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Abstract

The extent to which sequence variation impacts plant fitness is poorly understood. High-resolution 

maps detailing the constraint acting on regulatory sites would be beneficial, as functional 

annotation of noncoding sequences remains sparse. Here we present a fitness consequence map for 

rice (Oryza sativa). We obtained fitness consequence scores (ρ) for 246 inferred genome classes 

derived from nine functional genomic and epigenomic datasets, including chromatin accessibility, 

mRNA/sRNA transcription, DNA methylation, histone modifications, and engaged RNA 

polymerase activity. These were integrated with genome-wide polymorphism and divergence data 

from 1,477 rice accessions and 11 reference genome sequences in the Oryzeae. We found ρ to be 

multimodal, with ≈9% of the rice genome falling into classes where more than half of the bases 

would likely have a fitness consequence if mutated. Around 2% of the rice genome showed 

evidence of weak negative selection, frequently at candidate regulatory sites, including a novel set 

of 1,000 potentially active enhancer elements. This fitness consequence map provides perspective 

on the evolutionary forces associated with genome diversity, aids in genome annotation, and can 

guide crop breeding programs.
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INTRODUCTION

Determining the likely impact of sequence variation at noncoding sites continues to be 

problematic, in part because functional annotation is generally sparse. Nonetheless, high-

resolution maps of sequence constraint that reveal both functional coding and regulatory 

sites would benefit crop breeding and genetic engineering interventions. Several approaches 

to estimating selective constraint from sequence conservation across species have been 

developed, and more recently complemented by approaches that utilize large population 

genomic datasets1,2. While conservation-based approaches frequently provide high spatial 

resolution, and population-based approaches can be used to infer recent changes in 

constraint, neither class of approaches has until recently been able to simultaneously provide 

both perspectives.

One contemporary approach to determining recent selection on genome sequences at high 

resolution is INSIGHT3 (Inference of Natural Selection from Interspersed Genomically 

coHerent elemenTs), which infers the fraction of nucleotide sites under selection. This is 

accomplished by comparing patterns of within-species sequence polymorphism with 

between-species divergence across dispersed genomic sites, relative to nearby neutrally 

evolving sites3. The shorter evolutionary timescales associated with intra-species variation 

make this approach more robust to evolutionary turnover, and its applicability to short 

sequence domains (e.g., regulatory sites) makes it particularly powerful for surveying the 

fitness consequences of point mutations in noncoding DNA4–7. The use of locally-matched 

rather than global neutral models make the INSIGHT approach similar to the McDonald-

Kreitman test4 in its robustness to confounding factors such as non-equilibrium demography, 

mutation rate variation, and background selection.

The influence of natural selection at each site is summarized by ρ, the probability that a 

mutation at that site will affect fitness. Values of ρ closer to 1 suggest that a larger 

proportion of sites in a sequence class are under selection3 compared to neutral regions (for 

which ρ is closer to 0). INSIGHT additionally quantifies other parameters, including the 

number of segregating polymorphic sites per kilobase pair (kbp) under weak negative 

selection3 (Pw).

Integrating INSIGHT with functional genomic data and aggregating the genome by joint 

patterns across these functional genomic tracks allows the development of genomic fitness 

consequence (fitCons) maps that permit selection to be inferred at a high resolution across 

the genome8,9. By leveraging patterns of polymorphism within species, these maps measure 

natural selection at shorter time scales than traditional evolutionary conservation methods. 

Because polymorphic sites are sparse across many genomes, the fitCons approach uses 

functional genomic data to pool information across putatively functionally similar genomic 

sites, and therefore define discrete genomic classes for which we can infer ρ and other 

selection parameters (e.g., Pw).

The fitCons approach, with INSIGHT at its core, was first developed for the human genome. 

Here we report the first fitness consequence map in a plant genome, using rice (Oryza sativa) 

as a model system. Rice is one of the most important domesticated food crops in the world, 
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and is the target of intense effort for crop improvement to advance food security and 

sustainable agriculture10. The rice fitness consequence map will contribute to a better 

understanding of selection in this key crop species, and potentially guide the identification of 

functional components of genome structure, for future breeding efforts.

RESULTS

GreenINSIGHT

To produce a rice fitness consequence map, we adapted the INSIGHT model for plants 

(greenINSIGHT) by modifying elements that were human-specific and accounting for some 

aspects of plant genome organization and recent introgression (see Methods). In essence the 

greenINSIGHT pipeline (Supplementary Fig. 11) combines genomic alignments, from 

which an ancestral base probability distribution is generated, with polymorphism data from 

the focal species, to infer selection acting at sites of interest relative to a set of matched local 

neutral sites. Polymorphism data was aggregated from 1,477 O. sativa accessions in the 3k 

Rice Genome Project panel11 (Supplementary Table 1) and alignments were generated from 

O. sativa to the genomes of 10 species in the Oryza genus, with the closest outgroup (O. 
rufipogon) having ~0.3 million years of divergence from O. sativa12 (Supplementary Fig. 1, 

also see Methods). We also developed an INSIGHT model for Arabidopsis thaliana using an 

80-way sub-population alignment of the 1,001 Arabidopsis genome dataset13 (see Methods) 

and alignments generated previously14. The robustness of INSIGHT to complex 

demography is particularly relevant in rice because assortative mating in the different O. 
sativa variety groups (e.g. japonica and indica) has led to relatively differentiated 

populations3,15,16.

We explored the distribution of ρ reported by greenINSIGHT at a set of well-characterized 

genomic locations (Fig. 1a). As expected, intergenic regions depleted of open chromatin and 

distal to genes and conserved non-coding regions (CNSs) (see Methods) had the lowest ρ 
(<0.03)17. Genomic regions annotated as coding sequences (CDSs) had a significantly 

higher median ρ, albeit with a broad distribution likely reflective of the considerable 

variation in constraint across protein domains.

The selection profiles on 5’ and 3’ UTRs were similarly complex, again suggestive of a 

broad range of functional sites. Promoter regions have ρ distributions similar to neutral sites 

overlaid with a small number of selected sites. Introns may experience low levels of direct 

selection, but possibly higher levels of intron-length dependent background selection18,19 

due to their linkage with CDSs (Fig. 1a, see also Fig. 3h, Supplementary Fig. 6). Distal 

CNSs had highest ρ values, similar to those of the more constrained CDSs14.

