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PTEN Loss-of-Function Alterations
Are Associated With Intrinsic
Resistance to BRAF Inhibitors in
Metastatic Melanoma

abstract

PurposeTheclinical useofBRAF inhibitors inpatientswithmelanoma is limitedby intrinsic and
acquired resistance. We asked whether next-generation sequencing of pretreatment tumors
could identify coaltered genes that predict for intrinsic resistance to BRAF inhibitor therapy in
patients with melanoma as a prelude to rational combination strategies.

Patients and Methods We analyzed 66 tumors from patients with metastatic BRAF-mutant
melanoma collected before treatment with BRAF inhibitors. Tumors were analyzed for > 250
cancer-associatedgenesusingacapture-basednext-generationsequencingplatform.Antitumor
responses were correlated with clinical features and genomic profiles with the goal of
identifying a molecular signature predictive of intrinsic resistance to RAF pathway inhibition.

Results Among the 66 patients analyzed, 11 received a combination of BRAF and MEK in-
hibitors for the treatment of melanoma. Among the 55 patients treated with BRAF inhibitor
monotherapy, objective responses, as assessed byResponseEvaluationCriteria in SolidTumors
(RECIST), were observed in 30 patients (55%), with five (9%) achieving a complete response.
We identified a significant association between alterations in PTEN that would be predicted to
result in loss of function and reduced progression-free survival, overall survival, and response
grade, a metric that combines tumor regression and duration of treatment response. Patients
with melanoma who achieved an excellent response grade were more likely to have an elevated
BRAF-mutant allele fraction.

ConclusionThese results provide a rationale for cotargetingBRAF and the PI3K/AKTpathway
in patients with BRAF-mutant melanoma when tumors have concurrent loss-of-function mu-
tations in PTEN. Future studies should explore whether gain of the mutant BRAF allele and/or
loss of the wild-type allele is a predictive marker of BRAFi sensitivity.

Precis Oncol 00. © 2017 by American Society of Clinical Oncology

INTRODUCTION

BRAF inhibitors (BRAFis) and RAF/MEK inhib-
itor combinations are standard-of-care therapies
for patients with BRAFV600E/Kmelanoma.De-
spite the profound clinical activity of BRAFis in
this setting, the degree and durability of response
are highly variable.1-6 Prior studies have identified
mechanisms of acquired resistance to BRAFis,
many of which have been validated using tumor
tissues collected at the time of disease progression.
These resistance mechanisms can be divided into
two classes. Class 1 alterations confer drug re-
sistance by abrogating the ability of the drugs to
inhibit ERK signaling and include mutations in

NRAS, NF1, MEK1/MEK2, and BRAF splice
variants.7-14 Class 2 alterations result in reduced
dependence on RAF signaling and include alter-
ations that activate parallel pathways such as inac-
tivating PTEN mutations15-17 and alterations in
genes that dysregulate the downstreammachinery
that mediates cell cycle progression (eg, RB1,
CDKN2A, CCND1)17-19 or apoptosis (eg, TP53,
MCL1).20 In addition, alterations that overcome
BRAF-mediated feedback-induced suppressionof
upstream receptor tyrosine kinases likely function
by both mechanisms.8,21-27

The molecular basis of intrinsic resistance is less
well characterized.Here,weusednext-generation
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sequencing methods to determine whether geno-
mic alterations present in pretreatment tumor tis-
sue are predictive of intrinsic resistance to BRAFi
therapy in patients with BRAF-mutant melanoma.

PATIENTS AND METHODS

Patient Clinical Characteristics

This study was conducted after institutional re-
view board approval. Patients had stage IV or
unresectable stage IIIBRAFV600E/Kmelanoma.
Response was assessed using both Response
Evaluation Criteria in Solid Tumors version 1.1
(RECIST) and response grade, a composite mea-
sure of the average of the percentage of lesion
shrinkage and the duration of response.28 For re-
sponse grade, patients were segregated into the
following three classes: excellent (> 50% tumor
shrinkage for > 7 months or any shrinkage for
> 12months), poor (tumor growth, any new lesions,
or< 50% shrinkage for, 4 months), or interme-
diate (neither excellent nor poor). Patients who
died or were lost to follow-up before the first
assessment or who had incomplete imaging were
graded as not evaluable. Progression-free survival
(PFS) was defined as the time from the start of
BRAFi therapy until the date of progression on
BRAFi, date of death, or the date of last follow-up;
patients who were switched to immune checkpoint
blockade were censored at the date of withdrawal
from BRAFi therapy. Overall survival (OS) was
measured as the time from the start of BRAFi
therapy until the date of death; patients alive at last
follow-up were censored at the date of last docu-
mented contact. The cutoff date was March 2016,
with a median follow-up time for the entire cohort
of 14.6 months.

