Skip to main content
. 2019 Oct 16;40(9):1797–1805. doi: 10.1177/0271678X19882918

Table 1.

Binary logistic regression analysis for the presence of baseline lacunes.

Model 1, OR (p) Model 2, OR (p) Model 3, OR (p)
DMVs score, ±SD 1.299 (<0.001) 1.248 (<0.001)
Brain-CBF, mL/100 g-tissue/min, ±SD 0.965 (0.012) 0.977 (0.110)  0.973 (0.074)
WMH-CBF, mL/100 g-tissue/min, ±SD 0.913 (<0.001) 0.939 (0.014) 0.925 (0.004)
NAWM-CBF, mL/100 g-tissue/min, ±SD 0.968 (0.035) 0.972 (0.086) 0.965 (0.044)
WMH-FA, ×10−3 0.993 (0.008) 0.997 (0.301) 0.998 (0.505)
NAWM-FA, ×10−3 0.983 (<0.001) 0.988 (0.028) 0.992 (0.167)
WMH-MD, ×10−3 mm2/s, ±SD 21.974 (0.002) 3.860 (0.232) 1.680 (0.665)
NAWM-MD, ×10−3 mm2/s, ±SD 167.669 (<0.001) 12.412 (0.112) 7.275 (0.249)

Model 1 included age and diabetes mellitus; Model 2 included age, diabetes mellitus and WMH volume; Model 3 included age, diabetes mellitus, WMH volume and DMVs score.

DMVs: deep medullary veins; CBF: cerebral blood fluid; WMH: white matter hyperintensity; NAWM: normal appearing white matter; FA: fractional anisotropy; MD: mean diffusivity; OR: odds ratio.