Sites that generate noncoding RNAs (ncRNAs) displayed a range of ρ, with sites generating 

long noncoding RNAs (lncRNAs), mature microRNAs (miRNAs), and transfer/ribosomal 

RNAs (tRNAs/rRNAs) showing evidence of more selection than sites generating pre-

miRNAs, small nucleolar RNAs (snoRNAs) and other unclassified ncRNAs (frequently 

small interfering RNAs (siRNAs)) (Fig. 1b). Differences between ρ in humans and plants 

(A. thaliana and O. sativa) were mostly subtle, except in introns (Fig. 1c) where the much 

longer human20,21 introns likely make background selection less of a confounding factor.
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We sought to determine the sensitivity of greenINSIGHT to constraint in regulatory regions 

by estimating constraint on a well-documented plant transcription factor binding motif, the 

G-box motif (CACGTG)22,23, in different genomic contexts. This motif is often functional 

in the promoters of genes targeted by abscisic acid signaling24, and so unsurprisingly ρ was 

higher in the promoters of transcription factor genes than in the promoters of genes with 

more enzymatic roles (Fig. 1d). However, the proportion of constrained bases in this motif 

was, as expected, higher when found in promoters than it was in distal intergenic locations.

Genome partitioning to build a fitCons map of rice

To estimate ρ genome-wide in rice, we used the fitCons approach to partition the genome 

into a set of classes8 based on their shared functional characteristics. Functional genomic 

datasets were generated from the leaves of 3-week old Oryza sativa tropical japonica 

(cultivar Azucena) plants and included total RNA transcription25, small RNA transcription26 

(sRNA), ATAC-seq27,28 (Assay for Transposase-Accessible Chromatin using Sequencing), 

DNA methylation29, Precision nuclear Run-On and sequencing (PRO-seq), which maps 

transcriptionally engaged polymerase activity at basepair (bp) resolution30,31, and 

H3K27me3, H3K27ac, H3K18ac and H3K4me3 histone modifications (using ChIP-seq32,33) 

(Supplementary Table 2).

Epigenomic data broadly supported observations of chromatin states reported elsewhere in 

plants33–43 (Fig. 2a; Supplementary Table 3). Promoter regions of expressed genes were 

marked with open chromatin and decreased methylation, while the enhancer mark H3K27ac 

positively correlated with polymerase activity in distal and proximal gene regions (Fig. 2a). 

In addition, the distribution of transcriptionally engaged polymerases confirmed 5’ and 3’ 

polymerase pausing around genes, with the highest signal found in actively expressed genes 

around transcription start sites (TSSs)36 (Supplementary Fig. 2). Active gene expression was 

negatively correlated with the presence of H3K27me3, while transposable elements (TEs) 

showed positive correlations between sRNA transcription and DNA methylation indicative 

of TE silencing. Most sRNA coverage appeared to arise from broadly distributed siRNAs 

whilst DNA methylation was mostly found in CpG contexts, with CpG methylation slightly 

enriched in gene bodies relative to CHG/CHH methylation; however their distribution was 

similar in TEs as previously reported44 (Supplementary Table 4).

The rice genome was partitioned into a set of coherent classes in a two step process - first 

the epigenomic datasets were used to infer a small set of chromatin states, and in a second 

step these states were intersected with transcriptomic and annotation data (Fig. 2b) to 

generate a more nuanced global classification.

The first step employed a Hidden-Markov modeler ChromHMM45 to binarize chromatin 

signals and produce a low-resolution map of chromatin states across the rice genome (Fig 

2b,c see also Methods). The selection of the number of states was informed by the 

ChromHMM option “CompareModels”46 to determine the correlation between the 

emissions of models having different numbers of states. Selecting a 50-state model as an 

over-parameterized reference, we observed a rapid convergence towards this model’s outputs 

after 15-states were incorporated and the mean state correlation with the closest state in the 

50-state model exceeded 0.9 once 20 states were included (Supplementary Fig. 3). We 
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therefore selected a 20-state ChromHMM model (Fig. 2b,c). This number is higher than 

early estimates of the number of chromatin states in plants47,48 but fewer than the 38 states 

previously inferred in rice from a broader set of histone marks32. The inferred number of 

chromatin states is anticipated to vary to some degree with the type of chromatin marks used 

as input and to this end we selected marks based on testing for high levels of intra-replicate 

correlation but low levels of correlation between marks in A. thaliana public datasets.

In a second step we intersected these chromatin states with further binarized annotation data 

and evidence for roles in transcription or transcription initiation. These data included 

reference genome annotation (coding, exon), phastCons scores, and RNA-seq and PRO-seq 

alignments (Fig. 2b, also see Methods). The intersection of the 20 states with this data 

generated a more ontologically complete and higher-resolution set of 640 possible genome 

classes8, of which 246 were identified with an appreciable coverage of the rice genome (>20 

kb of total sequence) (Fig 2b, Supplementary Table 5).

With the rice genome partitioned into 246 genomic classes (fitCons classes), we estimated ρ 
for each class using greenINSIGHT as previously described8 (Table 1, Supplementary 

Tables 5 and 6). The 246 class ρ scores that were then distributed back to each nucleotide in 

each class, giving each nucleotide in the genome a fitCons score (Fig. 3a). A simple 

validation of class coherence was performed to ensure that the distribution of ρ as a function 

of class size was different to that expected under a random sampling model (Supplementary 

Fig. 4, Supplementary Table 7, also see Methods).

Distribution of fitCons scores

The 246 rice fitCons classes we inferred were distributed in ~4.3 million blocks ranging in 

size from 1–600 bps, with most in blocks of 10–40 bps (Fig. 3a,b). We found a multimodal 

distribution of ρ over the 246 states, with peaks at ρ≈0.08, ≈0.44, and ≈0.76. Most of the 

genome is comprised of classes with low/moderate ρ (86.4% of the genome has ρ < 0.4), 

while higher ρ classes (ρ > 0.5) make up only 8.98% of the genome (Fig. 3c). The 

cumulative distribution of ρ in rice is consistent with similar number of coding sites in a 

small genome space relative to human, and more intermediate selection on noncoding 

functional sites, some of which may arise from background selection (Fig. 3d).

