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abstract

PURPOSE Endometrial cancer (EC) is not considered a component of the hereditary breast and ovarian cancer
syndrome but can arise in patients with germlineBRCA1/2 (gBRCA1/2) mutations. BiallelicBRCA1/2 alterations
are associated with genomic features of homologous recombination DNA repair deficiency (HRD) in cancer. We
sought to determine if ECs in gBRCA1/2 mutation carriers harbor biallelic alterations and/or features of HRD.

METHODS Of 769 patients with EC who underwent germline panel testing, 10 pathogenic gBRCA1/2 mutation
carriers were identified, and their tumor- and normal-derived DNA was subjected to massively parallel se-
quencing targeting at least 410 cancer-related genes. Three gBRCA1/2-associated ECs were identified in 232
ECs subjected to whole-exome sequencing by The Cancer Genome Atlas. Somatic mutations, copy number
alterations, loss of heterozygosity, microsatellite instability (MSI), and genomic HRD features were assessed.

RESULTS Of the 13 patients included who had EC, eight harbored pathogenic gBRCA1 mutations and five
harbored gBRCA2 mutations. Eight (100%) and two (40%) ECs harbored biallelic BRCA1 and BRCA2
alterations through loss of heterozygosity of the wild-type allele. All ECs harbored somatic TP53 mutations. One
monoallelic/sporadic gBRCA2-associated EC had MLH1 promoter methylation and was MSI high. High large-
scale state transition scores, a genomic feature of HRD, were found only in ECs with bi- but not monoallelic
BRCA1/2alterations. The Signature Multivariate Analysis HRD signature Sig3 was enriched in biallelic gBRCA1/2
ECs, and the three ECs from The Cancer Genome Atlas with BRCA1 biallelic alterations subjected to whole-
exome sequencing displayed a dominant HRD-related mutational signature 3.

CONCLUSION A subset of gBRCA1/2-associated ECs harbor biallelic BRCA1/2 alterations and genomic features of
HRD, which may benefit from homologous recombination–directed treatment regimens. ECs in BRCA2 mutation
carriers might be sporadic and even MSI high, and may potentially benefit from immune-checkpoint inhibition.

JCO Precis Oncol. © 2019 by American Society of Clinical Oncology

INTRODUCTION

The tumor suppressor genes BRCA1 and BRCA2
(BRCA1/2) play central roles in DNA repair via the
homologous recombination (HR) pathway.1 BRCA1/2
pathogenic germline mutations account for a large
proportion of cases of hereditary breast and ovarian
cancer (HBOC) syndrome, increasing the lifetime risk
of developing breast, ovarian, prostate, and/or pan-
creatic cancers.2,3 Endometrial cancers (ECs) are
currently not formally associated with HBOC but have
been reported in patients with germline BRCA1/2
(gBRCA1/2) mutations.4,5

Independent studies have suggested that ECs may be
a component of HBOC5 and specifically highlighted
a possible increased risk of serous carcinomas in
women with germline BRCA1 (gBRCA1) mutations.5,6

Conversely, in a recent pan-cancer analysis of path-
ogenic germline variants by The Cancer Genome Atlas

(TCGA), enrichment of gBRCA1/2 pathogenic variants
in EC was not identified.7

Even if not formally accepted as part of the HBOC
syndrome, the identification of ECs with defective HR
DNA repair could have important treatment implica-
tions in the era of precision medicine. Biallelic in-
activation of BRCA1/2, either through locus-specific
loss of heterozygosity (LOH) of the BRCA1/2 wild-type
allele or through a somatic BRCA1/2 pathogenic
mutation, has been associated with genomic features
of HR deficiency8,9 and increased survival after DNA
damage–inducing platinum-based chemotherapy.9

Importantly, the frequency of LOH of the wild-type
allele or somatic mutations of BRCA1/2 in the con-
text of gBRCA1/2mutation carriers varies according to
tumor type.9

In this study, we sought to determine whether ECs
arising in gBRCA1/2 mutation carriers harbor biallelic
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BRCA1/2 alterations and show features of HR deficiency,
including the Catalog of Somatic Mutations in Cancer
mutational signature 3, Signature Multivariate Analysis
(SigMA) HR deficiency signature Sig3, or large-scale
chromosomal breaks in the form of large-scale state
transitions (LSTs). In addition, we assessed the clinico-
pathologic data of ECs in gBRCA1/2 mutation carriers and
explored the repertoire of somatic mutations present in
these tumors.