Exon Capture Sequencing

DNA from tumor and blood was analyzed using a
custom,exoncaptureDNAsequencingassaydesigned
to capture all protein-coding exons and selected
introns of . 250 cancer-associated genes.29,30

See Data Supplement for gene lists. Single nu-
cleotide variants were detected using MuTect,31

and indels were detected using the SomaticIn-
delDetector tool in GATK. All candidate muta-
tions were reviewedmanually using the Integrative
Genomics Viewer.32,33 Mean sequence coverage
was calculated using the DepthOfCoverage tool in
GATK and used to compute copy number.29,30

The FACETS algorithm was used to estimate
tumor purity, ploidy, and allele-specific copy num-
ber.34 For correlationswith response and outcome,
we restricted the analysis to a subset of 56 genes
selected based on their mutation frequency in

melanoma and their ability to activateMAPK and/
orPI3K signaling (Data Supplement). All clin-
ical and genomic data are available through the
Memorial Sloan Kettering cBio Portal for Cancer
Genomics (http://cbioportal.org/).

Biostatistics

A Kruskal-Wallis test and one-way analysis of
variance were used to assess the association be-
tweenmutations and response. Fisher’s exact t test
was used to compare the percentage of mutations
for each designated gene between The Cancer
GenomeAtlas (TCGA) andMemorial SloanKet-
teringCancer Center/Vanderbilt-IngramCancer
Center cohorts. BRAF-mutant allele frequencies
were z score normalized relative to allele fre-
quencies of other mutations in the same sample;
deviation from the null distribution was com-
puted using a one-sided Mann-Whitney U test.
A Cox proportional hazards model was fit to
obtain hazard ratios (HRs) andP values forPTEN
mutation (Wald test) from univariable and mul-
tivariable models. Survival curves (OS and PFS)
were obtained with Prism (GraphPad, La Jolla,
CA), and a P value from a log-rank test is
presented.

RESULTS

Patient Characteristics and BRAFi Response

We analyzed pretreatment tumors from 66 pa-
tients with metastatic BRAF-mutant melanoma.
Forty-nine patients received vemurafenib, five
dabrafenib, and 11 a BRAFi plus MEK inhibitor
(MEKi) combination. Notably, in the BRAFi
therapy group, one patient received cobimetinib
(MEKi) for the treatment of chronic myelomo-
nocytic leukemia 75weeks after the start of BRAFi
therapy.35 For this patient, the clinical response to
BRAFi monotherapy was only assessable before
the administration of the MEKi. The clinical
characteristics of the two cohorts of patients are
listed in Table 1. Approximately 50% of the
patients also received immunotherapy during
their treatment course (29 of 55 BRAFi patients
and three of 11 BRAFi plus MEKi patients),
whereas 19.7% of patients received chemother-
apy. Two (3%) of 66 patients had previously re-
ceived the MEKi selumetinib before treatment
with a BRAFi (Table 1).

Objective responses, as assessed by RECIST cri-
teria, to BRAFi monotherapy were observed in 30
(55%) of 55 patients, with five (9%) of 55 patients
achieving a complete response and 25 (45%) of 55
patients achieving a partial response. Among the
patients who achieved a complete response, three
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remained alive, with twobeingdisease free 4.9 and
4.8 years after initiating therapy. Stable disease
was observed in 11 (20%) of 55 patients, whereas
10 (18%) of 55 patients experienced primary pro-
gressive disease. Four (7%) of 55 patients were not
evaluable for response as a result of rapid clinical
deterioration (Fig 1A, left panel). In addition to
RECIST, patients were stratified using a response