Relative to the genome’s broader annotation, classes with low/moderate selection were 

primarily located in unannotated intergenic regions, or were enriched for TEs (Fig.3c, 

Supplementary Table 5). In contrast, genome classes with higher ρ were enriched for CDSs 

and CNSs, with some overlapping regions with open chromatin, and/or actively transcribed 

sites. Classes that have intermediate values of ρ are enriched for a mixture of genomic 

annotations, and it is hard to identify and predominant constituents for many of these 

classes.

As expected, many classes with higher ρ were enriched for known functional elements. For 

example, classes 974, 977 and 1003 (median ρ = 0.817) were associated with CDSs and 

classes 138–146 (median ρ = 0.694) and 170–178 (median ρ = 0.7) with a set of inferred 

CNSs (Table 1, Supplementary Table 5, also see Methods). Several classes were associated 

with different TE types; for instance, classes 15 (ρ = 0.065) and 4 (ρ = 0.085) were enriched 
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for Mutator-like transposable elements and gypsy LTR retrotransposons, respectively (Fig. 

3e, f).

Several of these high ρ classes appeared to be enriched for facultative regulatory sites, 

showing small but significant correlations with the expression of downstream genes (e.g., 

class 17: r = 0.113, two-tailed t-test, P = 5.2 × 10−70, N = 24,296; class 145: r = 0.08, P = 4.5 

× 10−32, N = 24,296; Supplementary Table 8). Combining all classes, a multiple regression 

model trained on chromatin classes upstream (500 bps) of genes on chromosomes 2 to 12 

had modest but significant predictive power for gene expression when tested on 

chromosome 1 genes (r = 0.419 two-tailed t-test, P = 3.6 × 10−148, N = 3,502) (Fig. 4). 

Predictive power arose primarily from epigenomic states around slightly distal promoter 

sequences, as masking the 50 bp core promoter did not significantly impact model power. 

Notable for 3’ to 5’ looping models of gene regulation49 downstream gene regions were 

enriched for a different set of classes with equally high individual associations with gene 

expression (e.g., class 49: r = 0.18, two-tailed t-test, P = 1.0 × 10−177, N = 24,296; class 50, r 

= 0.181, P = 7.2 × 10−179, N = 24,296), but that had less power as a combined model 

(Supplementary Fig. 5).

As expected, the site-frequency spectrum (SFS) of polymorphisms in rice displays a minor 

allele frequency (MAF) skew towards rare variants in high-ρ classes, such as those enriched 

in the more conserved promoters (e.g. class 145, ρ = 0.681) and CDSs (e.g. class 782, ρ = 

0.294) (Fig. 3g; Supplementary Table 9) relative to low-ρ classes such as the TE-enriched 

class 11 (ρ = 0.016). This skew was evident across classes in general (r = 0.83, two-tailed t-

test, P = 8 × 10−64, N = 246) (Fig. 3h Supplementary Table 9).

Overall, strong purifying selection was the main driver of ρ. However, about 2% of the rice 

genome appeared to be under weak negative selection. Classes with lower ρ sometimes had 

notable levels (up to 8%) of sites under weak negative selection that potentially mark 

recently selected genomic sites (Supplementary Table 5).

Delineating putative noncoding regulatory regions

Among the 246 fitCons classes, we further defined three categories of potentially functional 

noncoding regions by considering their functional and epigenomic characteristics as well as 

their ρ scores. The first category, termed “Conserved” classes, includes 46 noncoding 

element classes with evidence of sequence conservation among Oryza species (phastCons 

>0.82), (Supplementary Table 5). Conserved classes have high ρ and are prevalent in the 

promoter regions of a subset of protein-coding genes (within 0–350 bps upstream of TSSs) 

where they likely act as cis-regulatory elements14,50 (Fig. 5a, Supplementary Fig. 7a). Gene 

ontology enrichment analysis suggests these are predominantly associated with 

transcription-factor and developmental genes (FDR = 1.98 × 10−40) (Supplementary Table 

10). The density of upstream conserved classes was strongly linked to genes with the highest 

fold change in expression between tissues (Fig. 5b), again suggesting tissue specific or 

developmental roles. De novo motif analysis (Homer N:6–8 bps) of these 46 classes revealed 

generally complex motifs (Fig. 5c, Supplementary Fig. 7b–c,) including well-characterized 

transcription-factor binding sites (e.g. G-box, RY-repeat motifs, TATA box, etc., see 

Supplementary Fig. 8)23,51,52.
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The second category comprises 17 classes, termed “Open Chromatin” classes, that have a 

broader range of ρ but have ATAC-seq signals that are at ≥10-fold above background 

(Supplementary Table 5, Supplementary Fig. 7a). While their ρ tends to be similar to ρ for 

UTRs and promoters (median ρ = 0.256), this ranges from ρ = 0.013 (class 305) to ρ= 0.946 

(class 201). These Open Chromatin classes are associated with stable gene expression 

(lowest fold change: LFC) profiles across multiple tissues (Fig. 5d), and are often enriched 

for simple tandem repeat motifs (Fig 5c, Supplementary Fig. 7b–c, Supplementary Fig. 9).

The third category includes 11 classes enriched for intergenic bidirectional divergent PRO-

seq signals (Fig. 5e). These signals are often characteristic of mammalian enhancer-

RNAs53,54, but were also recently suggested in plants36. Using dREG54, to identify 

enhancer-RNA signals from PRO-seq data, we find 1,000 high-scoring (>1.0) dREG sites in 

regions >1kb from genes, suggesting that these sites form a set of putative rice enhancer 

elements (Supplementary Table 11, also see Methods). The dREG locations shared other 

enhancer-type characteristics, including moderate enrichment for open chromatin (≈7.17 

fold) (Fig. 5f), asymmetrically co-located H3K27ac marks (Fig. 5g), and enrichment for 

motifs similar to those found in open chromatin classes (Fig. 5c, Supplementary Fig. 10). As 

expected, these 11 classes (e.g. classes 44, 48; Table 1) had a >10 fold enrichment for these 

high-scoring dREG sites (Supplementary Fig. 7a, Supplementary Table 5) and individual 

dREG sites were generally found to overlap several of these 11 classes. It was rare for a 

dREG site, however, to be homogenous across its length with respect to a single fitCons 

class (Supplementary Table 11).