METHODS

Case Selection

All patients with EC and gBRCA1/2 mutations who con-
sented to germline analysis under an institutional review
board–approved protocol at Memorial Sloan Kettering
Cancer Center and whose tumors were subjected to tar-
geted massively parallel sequencing via Memorial Sloan
Kettering–Integrated Mutation Profiling of Actionable
Cancer Targets (MSK-IMPACT)10,11 from July 2015 to May
2019 were identified (n = 769 sequenced; n = 10 with
pathogenic gBRCA1/2 mutation). All gBRCA1/2 variants
were reviewed by a board-certified molecular pathologist
(D.M.) and classified according to the American College of
Medical Genetics and Genomics criteria12 as pathogenic.
Clinicopathologic data, including age at diagnosis, cancer
stage, and past cancer history, were obtained from med-
ical records. All cases were centrally rereviewed by pa-
thologists (A.P.M.S., R.A.S.) with experience and expertise
in gynecologic pathology. In addition, ECs with patho-
genic gBRCA1/2 alterations (n = 3) subjected to whole-
exome sequencing (WES) as part of The Cancer Genome
Atlas (TCGA; n = 232)13 were identified in a curated data set
from Riaz et al,8 as previously described.14 WES-derived
somatic mutation Multi-Center Mutation Calling in Multiple
Cancers data of the cases were retrieved from TCGA Ge-
nomic Data Commons (https://gdc.cancer.gov/about-data/
publications/mc3-2017),15 and clinicopathologic data were
obtained from the TCGA data portal.

Massively Parallel Sequencing Analysis

Tumor and matched normal DNA samples were subjected
to targeted massively parallel sequencing using MSK-
IMPACT, which targets all exons and selected introns of
410 (n = 6) or 468 (n = 4) cancer genes, as previously
described.10,11 The median depth of coverage was 613×
(range, 406× to 992×) for tumor and 509× (range, 401× to
685×) for normal samples (Data Supplement). Analysis of
sequencing data for the identification of single nucleotide
variants (SNVs) and small insertions and deletions (indels)
was performed as previously described.16,17 FACETS18

(fraction- and allele-specific copy number estimates from
tumor sequencing) was used to determine copy number
alterations (CNAs) and whether genes harboring somatic or
germline mutations were targeted by loss of heterozygosity
(LOH), as previously described.16,17 The cancer cell frac-
tions of all somatic mutations were computed using AB-
SOLUTE, version 1.0.6,19 as previously described.16,17 A
combination of mutation function predictors was used to
define the potential functional impact of each missense
SNV.20 Mutational hotspots were annotated according to
Chang et al.21

Microsatellite Instability Score

The algorithm MSIsensor22 was used to assess micro-
satellite instability (MSI), as previously described.14 ECs
subjected to MSK-IMPACT and WES (TCGA) with MSI-
sensor scores of greater than or equal to 1023 and greater
than or equal to 3.522, respectively, were deemedMSI high.

Mutational Signatures

Mutational signatures were inferred from all synony-
mous and nonsynonymous SNVs using the algorithm
deconstructSigs24 at default parameters, as previously
described.14 deconstructSigs was only applied to samples
with at least 20 somatic SNVs.14 In addition, Signature
Multivariate Analysis (SigMA) was used for samples with at
least five somatic SNVs; SigMA is a tool to detect the HR
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deficiency mutational signature Sig3 and other signatures
from targeted gene panels.25

Large-Scale State Transitions

For the assessment of genomic features of HR deficiency,
large-scale state transitions (LSTs) were defined, and
a cutoff of greater than or equal to 15 was used for LST-high
cases, as previously described.14,26

DNA Mismatch Repair Immunohistochemistry andMLH1
Promoter Methylation

Immunohistochemistry for the DNA mismatch repair
(MMR) proteins MLH1, MSH2, MSH6, and PMS2 was
performed in the clinical setting as previously described.27

Loss of DNA MMR protein expression was defined as the
complete absence from all tumor cell nuclei. The presence
of a positive internal control (ie, blood vessels, stromal cells,
lymphocytes) was required for interpretation. MLH1 pro-
moter methylation was assessed in the clinical setting on
DNA obtained from formalin-fixed paraffin-embedded tu-
mor samples, as previously described.28

Statistical Analyses

Fisher’s exact and Mann-Whitney U tests were used for
comparison of categorical and continuous variables,
respectively. Statistical analyses were performed using
SPSS Statistics, version.25 (IBM, Armonk, NY). Two-tailed
P , 0.05 was considered statistically significant.