grade classification that incorporates measures of
both lesion shrinkage and response duration. Sev-
enteen (31%) of 55 patients achieved an excellent
response grade, and 19 (35%) of 55 patients had a
poor response, whereas for 15 (27%) of 55 pa-
tients, the response was scored as intermediate.
For four (7%) of 55 patients, the response grade
was not evaluable (Fig 1B, left panel). PFS andOS
in the three classes of responders are shown in the
Data Supplement. As highlighted in Figure 1C,
RECIST 1.1 and response grade classifications
were not always concordant, with eight of 66
patients classified aspartial responderson thebasis
of RECIST criteria but as poor responders on the
basis of response grade because their responses to
BRAFi therapy were of short duration.

Pattern of Genes Co-Mutated With BRAF

The primary objective of this study was to de-
termine whether the pattern of genes co-mutated
with BRAF was predictive of the clinical benefit
from BRAFi treatment. Samples were sequenced
as outlined in Patients and Methods to a mean
coverage of 622-fold, identifying on average nine
single nucleotide variants or indels per tumor
(range, two to 39 variants or indels; Data Supple-
ment). We confirmed the presence of a BRAF
V600E/K mutation in all tumors. In contrast to
patients treated with immune checkpoint block-
ade,36 no correlation was observed between the
number of somatic mutations and treatment re-
sponse (Data Supplement). BRAF amplification
was observed in three tumors, all with intermediate
responses. Although BRAF amplification has been
associated with acquired resistance to BRAFis,37

these data indicate that BRAF amplification does
not preclude BRAFi response. An increase in
BRAF-mutant allele fraction relative to the mean
allele fraction of other variants identified in a
sample could indicate allelic imbalance resulting
from selective gain of the mutated BRAF allele or
loss of the wild-type allele. Significantly elevated
BRAF-mutant allele fractions (more than twice the
median of all variants detected in the sample) were
observed in a total of nine patients (four excellent
responders, four intermediate responders, and
one poor responder; Data Supplement) in the
BRAFi cohort. Normalizing relative to the mean
in each case to account for differences in tumor
content or purity, we observed a significant en-
richment for elevated BRAF V600–mutant allele
fraction in excellent responders (P , .001) com-
paredwith poor responders (P = .02).Quantitative
estimates of tumor ploidy and purity could be
calculated for a subset of patients and confirmed
allelic imbalance in two excellent responders (Data

Table 1. Patient Characteristics

Characteristic
BRAFi
(n = 55)

BRAFi + MEKi
(n = 11)

All Patients
(N = 66)

Sex, No.

Female 34 8 42

Male 21 3 24

Median age, years (range) 56 (23-83) 49 (21-62) 54 (21-83)

Stage at treatment,

IIIC 1 1 2

IVA 4 2 6

IVB 2 0 2

IVC 48 8 56

Pretreatment LDH levels, No.

Normal 30 8 38

Elevated 21 3 24

Not measured 4 0 4

Brain metastases, No. 9 1 10

BRAFi, No.

Vemurafenib 49 0 49

Vemurafenib + cobimetinib 1* 3 4

Dabrafenib 5 0 5

Dabrafenib + trametinib 0 8 8

Previous treatment, No.

None 23 0 23

Chemotherapy 12 1 13

MEKi 2 0 2

Immunotherapy, No.

Prior to BRAFi 7 0 7

Ipi 2 0 2

IL-2 4 0 4

IFN 1 0 1

During or after BRAFi 22 3 25

Ipi 17 3 20

Ipi + Nivo 2 0 2

Nivo 1 0 1

Pem 2 0 2

Abbreviations: BRAFi, BRAF inhibitor; IFN, interferon; IL-2, interleukin-2; Ipi, ipilimumab; LDH,
lactate dehydrogenase; MEKi, MEK inhibitor; Nivo, Nivolumab; Pem, pembrolizumab.
*Cobimetinib was given for treatment of chronic myelomonocytic leukemia, from which the patient
died.35
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Supplement), suggesting that selective amplifica-
tion of the mutant allele or loss of the wild-type
allele may be a sensitizing event in these tumors.