These 11 classes, termed “Enhancer Candidates”, have weak correlations with the 

expression of nearby genes (e.g., class 43, r = 0.03; two-tailed t-test, P = 1 × 10−5, N = 

24,296) (Supplementary Table 8) consistent with the majority of candidates being in a 

poised but inactive state. They are also associated with low ρ (< 0.2) (Fig. 5h) and low 

phastCons conservation (Fig. 5i), but have a > 2-fold excess of sites under weak negative 

selection (Fig. 5j). The association with weak negative selection was also observed for 

dREG sites detected in human populations55. Taken together, this may suggest that emergent 

negative selection, consistent with rapid enhancer turnover, has recently acted on these 

classes within O. sativa.

DISCUSSION

The INSIGHT and fitCons approaches provide a set of potentially powerful mechanisms for 

identifying selective constraint on a genome-wide scale. INSIGHT has been used to identify 

different types of enhancers, such as exon splicing enhancers in human56, shadow enhancers 

in Drosophila57, and novel motifs like the Coordinator motif found within human cranial 

neural crest cell specific enhancers58. In the human genome, fitCons maps were revealed to 

have higher sensitivity than other methods for locating multiple types of functional 

noncoding elements with putative roles in transcriptional regulation8.

Our fitness consequence map for rice provides a catalogue of putative functional sites that 

can allow patterns of selection between different genes, genomic regions and genetic 

pathways to be explored. The map we have developed has limitations; for example, since 
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every base within a fitCons class will receive the same fitCons score (same ρ), we cannot 

determine which specific bases within a class are under selection. Also, as this is the first 

instance of inferring a fitCons map in a plant genome, the validation of fitCons scores 

relative to the actual fitness impacts of mutations remains to be tested. As in every prediction 

model, subsequent experimental analyses will help shed light on the function of the 

candidate noncoding regulatory elements that we have described in this study

Nevertheless, some of the broad features of the distribution of ρ in the rice genome confirm 

what we know about the biology of specific genome elements, suggesting that the inferred ρ 
values are related to underlying biological features. Integrating evolutionary information 

with functional genomic and epigenomic data permits identification of important regulatory 

components of crop genomes10, improving genome annotation, and helping to guide 

molecular genetic studies. Fitness consequence maps can also help in genetic mapping and 

crop breeding efforts, including the identification of candidate deleterious mutations59 that 

can be targeted for removal in next-generation breeding efforts60–62. As more such maps are 

produced, it will be possible to undertake comparative analyses of genomic selection across 

species, and help develop more precise genomic breeding programs. To this end, a web 

interface for greenINSIGHT is available at http://purugganan-genomebrowser.bio.nyu.edu/

greenInsight/ and all functional genomic tracks, ρ scores, and fitCons classes for rice can be 

viewed or downloaded from a custom genome browser (http://purugganan-

genomebrowser.bio.nyu.edu/cgi-bin/hgTracks?

db=Osaj&position=Osaj.1%3A166356-178595 ).

METHODS

Plant material

Seeds of the cultivated rice Oryza sativa landrace Azucena (IRGC#328; tropical japonica) 

provided by the International Rice Research Institute (Los Baños, Philippines) were used in 

this study for functional genomic analyses. Dormancy was broken by incubating seeds for 

five days at 50°C. Seeds were germinated in water in the dark for 48h at 30°C and were then 

sown on hydroponic pots suspended in 1x Peters solution and 1.8mM FeSO4 (pH 

maintained at 5.1–5.8 throughout) (J.R. Peters Inc., Allentown, PA). Plants were grown for 

15 days in climate-controlled growth chambers (12h days; 30°C/20°C day/night, 300–500 

μmol quanta m−2 s−1; relative humidity 50–70%). Leaf tissue for library construction was 

collected from 17-day-old, young plants. All freshly collected tissues were wrapped in 

labeled aluminum foil and immediately immersed in liquid nitrogen, followed by storage at 

−80°C until further use.

RNA-seq

Total RNA was extracted using the RNeasy Plant Mini Kits (Qiagen, USA), according to the 

manufacturer’s instructions. RNA quality was determined by BioAnalyzer (Agilent). 

Contaminating DNA was removed from the total RNA samples by treatment with Baseline-

Zero DNase (Epicentre, Madison, WI, USA), and ribosomal RNA was removed using the 

Ribo-Zero rRNA Depletion Kit (Epicentre, Madison, WI, USA). Strand-specific RNA-seq 

libraries were synthesized using the Plant Leaf ScriptSeq Complete Kit (Epicentre, Madison, 
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WI, USA). Three biological replicates were generated. Libraries were sequenced using 

Illumina protocols for 2×100-bp reads on an Illumina HiSeq 2500 at the New York 

University GenCore facility. The resulting total RNA-seq data was used to identify 

expressed regions of the rice genome rather than to quantify expression (for expression 

quantification, see GEO mRNA-seq below). Consequently, reads were 3’ trimmed for 

quality (q<20) and adapter sequences (Cutadapt 1.1163), and read pairs for which either end 

was shorter than 25 bps after trimming were rejected. Trimmed reads were aligned to the 

nuclear chromosomes of the soft-masked IRGSP1.0/MSU7 build of the rice genome 

(downloaded from Ensembl) using Bowtie264 (bowtie2–2.2.9) with option --sensitive-local. 

Alignments were converted to bam format (samtools 1.3), sorted, and converted to a 

bedGraph alignment format with bedtools v2.2565. Reads were subsequently converted to 

bigWig format (UCSC Kent tools66) for visualization in a custom UCSC Rice genome 

browser. A single sample was selected as an input in the fitCons approach. The choice of 

replicate was based on signal strength and sequencing coverage.

Small RNA-seq

For the extraction of small RNA, total RNA was first isolated using the Ambion Plant RNA 

Isolation Aid (Thermo Fisher Scientific, USA) and sRNA was subsequently extracted using 

the mirVana miRNA Isolation Kit (Thermo Fisher Scientific, USA). Thirty-five to 70 ng of 

small RNA served as input to generate libraries using the TruSeq Small RNA Library Prep 

Kit (Illumina, USA). Three biological replicates were generated. Libraries were sequenced 

using Illumina protocols for 2×50-bp reads on an Illumina HiSeq 2500 at the New York 

University GenCore facility. Reads were 3’ trimmed for quality (q<20) and adapter 

sequences (Cutadapt 1.11), and only reads longer than 15 bps were retained (-m 16). 