RESULTS

Clinicopathologic Features of ECs Arising in gBRCA1/2
Carriers

Ten ECs from patients with pathogenic gBRCA1/2 muta-
tions subjected to MSK-IMPACT sequencing (n = 769 ECs;
1.3%) and three subjected to WES by TCGA (n = 232 ECs;
1.3%)13 were included in this study. Of these 13 gBRCA1/2-
associated ECs, eight and five patients with EC harbored
gBRCA1 and germline BRCA2 (gBRCA2) mutations, re-
spectively (Table 1). None of these gBRCA1/2-associated
ECs displayed germline alterations in other genes associated
with hereditary cancer susceptibility, including the DNA
MMR genes.

The median age at EC diagnosis was 62 (range, 44 to 78)
years, with gBRCA1 patients (n = 8) being younger at EC
diagnosis (median [range] age, 56 [44 to 64] years) than
patients with EC harboring gBRCA2 (n = 5; median [range]
age, 68 [61 to 78] years; Mann-Whitney U test P = .01;
Tables 1 and 2).

The histologic types of the gBRCA1/2-associated ECs
varied. The majority of gBRCA1/2-associated ECs (n = 6 of
8; 75%) displayed an endometrioid histology (n = 2 and 4
International Federation of Gynecology and Obstetrics
[FIGO] grades II and III, respectively) but lacked a solid/
pseudoendometrioid/transitional cell-like pattern of mor-
phology, which has been associated with gBRCA1/2
mutations in high-grade serous ovarian cancers.29,30 In

contrast, ECs from patients with pathogenic gBRCA2
mutations were more heterogeneous at the phenotypic
level, and included endometrioid (n = 1; FIGO grade II),
carcinosarcoma (n = 2), high-grade EC not otherwise
specified (NOS; n = 1) and serous (n = 1) cancers (Tables 1
and 2). Of note, none of the gBRCA1/2-associated ECs
included in this study were of serous histology.

gBRCA1/2-associated ECs presented at different clinical
FIGO stages (2009 staging system31). Although a subset of
the ECs occurring in pathogenic gBRCA1mutation carriers
were uterus- or cervix-confined cancers (stage I, n = 3;
stage II, n = 1; stage III, n = 4), all EC patients with path-
ogenic gBRCA2 mutations presented at an advanced stage
(stage III, n = 4; stage IV, n = 1; Tables 1 and 2).

Four of the patients with gBRCA1/2-associated EC had
a breast cancer diagnosis prior to their diagnosis of EC (EC
identifiers BEC-3, BEC-6, BEC-8, and BEC-12: BEC-3,
gBRCA1/2, carcinosarcoma; BEC-6, gBRCA1/2, serous;
BEC-8, gBRCA1/2, endometrioid; BEC-12, gBRCA1/2,
high-grade EC NOS; Table 1). None of the patients received
tamoxifen as part of their breast cancer treatment regi-
mens. In addition, patient BEC-2 (gBRCA1/2, carcinosar-
coma) had a rectal cancer 12 years before the EC diagnosis
and had received pelvic radiation. Taken together, our data
suggest the clinicopathologic features associated with ECs
occurring in patients with pathogenic gBRCA1 or gBRCA2
mutations may be heterogeneous.

Biallelic BRCA1/2 Alterations

Allele-specific copy number analysis revealed that 77%
(n = 10 of 13) of the ECs in patients with pathogenic
gBRCA1/2 mutations displayed biallelic inactivation of
BRCA1/2 uniformly through LOH of the wild-type allele
(Table 2; Fig 1). No somatic BRCA1/2 mutations were
identified in the ECs studied (Fig 1; Data Supplement). Not
all ECs occurring in pathogenic gBRCA1/2 mutation car-
riers harbored biallelic BRCA1/2 alterations, which have
previously been associated with HR deficiency.8 Although
all ECs in pathogenic gBRCA1 mutation carriers (100%)
harbored biallelic BRCA1 inactivation, only two of the five
ECs (40%) from patients with pathogenic gBRCA2 muta-
tions displayed biallelicBRCA2 inactivation (Table 2; Fig 1).
Biallelic BRCA1/2 inactivation was found across all histo-
logic subtypes and clinical stages of EC. ECs in BRCA2
mutation carriers lacking LOH of the wild-type allele are
likely sporadic tumors; all three were stage III at diagnosis
and were endometrioid grade II, serous, or high-grade ECs
(Table 2; Fig 1). These data suggest that the vast majority of
gBRCA1/2-associated ECs, but only a subset of gBRCA1/2-
associated ECs, harbor biallelic inactivation of the re-
spective wild-type allele, and that some gBRCA1/2-
associated ECs may, in fact, be sporadic.

