
keep the false-positive rate low because we do not
want to encourage additional study of a drug that
doesnotwork, andwewant the true-positive rate to
be high because we want to be confident that if the
drug truly works, its effectiveness will be recog-
nized. In the context of a basket trial, we need to
expand these terms to determine the efficacy of the
drug in eachbasket individually.Therefore, to fully
understand the implications of these data-sharing
methods, wemust calculate amore-elaborate set of
true- and false-positive rates, specifically when the
drugdoes notwork at all, when it onlyworks in one
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basket, when it only works in two baskets, and so
forth.

As an illustration of the clinical setting, we refer to
the findings of a recent basket trial that investi-
gated the effects of vemurafenib, a selective oral
inhibitor of the BRAF kinase.2 The trial assessed
efficacy in five disease-specific baskets: non–small-
cell lung cancer, colorectal cancer, cholangiocarci-
noma,Erdheim-ChesterdiseaseorLangerhans cell
histiocytosis, and anaplastic thyroid cancer. In this
study, a response rate of < 15% was considered
nonpromising, whereas a response rate of> 45%
was considered promising. Figure 1 illustrates the
observed response rates in each basket. The in-
vestigators concluded that the drug shows prom-
ising activity in the non–small-cell lung cancer
basket and the Erdheim-Chester disease or Lang-
erhans cell histiocytosis basket but that it is in-
active in colorectal cancer. The investigators were
unwilling to make definitive conclusions about its
effectiveness in cholangiocarcinoma and anaplas-
tic thyroid cancer because of the small sample
sizes. Although this trial did not use the Bayesian
hierarchical design proposed by Berry et al,17 we
use the clinical setting of the vemurafenib trial to
investigate the performance of the Berry design.

The Bayesian hierarchical model is structured to
capture the correlation between the anticipated
efficacies of the drug across various baskets. As the
trial progresses and evidence about response rates
gradually emerges, the model implicitly shares
information among baskets, a concept frequently
referred to as information borrowing. The extent
to which information is borrowed is determined
by the variability among response rates across
baskets. This aggregation of evidence is rooted
in a key feature of Bayesian methods, the prior
distribution of the between-basket variability, an
entity that is prespecified by the analyst. In the
context of a basket trial, this prior distribution
essentially titrates the extent to which emerging
evidence of drug efficacy from one basket can be
used tobolster the evidence inotherbaskets.Berry
et al17 recommended a specific prior distribution
to reflect “a small amount of heterogeneity across
the groups.” They acknowledged that the prop-
erties of their method might be sensitive to this

choice of prior distribution. However, they pre-
sented a sensitivity analysis that concluded that the
properties are actually relatively insensitive to this
choice.

We evaluated the false-positive and false-negative
error rates for a hypothetical trial similar in struc-
ture to the vemurafenib trial, with five baskets and
null and alternative response rates of 15% and
45%, respectively. We simulated trials by follow-
ing the Bayesian hierarchical design and conduct-
ed interim analyses after the first 10 patients were
accrued and then after every additional five pa-
tients until a maximum of 19 patients per basket
were enrolled. Early stopping rules terminated
accrual to individual baskets if the basket-specific
posterior probability that the true response rate is
greater than a midlevel response rate of 30%
was , 5% (stop for futility) or . 90% (stop for
efficacy) at any interim analysis. At the end of the
trial, the treatment was declared efficacious in a
basket if the posterior probability that the response
rate that exceeded thenull valueof15%was.87%.
This final decision rule was calibrated to provide an
overall false-positive rateof 10%when thedrugwas
inactive in all baskets. We used throughout the
specific prior distribution recommended by Berry
et al.17The true- and false-positive rates are listed in
Table 1. The efficacies of the baskets are in order
from left to right. For example, in the second row
(one active basket), basket 1 is the one in which the
drug is truly active, whereas in baskets 2 to 5, the
drug is not active. In this scenario,we see that a 79%
chance for observing a true-positive result exists in
theactivebasket,whereas foreachnonactivebasket,
the false-positive rate is 18%. The next column on
the right captures the probability that one or more
of the nonactive baskets is a false-positive finding, a
term usually referred to as the family-wise error
rate, a key criterion for evaluatingmultiple hypoth-
eses in clinical trials.18,19 We see that this overall
false-positive rate is 37%when thedrug trulyworks
in only one basket and rises to 57%when the drug
does notwork inonly one basket.The final column
lists the expected trial size. Although themaximum
trial sizewas set to95patients, theexpected trial size
ranged from 59 to 84 patients, depending on the
trueefficacy configurationof thebaskets.The table
also lists the family-wiseerrorrates for the setting in
which each basket is regarded as an entirely in-
dependent clinical trial wherein the false-positive
rate is10%.Thefamily-wiseerrorrate is a relatively
high 41% when any one of five independent trials
can be a false-positive finding (top row) but is the
nominal 10% when the drug is truly ineffective in
only one basket (four active baskets row).