Trimmed reads were aligned to the nuclear chromosomes of the soft-masked IRGSP1.0/

MSU7 build of the rice genome downloaded from Ensembl using Bowtie2 (bowtie2–2.2.9) 

with options --end-to-end, --sensitive and -k 100. Alignments were converted to bam format 

(samtools 1.3), sorted, and converted to a bedGraph alignment with bedtools v2.25. Reads 

were subsequently converted to bigWig format (UCSC Kent tools) for visualization in a 

custom UCSC Rice genome browser. In addition, for the purpose of inferring initial low-

resolution chromatin states, signal was averaged over 40nt blocks for input into 

ChromHMM45. A single sample was selected as an input in the fitCons approach. The 

choice of replicate was based on signal strength and sequencing coverage.

DNA methylation

For methylation assessment using whole-genome bisulfite conversion, DNA was extracted 

using DNeasy Plant Mini Kits (Qiagen, USA) following the manufacturer’s protocol. 

Extracted DNA was sheared into 350-bp fragments using an S220 focused-ultrasonicator 

(Covaris). The Illumina Truseq DNA Kit (Cat #FC-121–3001) was used to construct the 

library and the Zymo Lightning Kit (Cat# D5030) to perform the bisulfite treatment. The 

KAPA Uracil Polymerase (Cat# KK2623) was used to amplify the library with 12 cycles. 

Two biological replicates were generated. Libraries were sequenced using Illumina protocols 

for 2×100-bp reads on an Illumina HiSeq 2500 at the New York University GenCore facility. 

For the purpose of assaying DNA methylation, reads were treated as two independent sets of 

forward and reverse reads, and were aligned using a basic pipeline generally suitable for all 
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types of plant CG/CHG/CHH methylation (i.e. avoiding filters sometimes found in code 

designed for human-specific scenarios). Reads were pre-processed in silico by trimming 

bisulfite sequencing adapters, after which unconverted (methylated) cytosine bases were 

converted to thymine bases, with a record kept for each read of the location of these 

transformed bases. Reads were then aligned against both an A-G-T transformed IRGSP1.0/

MSU7 genome (in which all cytosine bases had been replaced by thymine bases) and an A-

C-T transformed genome (in which all guanine bases had been replaced by adenine bases) 

using Bowtie2 (bowtie2–2.2.9) with options --end-to-end, --sensitive -k 1. Finally, 

alignments were processed to combine their location with the offsets within the alignment of 

the unconverted (methylated) cytosines that had previously been recorded. These refined 

locations were accumulated in a bedGraph file and subsequently converted to bigWig format 

(UCSC Kent tools) for visualization in a custom UCSC Rice genome browser. For the 

purpose of inferring initial low-resolution chromatin states, methylation signal was averaged 

over 40-bp blocks for input into ChromHMM. A single sample was selected as an input in 

the fitCons approach. The choice of replicate was based sequencing coverage.

Chromatin accessibility

For ATAC-seq libraries, a dataset previously generated from leaf tissue of the same 

developmental stage in the Azucena background using the ATAC protocol38 was used 

(SRR2981235, SRR2981233, SRR2981221, SRR2981227, SRR2981231, SRR2981234). 

Reads were 3’ trimmed for quality (q<20) and adapters, and were aligned with Novoalign 

(V3.04.04, novocraft.com) with options -t 80 -a -i PE 500,400 -o SAM. Alignments were 

converted to bam format (samtools 1.3), sorted, and converted to a bedGraph alignment with 

bedtools v2.25 followed by conversion to bigWig format (UCSC Kent tools) for 

visualization in a custom UCSC Rice genome browser. ATAC peaks were called with 

MACS267 v. 2.1.1 with the genome size, q threshold and ATAC recommended parameters68 

“-g 4.0e8 -q 0.025 --nomodel --shift −100 --extsize 200 -B”. For the purpose of inferring 

initial low-resolution chromatin states, signal was averaged over 40-bp blocks for input into 

ChromHMM. A single sample was selected as an input in the fitCons approach. The choice 

of replicate was based on signal strength and sequencing coverage.

ChIP-seq

Two grams of leaf tissue was fixed [Formaldehyde, 1% (v/v] for 15 min, after which glycine 

was added to final concentration of 125 mM (5 min incubation). Tissues were rinsed three 

times with cold, de-ionized water before being flash frozen in liquid nitrogen. Chromatin 

extraction and chromatin shearing were performed using the Universal Plant ChIP-seq Kit 

(Diagenode) following the manufacturer’s instructions. Protease inhibitor cocktail (Millipore 

Sigma) was added to the extraction buffer. The samples were sonicated for 4 min on a 30 s 

ON/30 s OFF cycle using Bioruptor Pico (Diagenode). Subsequent steps were also 

performed as in the Universal Plant Chip-seq Kit protocol. Immunoprecipitation was done 

using anti-acetyl-histone H3 (Lys 27) (H3K27ac, Cell Signaling Technology, cat. #4353S, 

lot #1), anti-trimethyl-histone H3 (Lys27) (H3K27me3, Millipore Sigma, cat. #07–449, lot 

#2919706), anti-trimethyl-histone H3 (Lys4) (H3K4me3, EMD Millipore, cat. #07–473, lot 

#2746331), and anti-acetyl-histone H3 (Lys18) (H3K18ac, Cell Signaling Technology, cat. 

#9675S, lot #1). Quality and fragment size of immunoprecipitated DNA and input samples 
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were measured using agarose gel electrophoresis and TapeStation 2200 (Agilent). Three 

biological replicates were generated. Libraries were synthesized using the MicroPlex 

Library Preparation Kit v2 (Diagenode). Libraries were sequenced as 2×50-bp reads on an 

Illumina HiSeq 2500 instrument at the New York University GenCore facility. Reads were 3’ 

trimmed for quality (q<20) and adapter sequences (Cutadapt 1.11), and read pairs for which 

either end was shorter than 16 bps after trimming were rejected. Trimmed reads were 

aligned to the nuclear chromosomes of the soft-masked IRGSP1.0/MSU7 build of the rice 

genome (downloaded from Ensembl) using Bowtie2 (bowtie2–2.2.9) with option --end-to-

end --sensitive. Alignments were converted to bam format (samtools 1.3), sorted, and 

converted to a bedGraph alignment format with bedtools v2.25. These were then converted 

to bigWig format (UCSC Kent tools) for visualization in a custom UCSC Rice genome 

browser. ChIP-seq peak calling was performed using MACS2 with input DNA used as a 

control and additional parameters “-g 4.0e8 --bw 200 -B -m 3 50”. For the purpose of 

inferring initial low-resolution chromatin states, signal was averaged over 40-bp blocks for 

input into ChromHMM. A single sample was selected as an input in the fitCons approach. 