To confirm that the tumors in our cohort had a co-
mutationpatternconsistentwith thegenomic land-
scape of BRAF-mutated melanomas reported in
other studies, we compared the 66 tumors analyzed
here to the 151 BRAF V600E/K–mutated tumors
fromTCGA.Inbothcohorts,CDKN2AandPTEN
wereamong thegenesmost commonlyco-mutated
with BRAF (Fig 2). A minority of tumors also
harbored coalterations in a second RAS/MAPK
pathway gene (NRAS, NF1, or MAP2K1) or in
the PI3K/AKT/mTOR axis (PI3KCA, AKT1/2/3,

PTEN, TSC1/2, or MTOR). We did observe en-
richment for alterations in the RB1 and MDM2
genes, which may reflect the more aggressive clin-
ical profiles of the patients in this study versus the
TCGA (Fig 2A). The phosphatases PTPRT and
PTRTD and the lysine methyltransferase KMT2C
were among the genesmostly commonly coaltered
with BRAF (Fig 2). Loss-of-function mutations
have been reported in each of these tumor
suppressor genes.35,36 In melanoma, the alter-
ations were primarily missense variants of un-
known significance (Appendix Tables A1-A3).
Given the large size of these genes, the high
mutation rate ofmelanomas and the distribution
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of the variants throughout the genes,most of the
variants observed were likely passenger events
(Data Supplement).

Genomic Predictors of Sensitivity to BRAFi
Therapy

Theco-mutational pattern identified in individual
patients is shown as an OncoPrint in Figure 3. A
prior report had suggested an association be-
tweenCDKN2A alteration andBRAFi response.18

Twenty-one (41%) of 51 patients receiving
BRAFi monotherapy had alterations in CDKN2A
(Fig 3, left panel), of which 19 were putative loss-

of-function alterations.38 Contrary to previous
studies,7,18,39 mutation or homozygous deletion
ofCDKN2A did not correlate with response grade
(Fig 4A).

Alterations inPTENwere significantlymore com-
mon in patients with poor response grade treated
with BRAFi monotherapy (11 alterations in pa-
tients with poor response, three in patients with
intermediate response, and two in patients with
excellent response; Fig 4B). Of the 11 PTEN
alterations identified in the poor response grade
cohort, 10were likely inactivating, including deep
deletions consistent with homozygous loss (n = 5),
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truncating mutations (n = 4), and one missense
mutation (P204S) located in the C2 domain of the
protein and known to affect its stability and cat-
alytic activity.40 The one variant of unknown
significance (P38S)was located in thephosphatase
domain. Patients whose tumors had alterations in
PTEN had shorter PFS (HR, 3.46; 95% CI, 1.79
to 6.71; P , .001) and reduced OS (HR, 3.10;
95%CI, 1.59 to 6.05; P, .001; Figs 4C and 4D).
The association of PTENmutation with PFS and
OS remained statistically significant after con-
trolling for stage and Eastern Cooperative On-
cology Group performance status (PFS: HR,
3.30; 95% CI, 1.70 to 6.43; P , .001; OS: HR,
3.37; 95%CI, 1.70 to 6.70;P, .001).Despite the
association between alterations in PTEN and
response grade, PTEN alterations were not ex-
clusive to the poor response grade cohort. Spe-
cifically, two excellent and three intermediate
responders harbored either deep deletions or

recurrent missense variants in PTEN (R15S,
G132C, and Y177H; Fig 3).41

Given the association between PTEN alteration
andBRAFi response,we assessed additional nodes
in the PI3K/AKT/mTOR pathway. We detected
four missense mutations in PIK3CA, which en-
codes for the catalytic subunit of PI3K, three of
which are hotpot mutations (V344G, E545K, and
H1047R). These mutations were not exclusive to
patientswith a poor response grade (Fig 3 andData
Supplement). In fact, two excellent responders
harbored missense mutations in PIK3CA, one
of which was an activating hotspot mutation
(H1047R).42,43 No hotspot mutations in AKT
were observed in the 51 patients treated with
BRAFi alone (Fig 3, left panel). A hotspot E17K
AKT3 mutation was observed in one poor re-
sponder treated with the RAF/MEK inhibitor
combination (Fig 3, right panel). Nonrecurrent
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missense variants of unknown significance in
TSC1, TSC2, andMTOR were rare and present
in both excellent and poor responders (Fig 3,
left panel).