Repertoire of Somatic Mutations and CNAs

The median number of somatic mutations detected in the
410 MSK-IMPACT genes (smallest gene panel) in the

BRCA1/2 Endometrial Cancer
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13 gBRCA1/2-associated ECs was six (range, 2 to 38),
with a median of five (range, 2 to 32) nonsynonymous
mutations (Data Supplement). We observed that all ECs
analyzed, irrespective of the presence of mono- or biallelic
BRCA1/2 alterations, harbored somatic TP53 mutations,
of which 12 (92%) were hotspot mutations (Fig 1; Data
Supplement). Alterations affecting the PI3K pathway were

common, with PIK3CA mutations present in five ECs
(38%), PIK3R1 mutations in two ECs (15%), and PTEN
mutations/homozygous deletions in three ECs (23%; Figs 1
and 2). Other recurrently altered genes included FAT1,
PTCH1, KRAS, and MAP3K1 (each n = 2; Fig 1, Data
Supplement).

We noted that BEC-1, a likely sporadic EC from a gBRCA2
mutation carrier with a monoallelic BRCA2 alteration, had
a high mutational burden with 32 nonsynonymous somatic
mutations. In addition, this case was MSI high with a high
MSIsensor score (≥ 10; Fig 1, Table 2). None of the DNA
MMR genes in BEC-1 harbored any somatic or germline
mutations; however, consistent with the protein loss of
MLH1 and PMS2 as assessed by immunohistochemistry
(Fig 3), this case displayed MLH1 promoter methylation.

The levels of copy number alterations (CNAs) varied across
the gBRCA1/2-associated ECs studied, with some having
very few CNAs and others displaying high levels of genomic
instability (Fig 2). The ECs with very low levels of gene CNAs
(ie, BEC-1, BEC-6, and BEC-12) had monoallelic BRCA2
alterations and were likely sporadic, with one (BEC-1) being
MSI high, as mentioned. On the other hand, ECs with the
highest levels of CNAs had biallelicBRCA1/2 alterations (ie,
BEC-2, BEC-3, BEC-5, BEC-7, and TCGA-3; Fig 2). When
assessing amplifications and deletions, PTEN was the only
recurrent homozygous deletion identified in two biallelic
BRCA1 ECs (BEC-3 and TCGA-2). In addition, we found an
NF1 homozygous deletion in the biallelic BRCA1 grade II
endometrioid TCGA-2 and a SMARCA4 homozygous de-
letion in the biallelic BRCA2 carcinosarcoma BEC-2. Of
note, SMARCA4 (BRG1) loss is commonly found in un-
differentiated carcinoma of the endometrium,32,33 and
BEC-2 was a carcinosarcoma with heterologous elements,
which, in addition to the carcinoma and sarcomatous
components, also displayed an undifferentiated compo-
nent. Finally, amplification of BCL6, TP63, and EED was
found in the biallelic BRCA1 grade III endometrioid TCGA-1
EC (Fig 2).

Taken together, we found that ECs in patients with
a gBRCA1/2 mutation are heterogeneous at the mutational
and gene copy number levels. In addition, in germline
carriers of pathogenic BRCA2 mutations, the ECs may be
sporadic and even have a high mutational burden and be
MSI high.

HR DNA Repair Deficiency in gBRCA1/2 ECs

We first assessed the presence of LSTs, a genomic feature
of HR deficiency, in all cases. We observed that ECs with
biallelic BRCA1/2 alterations (n = 10) had high LST scores,
whereas ECs with monoallelic BRCA1/2 alterations did not
(Table 2; Fig 3A). In addition, mutational signature analysis
was performed using deconstructSigs24 for ECs with at least
20 SNVs (ie, n = 1 MSK-IMPACT EC; n = 3 TCGA ECs), as
previously described.14 All biallelic, gBRCA1/2-associated,
TCGA ECs had a dominant mutational signature 3 associated

TABLE 1. Demographics and Baseline Characteristics of gBRCA1/2-Associated
Endometrial Cancers

Demographic or Characteristic
All BRCA1/2
(n = 13)

BRCA1
(n = 8)

BRCA2
(n = 5) P*

Sequencing analysis .23

MSK-IMPACT 10 (77) 5 (63) 5 (100)