The choice of replicate was based on signal strength and sequencing coverage.

PRO-seq

Nuclei isolation.—Nuclei isolation was performed as described in Hetzel et al.69, with 

modifications. Briefly, around 20 g of leaf tissue from 17-day old plants was collected in a 

cold room (4°C), placed in ice-cold grinding buffer immediately, and homogenized using a 

Qiagen TissueRuptor. Samples were filtered through a series of meshes, and pellets were 

washed twice. This was followed by homogenization, resuspension in storage buffer [10 mM 

Tris (pH 8.0), 5 mM MgCl2, 0.1 mM EDTA, 25% (vol/vol) glycerol, 5mM DTT], and snap 

freezing in liquid N2.

Nuclei sorting.—Nuclei were stained with DAPI, and loaded into a flow cytometer 

(Becton Dickinson FACSAria II). A total of around 15 million nuclei were sorted based on 

their size and the strength of the DAPI signal, and were subsequently collected in a tube 

with storage buffer. The nuclei were pelleted by centrifugation at 5000 g at 4°C for 10 min, 

and resuspended in 100 μl of storage buffer.

PRO-seq library preparation.—PRO-seq was performed as described by Mahat et al.30. 

This protocol generated strand-specific libraries with every read starting from the 3’ end of 

the RNA. Two biological replicates were generated. Amplified libraries were assessed for 

quality on a TapeStation prior to sequencing with 1×50-bp reads on a HiSeq2500 at the New 

York University GenCore facility. Reads were trimmed and carefully aligned against the 

soft-masked IRGSP1.0/MSU7 build of the rice genome downloaded from Ensembl and 

supplemented with chloroplast and mitochondrial plastid sequences (alignments to plastids 

were not used) using Novoalign (V3.04.04, novocraft.com) with options -o SAM -t 40 -r 

None -a TGGAATTCTCGGGTGCCAAGG -s 30 -l 25 (similar to bowtie2’s --local setting 

but with a more quality-informed alignment location for short reads). Alignments were 

converted to bam format (samtools 1.3), sorted, and finally converted to a bedGraph 

alignment format with bedtools v2.25. Reads were subsequently converted to strand-specific 

bigWig format (UCSC Kent tools) for visualization in a custom UCSC Rice genome 
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browser and analysis by the dREG algorithm54. A single sample was selected as an input in 

the fitCons approach. The choice of replicate was based on signal strength and sequencing 

coverage.

Read preparation for genome assembly of wild rice Oryza australiensis

Plant material and methods for genome sequencing and assembly.—A voucher 

specimen of Oryza australiensis (IRGC #86534) was obtained from the International Rice 

Research Institute (IRRI). Leaf tissue for library construction was collected from 17-day-

old, young plants growing in pot conditions in sterilized, premixed soil (50% 

perlite:vermiculite). Seeds had been previously incubated for 12 days at 50°C in the dark to 

break dormancy, and subsequently germinated. Plants were grown in climate-controlled 

growth chambers (11h days; 29.6°C/24.0°C day/night, 300–500 μmol quanta m−2 s−1; 

relative humidity 60%).

Illumina fragment library and sequencing.—Young leaf tissue was collected, and 

DNA was extracted using DNeasy Plant Mini Kits (Qiagen, USA) following the 

manufacturer’s protocol. About 1 μg of DNA was sheared, and the fragmented DNA was 

used to construct Illumina sequencing libraries. Fragment libraries, with a target insert size 

of 450 bp, were constructed using the Illumina TruSeq DNA PCR-Free Library Prep Kit and 

bead-purified (Agencourt AMPure XP beads, Beckman, USA). The fragment libraries were 

2×250 bp-sequenced using a HiSeq2500 at the NGS sequencing core at Cold Spring Harbor 

Laboratory.

Assembly of wild rice genomes

Oryza australiensis reads were 3’ quality- (q<20) and adapter-trimmed using cutAdapt (v 

1.11), and were assembled using DiscovarDeNovo (https://software.broadinstitute.org/

software/discovar/blog/) with default options. Assembled scaffolds <3 kilobase (kb) in size 

were discarded along with those scaffolds with GC% > 0.55 (usually corresponding to 

microbial contaminants). The remaining scaffolds were trimmed for doubly assembled 

regions (a feature of some versions of the assembler that would cause it to occasionally 

follow the assembly graph in both directions, resulting in a concatenated forward and reverse 

sequence). This generated an assembly of size 785 megabase (Mb; 99.98% called bases, 

0.02% gaps), in 39,193 scaffolds with a scaffold and contig N50 of 37 kb and 34 kb, 

respectively. Scaffold sizes ranged from 1.5 kb to 948 kb, similar to the size distributions for 

the other plant genome assemblies that were used for comparative genomics14.

Oryza officinalis was assembled through a hybrid assembly strategy. Paired-end reads were 

downloaded from the SRA (DRR000711, DRR003647, DRR003646), and were 3’ trimmed 

for adapters and low quality sequences (q<20) using cutAdapt (1.9.1). Reads were initially 

assembled with Ray70 (v 2.3.1) to generate a set of relatively short contigs that were 

fragmented in silico into a set of overlapping reads (2×100 bp in a 180-bp insert). The 

overlapping reads and original reads were combined with longer-insert 6-kb and 8-kb mate-

pair reads (DRR003207, DRR003206) that were also processed for 3’ adapter trimming. 