We observed that 25% of the patients (13 of 51
patients) harbored likely functional alterations in the
TP53 orMDM2 genes. TP53 was mutated in eight
patients (Appendix Table A4), and MDM2 was
amplified in fourpatients andmutated inonepatient
(Appendix Table A4 and Data Supplement). When
analyzed together, alterations in TP53 and MDM2
didnot correlatewith responsegradeor shorterPFS
and OS (Fig 3, left panel, and Data Supplement).

Alterations that abrogate the ability of BRAFis to
inhibit ERK activation (NRAS, MAP2K1, and
NF1 mutations) have been shown to be common
mechanisms of acquired resistance to BRAFis.
None of the 66 pretreatment tumors analyzed
harbored an RAS mutation (Fig 3 and Data Sup-
plement). One patient had an alteration in NF1
that would be predicted to result in loss of expres-
sion (X2441_splice). Consistent with preclinical
data indicating that loss ofNF1 confers resistance
to BRAFis,11,44 this patient had a poor response
grade. MAP2K1 mutations were rare; only one
patient, an intermediate responder, harbored an
MEK1 mutation (P124S; Fig 3, left panel). A
second patient, an intermediate responder treated
with aBRAFiplusMEKi combination, had aknown
activating mutation inMEK1 (Q56P) with an allele
frequencyof 0.04 (comparedwith0.19 for theBRAF
mutation), consistent with the presence of a sub-
clonal population. Both the MEK1 P124S and
Q56P mutations have previously been shown to
be associated with context-dependent resistance to
both MEKis and BRAFis.12

We observed mutations in RB1 or amplifications
inCCND1 in 11% of patients treated with BRAFi
monotherapy; however, no association with re-
sponse was observed (Data Supplement). Three
patients had amplification of MITF, and consis-
tent with a prior report,15 MITF amplifications
were observed exclusively in poor or intermediate
responders. However, given the rarity of this
event, this association did not reach statistical
significance (Data Supplement). Finally, four
mutations in KDR (kinase insert domain recep-
tor,VEGFR2)were identified, all in patientswho
exhibited a poor response grade (Fig 3, left panel,
and Data Supplement). Of these mutations, only
one (VEGFR2 R1032Q) is a hotspot,45 whereas
the others are variants of unknown significance.
Both OS and PFS were significantly shorter in
patientswithKDRmutations (DataSupplement).

Although this association was statistically signif-
icant, given the small number of mutational
events and the lack of functional data regarding
the significance of these events, this association
should be interpreted with caution.

DISCUSSION

BRAFis and MEKis are now US Food and Drug
Administration–approved treatments for BRAF-
mutant melanoma. Prior studies of small cohorts
of patients who initially responded to BRAFis but
later developedacquired resistancehave identified
molecular alterations that underlie acquired drug
resistance.7-14,46,47 In this study, we sought to de-
termine whether pre-existent co-occurring alter-
ations predict for intrinsic resistance to BRAFis.
As the benefit with anticancer agents has been
shown to associate with both depth of response
and response duration, we also correlated the
genomic findings with response grade, a compos-
ite measure of tumor regression and duration of
response. We found that loss-of-function alter-
ations of PTEN correlate with poor response to
BRAFis in BRAF-mutant melanoma. Further-
more, we observed that patients with PTEN al-
terations had shorter PFS and OS compared with
the PTEN wild-type cohort.

Notably, PTEN and other PI3K pathway alter-
ations were identified in a small number of excel-
lent and intermediate BRAFi responders. This
observation is consistent with prior clinical and
laboratory studies that suggested that alterations
inPTENdonotpreclude an antitumor response to
BRAFis.9,17,18 The data also suggest that addi-
tional comolecular events likely cooperate with
PTEN loss to confer BRAFi resistance in patients
who derive no clinical benefit from these agents.
In sum, the results support the testing of PI3K
inhibitors in combination with BRAFi andMEKi
alone or in combination in patients with concur-
rent BRAF and PTEN alterations.48,49 Because
complete responses were infrequent even in
PTEN wild-type patients, coadministration of a
PI3K inhibitor could also result in further incre-
mental tumor regression or a longer duration of
treatment response in patients who lack PI3K
pathway mutations.