TCGA WES 3 (23) 3 (38) —

Age, median (range),
years

62 (44-78) 56 (44-64) 68 (61-78) .01

Histology .16

Endometrioid (grade II/III) 7 (54) 6 (75) 1 (20)

Carcinosarcoma 3 (23) 1 (13) 2 (40)

Serous 1 (8) — 1 (20)

Mixed endometrioid/serous 1 (8) 1 (13) —

High-grade endometrial
NOS

1 (8) — 1 (20)

Stage† .74

I 3 (23) 3 (38) —

II 1 (8) 1 (13) —

III 8 (62) 4 (50) 4 (80)

IV 1 (8) — 1 (20)

Past cancers‡ 1.00

Breast 4 (40) 2 (40) 2 (40)

Rectal 1 (10) — 1 (20)

Squamous cell carcinoma
(face)

1 (10) — 1 (20)

No past cancers 4 (40) 3 (60) 1 (20)

Prior radiation exposure‡ 1.00

Breast (uterine serous,
n = 1; carcinosarcoma,
n = 1)

2 (20) 1 (50) 1 (20)

Rectal (carcinosarcoma,
n = 1)

1 (10) — 1 (20)

No prior radiation exposure 7 (70) 40 (80) 3 (60)

NOTE. Data reported as No. (%) unless otherwise indicated.
Abbreviations: MSK-IMPACT, Memorial Sloan Kettering–Integrated Mutation

Profiling of Actionable Cancer Targets; NOS, not otherwise specified; TCGA, The
Cancer Genome Atlas; WES, whole-exome sequencing.
*Fisher’s exact and Mann-Whitney U tests were used for comparison of

categorical and continuous variables, respectively.
†Staging information was performed according to the International Federation of

Gynecology and Obstetrics system.31

‡Past cancer histories and information regarding radiation exposure were
available for the 10 MSK-IMPACT cases and reflect cancers diagnosed and treated
prior to the diagnosis of EC.
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with HR deficiency (Fig 3B).14 Given the limited number of
SNVs and indels in the ECs subjected to MSK-IMPACT
sequencing, other genomic HR-deficiency features such
as indel length, microhomology, or mutational signatures
using decomposition algorithms could not be used.
Therefore, we used SigMA, a recently described, likelihood-
basedmeasure signature analysis combined with machine-
learning techniques, which can be used to detect the
mutational signature Sig3 associated with HR deficiency
from targeted gene panels including MSK-IMPACT (sen-
sitivity range, 48% to 62% for uterine cancers).25 Consis-
tent with the LST analysis, all six biallelic, BRCA1/2-

associated ECs subjected to MSK-IMPACT and with at least
five SNVs displayed either a dominant HR deficiency-related
Sig3 (n = 2) or a dominant clock signature with secondary
HR-deficiency signatures Sig3 (n = 3) or Sig834 (n = 1),
in contrast to the two sporadic ECs with monoallelic
BRCA2 alterations, which displayed MSI (SigMA)/signature
6 (deconstructSigs) and APOBEC signatures (Table 2;
Fig 3C). The three biallelic gBRCA1/2-associated ECs from
TCGA subjected to WES displayed a strong dominant Sig-
MA Sig3 (Table 2). These data provide evidence to suggest
that in some patients with gBRCA1/2 mutations, ECs may
have biallelic BRCA1/2 alterations and be HR deficient.
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DISCUSSION

The inclusion of EC as a component of HBOC syndrome
could have substantial clinical impact on the screening,
evaluation, and treatment of patients with gBRCA1/2
mutations. Previous reports of ECs in this population have
acknowledged that the prevalence of EC in gBRCA1/2
mutation carriers is low.5 Here, through an in-depth
analysis of ECs from patients with pathogenic gBRCA1/2
mutations, we demonstrate that the majority of these cases
(77%) harbored biallelic BRCA1/2 alterations and dis-
played genomic features of HRD, providing evidence
to suggest an etiological link between the pathogenic
gBRCA1/2mutations and the development of these ECs. In
fact, this phenomenon was uniformly observed in patients
with pathogenic gBRCA1mutations; conversely, only two of
the five patients with pathogenic gBRCA2 mutations had
somatic inactivation of the BRCA2 wild-type allele and
genomics features of HR deficiency. In ovarian cancer,
patients with HR-deficient tumors have improved overall
survival with platinum-based therapy and have better re-
sponses to HR deficiency–directed treatments such as
PARP inhibitors than their wild-type counterparts.35,36