Reads were converted to unaligned BAMs (Picard tools, https://broadinstitute.github.io/

picard/) and assembled using AllPathsLG71 (version 52488), resulting in an assembly of size 
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399 Mb (85% called bases, 15% gaps), in 13,189 scaffolds, with a scaffold N50 of 64 kb, and 

scaffold lengths ranging from 0.8 kb to 450 kb.

greenINSIGHT

A detailed description of the method is given in Gronau et al.3 We adapted the pipeline for 

plant genomes (A. thaliana and O. sativa) by modifying those elements that were human-

specific, including criteria for the selection of neutral sites, and by introducing several minor 

adjustments to account for the typically lower depth of sequencing across plant genomes, 

which causes an increase in noise in the population genetics component of the dataset. The 

greenINSIGHT pipeline is outlined in Supplementary Fig. 12, its input being a set of 

genomic alignments used to infer an ancestral probability, a set of base calls across a 

population of the focal species, and a set of sites that are inferred to be neutral from 

annotation and functional evidence.

There are three differences in greenINSIGHT relative to the human INSIGHT pipeline: (1) 

The INSIGHT approach benefits in several ways (e.g. improved alignments, more powerful 

inference of recent and ancient selection) from a balance between evidence for constraint 

derived from recent population divergence and that derived from mutations that have 

accumulated since the ancestral state Z. Consequently, Z was targeted to be the most recent 

common ancestor (MRCA) of the rice AA genomes, even though this necessarily introduces 

a risk for introgression. We considered an adjusted INSIGHT model in which the topology 

of flanking neutral models was dynamically adjusted, but this required the concatenation of 

neutral blocks in order for sufficient evidence for tree building to be generated. Therefore, 

we decided instead to interleave the flanking neutral regions as closely as possible with their 

matched test sites, since the most significant problems with INSIGHT in a species that 

experienced a high level of inter-specific genomic introgression arise when the flanking 

sequences have a different ancestry relative to their matched test sequences.

(2) Due to the low fidelity of alignments to TEs, flanking neutral sites had a different 

distribution in TEs relative to target regions. This created an asymmetry in the alignment 

fidelity between neutral and non-neutral sites in which the neutral sites likely saw different 

proportions of read noise. This was quite evident in the plot of Tajima’s D (Supplementary 

Fig. 13), where site classes that also had an enrichment for TE content showed a significant 

excess of rare variants. We consequently adjusted θ for neutral sites by blending the per-

block θ with the mean θ across all neutral sites in the analysis using a sigmoid function that 

had a low impact for θ with a central tendency, but increasingly limited large departures in 

θ.

(3) In order for a base to be introduced into the human INSIGHT model, it required a valid 

ancestral state probability and a distribution of {A,C,T,G} base calls over virtually the entire 

population. In the greenINSIGHT scenario with relatively lower sequencing depth and 

potentially poorer alignments in some repetitive regions, we allowed slightly more missing 

population data (0–10%), and used the call-adjusted proportion of base counts to determine 

whether polymorphic bases were at a high or low population frequency.
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A notable difference in the use of this pipeline in rice is the combination of extensive LD 

and short introns (mean intron size: rice ~400 bp, humans ~15 kb) in rice. This combination 

may introduce more indirect background selection into ρ in the rice model.

Chromatin state modeling

Chromatin states were inferred based on a set of chromatin marks (ATAC-seq, DNA 

methylation, H3K27ac, small-RNA associated, H3K4me3, H3K18ac, and H3K27me3) that 

had been found through earlier work in Arabidopsis (unpublished) to be informative of 

chromatin states both in coding and non-coding regions of plant genomes. Because the 

ChromHMM pipeline uses a single sample per covariate, the replicate with the highest 

signal-to-background was selected. This sample is available for viewing and downloading in 

the UCSC Browser. The hidden-Markov modeler ChromHMM was used essentially as 

described in Gulko et al.8 to binarize chromatin signals from 40-bp genomic windows - the 

mean size of regulatory elements previously suggested in plants14 - and produce a low-

resolution map of chromatin states in the rice genome. We initially sought to use a 

parameter-count penalized log-likelihood ratio (LLR) for each model to determine the 

number of distinct chromatin states in the rice genome, cognizant of earlier principal 

component analyses (PCAs) that had suggested that plant genomes have very few states47 – 

a number of states similar to Drosophila48 - and more recent ChromHMM analyses that 

described a relatively complex patterning of states32. While there was no distinct inflection 

in the penalized LLR curve that could inform a high-confidence cutoff, it appeared that after 

c. 15 states, the addition of more states became relatively less informative. We therefore 

sought to support the selection of the number of states with the ChromHMM tool 

CompareModels46, which compares the correlation between the emissions of models with 

different numbers of states. Selecting a 50-state model as an over-parameterized reference 

model, we found that by the time 20 states were incorporated in the model, the mean state 

correlation with the closest state in the 50-state model exceeded 0.9. We therefore selected a 

20-state ChromHMM model, but recognize that the optimum value here may not be 

independent of the number and type of chromatin marks used as input.

Determination of fitCons classes from ChromHMM states

The 20 chromatin states determined by ChromHMM were intersected with additional 

annotation and functional genomic datasets by setting bits in a 16-bit-wide bitmap of the 

genome depending on the class value and the binary combination of additional binary 

annotation. Functional genomic tracks and annotations were binarized for the bitmap at 

signal (alignment depth) thresholds chosen to differentiate presence/absence of signal 

against the track-specific noise background for alignment classes, and split annotation 

classes marked as 0/1: mRNA = 40 reads, PRO-seq = 7 reads, phastCons = 0.7 score, Exon = 

0.5, and CDS = 0.5. This had the potential to generate 640 classes (note that class labels do 

not run continuously due to padding left in the bitmap for additional chromatin states). 

However, many of the states were either not found or found only very rarely, such that they 

could not be informatively used to infer a state-specific value of ρ. Consequently, states with 

coverage <20 kb were excluded and 246 final states were characterized by INSIGHT.
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Genomic annotations

Neutral sites.—The collection of sites predicted to be neutral was obtained by eliminating 

from all genomic sites those likely to be under direct or indirect selection, including (i) 

annotated protein-coding genes and the 1,000-bp flanking regions on either side of 

IRGSP1.0.37 annotated genes; (ii) conserved noncoding elements (see below); (iii) locations 

associated with an open chromatin (ATAC) signal; (iv) sites with a coding potential 

predicted by a variety of other approaches including fgenesh, Phytozome XI, RAP-DB and 

blastp of all rice-lineage proteins against the genome; and (v) regions with a total expression 

depth >50 reads. Due to the limited intergenic annotation available in the rice genome 

compared to the human genome, this leaves open the possibility that sites in neutral regions 

could more often intersect functional domains in rice than in humans. As neutral regions 

form a baseline relative to which ρ is determined, this makes it possible that mostly-neutral 

classes in rice are more likely to be scored with a near-zero ρ in rice than in humans.