45% RR
NSCLC
(n = 20)

43% RR
ECD/LCH

(n = 18)

4% RR*

CRC
(n = 27)

12% RR†
Cholangio

(n = 8)

29% RR†
ATC

(n = 7)

Inactive BasketsActive Baskets

Fig 1. Each basket
displays the observed
response rate (RR) from the
vemurafenib trial for
a particular disease (sample
sizes in parentheses).
(*) Patients received
combination therapy
(vemurafenib 1
cetuximab). (†) An RR of
15% was considered
inactive, and an RR of 45%
was considered active.
Activity was considered to
be inconclusive as a result of
a small number of patients.
ATC, anaplastic thyroid
cancer; Cholangio,
cholangiocarcinoma; CRC,
colorectal cancer; ECD/
LCH: Erdheim-Chester
disease or Langerhans cell
histiocytosis; NSCLC,
non–small-cell lung cancer.
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Close examination of Table 1 demonstrates two
complementary results from using the Bayesian
design. First, the false-positive rate ismuchhigher
than we would normally expect or desire. Al-
though the targeted overall false-positive rate of
10%has been achieved for the setting inwhich the
drug has no efficacy (ie, the drug works in none of
the baskets as shown in the first row), this standard
rapidly erodes as we investigate settings in which
the drug works in some baskets but not in others.
For example, if we look at the two active baskets
rowof the table,we see a highprobability (94%) of
declaring each of the two active baskets to be
efficacious. This high probability comes at the
expense of a 48% chance of incorrectly declaring
that the drug works in at least one of the three
inactive baskets. Why does this happen? The
answer lies in the sharing of evidence embedded
in the statistical modeling. Consider the most
extreme case (the four active baskets row of the
table) where we see that the nonactive basket has a
false-positive rate of 57%. In this setting, the
evidence typically is dominated by strong positive
results from the four baskets in which the drug
is truly active, and the imposition of the prior
distribution encourages the model to interpret
the results from all five baskets as strongly corre-
lated (ie, similar in efficacy), which leads to a high
probability that the inactive basket will be classi-
fied incorrectly as active. This high false-positive
rate can be manipulated with more-stringent de-
cision rules. However, by changing these rules
alone, we do not have the flexibility to specify
desired true- and false-positive rates. In related
work, we explored in depth options for modifying
the Bayesian design used in our simulations by
examining various choices of prior distributions
and of decision rules used, demonstrating that

trials can be designed on the basis of hierarchical
modeling with much better control of the family-
wise error rates.20

We believe that straightforward reporting of the
various true- and false-positive rates, as listed in
Table 1, are fundamental to understanding the
merits of any proposed basket study design.
Seemingly innocuous choices, such as the use
of a prior distribution that Berry et al17 charac-
terized as “weak, which allows the data to shape
the amount of borrowing,” can actually have a
substantial influenceon the real risks of obtaining
false-positive results. A high false-positive rate
that does not accurately reflect the true evidence
that emerges from the clinical trial can have im-
portant clinical ramifications in that it could lead
to a strong incentive to provide the treatment to
future patients who have the disease characteristics
of the baskets in which the drug is inactive.

We believe strongly that modern basket clinical
trials that endeavor to answer multiple objectives
by testing several hypotheses can benefit from
novel designs that seek to reach conclusions as
quickly and efficiently as possible.21 This inevitably
involves the merging of information from various
baskets in one way or another, and alternative
designs22,23 have recently been proposed in the lit-
erature, including a design we have advocated that
focusesonwhetherbaskets shouldbe aggregated for
the purposes of sharing evidence.24 However, re-
gardless of how the study is designed, investigators
must have a clear understanding of the properties of
the design in terms of familiar key characteristics,
such as false-positive and false-negative rates.
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Table 1. Statistical Properties of Bayesian Hierarchical Design

Probability Drug Will Be Declared Efficacious, % Family-Wise Error Rate, %*

No. of Active
Baskets Basket 1 Basket 2 Basket 3 Basket 4 Basket 5 Hierarchical Independent

Expected
Trial Size

0 5 5 5 5 5 10 41 59

1 79 18 18 18 18 37 34 74

2 94 94 30 30 30 48 27 84

3 97 97 97 40 40 52 19 84

4 99 99 99 99 57 57 10 75

5 100 100 100 100 100 — — 59

NOTE. Bold represents baskets in which the drug is active; no bold represents baskets in which the drug is not active.
*The family-wise error rate represents the probability that the drug has false-positive efficacy in any one or more of the nonactive baskets (ie, the overall false-positive rate of the
design given the number of baskets inwhich the drug is truly active).This is shown for both theBayesian hierarchical design and the setting inwhich all five baskets are considered
to be independent clinical trials.
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