Knowledge of the allele status of BRCA1/2 alterations and/or
HR-deficiency features could be beneficial in therapeutic
decision making for patients with gBRCA1/2 mutations and
EC. Our analysis has demonstrated that not all ECs arising
in the context of pathogenic gBRCA2 mutations harbor LOH
of the wild-type allele and genomics features of HR de-
ficiency. In addition, it revealed that one of these cases was

MSI high, likely representing a sporadic (ie, non-BRCA1/2)
EC arising in a gBRCA2mutation carrier. In this context, this
patient would potentially benefit from immune checkpoint
inhibitors, which have been approved for the management of
recurrent MSI-high/DNA MMR–deficient cancers.37 In fact,
a recent case report highlighted a complete remission after
PD-1 blockade in a patient with MMR-deficient EC and
a pathogenic monoallelic gBRCA1 mutation.38

The majority (75%) of biallelic gBRCA1/2-associated ECs
were of intermediate/high-grade endometrioid as opposed
to serous histology in previous reports.5,6 All six biallelic
gBRCA1/2-associated endometrioid ECs harbored TP53
mutations, had high LST scores, and relatively high levels of
CNAs (Table 2; Fig 2), and would likely be of copy-number
high (serous-like) molecular subtype, as described by
TCGA.13 It should be noted, however, that of these six
endometrioid ECs with biallelic BRCA1 alterations, four
harbored somatic mutations characteristic of endometrioid
ECs, including PIK3CA mutations, PIK3R1 mutations, and
PTENmutations/homozygous deletions. Conversely, two of
these ECs lacked alterations affecting genes recurrently
altered in endometrioid ECs (Fig 1), suggesting that at the
genetic level, these latter two cases resembled serous
rather than endometrioid carcinomas, and that there is
heterogeneity in gBRCA1/2-associated ECs. Carcinosar-
comas of the uterus are rare, representing less than 5% of
all uterine tumors.39 We noted a high frequency (30%) of
carcinosarcomas in the 10 gBRCA1/2-associated ECs
subjected to MSK-IMPACT sequencing, whereas overall,
only 10% of the 769 ECs subjected to germline MSK-
IMPACT sequencing were carcinosarcomas (remaining
cases: 55% endometrioid, 15% serous, 10% endometrial
cancer NOS, 4%mixed endometrial, 3% clear cell, 1% de- or
undifferentiated, and 1% other). Interestingly, recurrent so-
matic BRCA1/2 mutations and BRCA2 deletions also have
been reported in uterine carcinosarcomas.40-42 These find-
ings suggest that ECs arising in gBRCA1/2 mutation carriers
are heterogeneous at the histologic level and are potentially
enriched for endometrioid tumors and carcinosarcomas.

The data presented here do provide insight into the ge-
nomics of ECs in patients with pathogenic gBRCA1/2
mutations, which may play a role in the tumorigenesis and/
or progression of EC in some patients. This study has
several limitations, however, primarily driven by the small
sample size, and it does not resolve the controversy of EC as
a feature of HBOC syndrome. The low incidence of these
cases (1.3%; n = 10 of 769 ECs subjected to germline MSK-
IMPACT testing) not only limits the sample size of this study
but also, on its own, presents a challenge in defining EC as
part of the HBOC syndrome spectrum of malignancies. In
contrast, during the same time, 4.5% and 11.1% of breast
and ovarian cancers tested by germline MSK-IMPACT were
gBRCA1/2 associated, respectively. The MSK cohort during
the time studied is enriched for advanced-stage disease,10,11

and neither the actual prevalence of pathogenic gBRCA1/2
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mutations in patients with EC nor the impact of these mu-
tations on the outcome of patients with EC could be fully
defined. Although we have assessed the genomics features
of HR deficiency, including LSTs and SigMA HR deficiency
signature Sig3 in all cases, HR deficiency is more accurately
assessed with whole-genome sequencing.43 Hence, addi-
tional studies testing ECs developing in the context of
pathogenic gBRCA1/2mutations but lacking loss of the wild-
type allele by whole-genome sequencing are warranted.

Despite these limitations, here we demonstrate the im-
portance of germline and somatic genetic characterization
of ECs. In fact, ECs developing in the context of pathogenic
gBRCA1/2 mutations may harbor genomics features of HR
deficiency and be causally linked to the loss of function of
these tumor suppressor genes. However, the presence of
a pathogenic gBRCA1/2 mutation does not rule out the
possibility of an EC being sporadic and displaying DNA
MMR deficiencies.
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