A notable observation from this study was a trend
toward increased BRAF-mutant allele fraction in
excellent responders. This allelic imbalance is con-
sistent with a relative gain of the mutant BRAF
allele. Because increased expression of wild-type
BRAF would be predicted to confer resistance to
vemurafenib, it is biologically plausible that loss of
the wild-type allele leading to a decrease in the

a cutoff of six recurrencesor
more reported in the
Catalogue of Somatic
Mutations in Cancer
(COSMIC) in at least two
tumor types was used to
distinguish a recurrent
mutation from a rare event.
Light green indicates
nonrecurrent missense
variant of unknown
significance; red indicates
amplification; blue
indicates deep deletion;
black indicates truncating
deletion; and orange
indicates in-frame
mutation.
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fraction of RAF dimers that contain a wild-type
RAF protein could increase BRAFi sensitivity.50

The results support broader whole-exome or
whole-genome sequencing of BRAF-mutant tu-
mors to explore whether pre-existent BRAF
allelic imbalance is a predictive marker of BRAFi
sensitivity.

There were several limitations inherent to the
sample set analyzed andmethodology used in this
study. First, the size of the cohort was too small to
define associations between response and alter-
ations in genes that are infrequently altered in
melanoma. In addition, the current standard of
care for BRAF-mutant melanoma has been shift-
ing toward coadministrationofBRAFi andMEKi,
and PTEN alterations may have less effect in
patients treated with the combination. A second
limitation is that the approach used could not
detect changes in the expression of genes such
as PTEN resulting from epigenetic mechanisms.
There was also variability in the duration between
collection of the pretreatment sample and the
initiation of BRAFi therapy, and the molecular

status of some genes may have changed during this
interval. Inaddition,onlya singlepretreatment tumor
site was profiled, and thus, some alterations may not
have been detected as a result of intratumoral or
lesion-to-lesion tumor heterogeneity. Given these
latter challenges to the use of pretreatment tumors,
we are now exploring the analysis of tumor-derived
DNA in plasma, which may better represent the
spectrumofmolecular alterationpresent in individual
patients. Finally, broader sequencing methodologies
such as whole-genome sequencing may identify pre-
dictive biomarkers in genes not included in the
capture-based approach used in this study.

In summary, our results suggest that pre-existent
mutations inPTENareassociatedwithpoorBRAFi
response and shorter survival in patients with
BRAF-mutant melanoma. Additional studies using
broader analysis methods and cell-free DNA may
identify additionalmolecular signatures of intrinsic
BRAFi resistance that could be used to guide first-
line combinatorial strategies.
DOI: https://doi.org/10.1200/PO.16.00054
Published online on ascopubs.org/journal/po on June 23, 2017.
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APPENDIX

Table A1. PTPRT Mutations (n = 66)

Patient No. Mutation TCGA

No. of
Recurrences in

COSMIC Function Response Grade Drug

19 R328C Yes 5 Unknown Intermediate BRAFi

28 E324K Yes 5 Unknown Intermediate BRAFi

7 R721C No 4 Unknown Excellent BRAFi

21 P485S No 1 Unknown Intermediate BRAFi

47 N466S No 1 Unknown Poor BRAFi

9 G369D No Unknown Excellent BRAFi

51 E468K No Unknown Poor BRAFi

38 P1238L No Unknown Poor BRAFi

19 X969_splice No Inactivating Intermediate BRAFi

2 S80F No Unknown Excellent BRAFi

20 D659N No Unknown Poor BRAFi

6 L225F No Unknown Excellent BRAFi

22 R1349C No Unknown Intermediate BRAFi

21 R999Q Yes Unknown Intermediate BRAFi

55 P352L No 2 Unknown Excellent BRAFi + MEKi

59 Y860* No Inactivating Intermediate BRAFi + MEKi

59 Y1431H No Unknown Intermediate BRAFi + MEKi

60 R359Q No 1 Unknown Poor BRAFi + MEKi

63 E1432K No Unknown NE BRAFi

Abbreviations: BRAFi, BRAF inhibitor; COSMIC, Catalogue of Somatic Mutations in Cancer; MEKi, MEK inhibitor; NE, not evaluable;
TCGA, The Cancer Genome Atlas.
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Table A2. PTPRD Mutations (n = 66)

Patient No. Mutation TCGA
No. of Recurrences

in COSMIC Function Response Grade DRUG

28 R1088C No 3 Inactivating Intermediate BRAFi

12 G1819R No 1 Unknown Excellent BRAFi

22 R1496* No 1 Inactivating Intermediate BRAFi

12 G285E Yes 1 Unknown Excellent BRAFi

12 R427Q Yes 1 Unknown Excellent BRAFi

47 H1477Y No 1 Inactivating Poor BRAFi

7 Y1290N No Unknown Excellent BRAFi

3 P1200S No Unknown Excellent BRAFi

6 Q508P No Unknown Excellent BRAFi

28 D1521A No Unknown Intermediate BRAFi

25 D1521A No Unknown Intermediate BRAFi

41 X227_splice No Inactivating Poor BRAFi

12 G1001R No Unknown Excellent BRAFi

3 E1576K No Unknown Excellent BRAFi

20 Deletion Yes Inactivating Intermediate BRAFi

21 Deletion Yes Inactivating Intermediate BRAFi

35 Deletion Yes Inactivating Poor BRAFi

42 Deletion Yes Inactivating Poor BRAFi

64 M754I No Unknown NE BRAFi

Abbreviations: BRAFi, BRAF inhibitor; COSMIC, Catalogue of Somatic Mutations in Cancer; NE, not evaluable; TCGA, The Cancer
Genome Atlas.
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Table A3. KMT2C Mutations (n = 51)

Patient No. Mutation TCGA Function Response Grade Drug

28 S2638F No Unknown Intermediate BRAFi

30 F4738L No Unknown Intermediate BRAFi

43 P1570L No Unknown Poor BRAFi

20 D958N No Unknown Intermediate BRAFi

21 S931L No Unknown Intermediate BRAFi

10 S144F No Unknown Excellent BRAFi

25 Q2462* No Inactivating Intermediate BRAFi

12 H2563Q No Unknown Excellent BRAFi

3 P1909S No Unknown Excellent BRAFi

51 R526C No Unknown Poor BRAFi

30 L4729V No Unknown Intermediate BRAFi

48 T107A No Unknown Poor BRAFi

42 C963W No Unknown Poor BRAFi

19 Ampl Yes Unknown Intermediate BRAFi

27 Ampl Yes Unknown Intermediate BRAFi

55 Q2348E No Unknown Excellent BRAFi + MEKi

61 E864K No Unknown Poor BRAFi + MEKi

Abbreviations: Ampl, amplification; BRAFi, BRAF inhibitor; MEKi, MEK inhibitor; TCGA, The Cancer Genome Atlas.
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Table A4. TP53/MDM2 Mutations in the BRAFi Cohort (n = 51)

Patient No. Mutation Frequency Function Response Grade Drug

5 V216G Hotspot Unknown Excellent BRAFi

28 E258Q Recurrent Inactivating (does not
bind DNA)

Intermediate BRAFi

10 R342* Truncating Excellent BRAFi

21 S241F Hotspot Disrupts binding with
BARD1 and CstF1

Intermediate BRAFi

27 P34F Recurrent Unknown Intermediate BRAFi

27 H168L Recurrent Unknown Intermediate BRAFi

42 I251L Recurrent Poor BRAFi

47 R248W Hotspot Gain of function
(abolishes TS function)

Poor BRAFi

48 R337C Recurrent Unknown Poor BRAFi

43 MDM2 S304F Unknown Poor BRAFi

4 MDM2 S196F Recurrent Unknown Excellent BRAFi

4 MDM2 S160F Unknown Excellent BRAFi

4 MDM2 ampl Excellent BRAFi

36 MDM2 ampl Poor BRAFi

35 MDM2 ampl Poor BRAFi

40 MDM2 ampl Poor BRAFi

Abbreviations: ampl, amplification; BRAFi, BRAF inhibitor; TS, tumor suppressor.
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