Genome annotations.—IRGSP 1.0.37 gene and ncRNA (pre-miRNA, lncRNA, 

snoRNA, rRNA, tRNA) annotations were used (Ensembl:ftp://ftp.ensemblgenomes.org/pub/

plants/release-37/gff3/oryza_sativa) for annotation of the MSU7 assembly. Mature miRNA 

annotations were generated from the intersection of miRBase 22 (http://www.mirbase.org/) 

mature miRNA coordinates with IRGSP 1.0.37 pre-miRNA coordinates. Where gene IDs 

required conversion between the MSU7 and RAP-DB naming schemes (for example in the 

expression correlation analysis), the 2018 translation table from RAP-DB (https://

rapdb.dna.affrc.go.jp/download/irgsp1.html) was used. Consensus annotations for genomic 

features were obtained from the featureBits program (http://www.soe.ucsc.edu/~kent/src/

unzipped/hg/featureBits) from the intersection of IRGSP, MSU7, RAP-DB, and IOMAP 

annotations.

PhastCons and Conserved Noncoding Sequences (CNSs)

PhastCons1 (http://compgen.cshl.edu/phast/) scores of tribe-level inter-species conservation 

were generated as one input into the genome classification process. The process of multiple 

species alignment was carried out using the Kent alignment pipeline with minor 

adjustments, essentially as described in Haudry et al.14. Following the Multiz72 multiple 

alignment step, a global neutral evolutionary model was generated from the neutral sequence 

locations (described above) using phyloFit73 and input into phastCons (--target-coverage 

0.11 --expected-length 50) along with the multiple sequence alignment to infer a per-base 

score for non-neutral evolution across the genome. Because both direct and indirect 

introgression into the reference genome from the set of non-reference genomes being 

compared can be readily mistaken as a signal of constraint, we avoided using non-reference 

rice genomes with evidence in the literature for extensive introgression with O. sativa. The 

inference of conservation at a medium resolution (>10 bps) can most clearly be made when 

neutral divergence has introduced substitutions at a higher rate in some parts of the genome 

than in others. However, for this inference these neutrally diverged regions need to be still 

similar enough to remain alignable to the reference genome. This creates an optimal neutral 

divergence level in the phylogeny where the total neutral branch length between the 

reference and non-reference species is 0.1 – 0.3. Since diploid, assembled rice genomes 

were not common in this range, we chose to assemble two additional rice genomes, O. 
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australiensis and O. officinalis, to a locus-level (N50 = 10–50 kb). This brings the total 

number of genomes used for the comparative analysis to eight (see Supplementary Fig. 1). 

Once phastCons scores had been generated, a set of conserved noncoding sequences were 

inferred by selecting regions with a phastCons score >0.82 and a length longer than 11 bps 

(a combination intended to reduce the chance of coincidental undiverged alignments 

generating a conserved region) that did not overlap CDSs or CDS boundaries, and that did 

not overlap regions that had a possibility of having been protein-coding in the immediate 

evolutionary past (inferred through blastp of all rice tribe proteins against the O. sativa 
genome).

Enrichment of classes by annotation features

Genome-wide enrichment between genomic classes and annotated features used featureBits 

(Kent tools, UCSC) with bed file inputs of class and feature locations, and the optional 

parameter -enrichment for the estimation of enrichment relative to an independent and 

identically distributed assumption enabled.

ρ density by annotation

A genome-wide bedGraph of ρ values was created from the union of all 246 class-specific 

bedGraphs of per-class ρ. This was in turn intersected with the locations of seven 

annotations [neutral regions, distal (≥ 1 kb) CNSs, 500 bp upstream promoters, 5’ UTR, 

introns, CDSs, and 3’ UTRs] using bedTools2 in intersect mode with ‘awk’ used to generate 

a single line ρ score and annotation type for each base of the bedGraph ranges. The seven 

per-base ρ files were combined and displayed using the violin plot (geom_violin) function of 

the ggplot2 package with bandwidth set to 0.03, and the class median plotted as a single 

white point for each annotation.

Motif enrichment

Motif enrichment was determined using Homer (v. 4.10, http://homer.ucsd.edu/homer/) 

findMotifs with options -mset plants -len 6,7,8 enabled, and permuted sets of the input 

sequences used as controls.

Expression correlation analysis

Correlation between genomic class distributions and the expression of proximate genes used 

aggregated transcriptome profiles across all leaf tissues (excluding flag leaf) from NCBI 

GEO (GSE21494). Expression was used as per-array median-normalized values. For the 

immediate upstream, downstream and slightly more distal enhancer locations around each 

gene, featureBits (Kent tools, UCSC) was used to generate a count of total base coverage for 

each genomic class that was in turn correlated class-wise with expression.

Multiple regressions of gene expression and genomic class

A multiple linear regression model for all 246 classes was generated in SPSS (IBM 

statistics, version 20) by combining individual models of class density around expressed 

genes (see expression correlation analysis above) for rice chromosomes 2 – 12. To reduce 

the likelihood of over-fitting, the model was then tested for the correlation between predicted 
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levels of log gene expression from class density with the actual expression of genes on 

chromosome 1 only (Fig. 2). To somewhat explore the possibility that different class 

distributions around silent and expressed genes are a consequence of gene expression 

(arising from the spread of activation epigenomic marks into upstream regions) rather than 

an indication of regulatory changes causative of expression, for the upstream model we 

masked the immediate 50-bps upstream promoter region where ATAC- and PRO-seq signals 

from highly expressed genes can leak into the promoter region. The contour aerial density 

plot was generated with Raw Graphs (http://app.rawgraphs.io/).

dREG

PRO-seq signal was analyzed on the Cornell community dREG GPU server for sites with an 

enhancer potential (https://dreg.dnasequence.org/). Signal was entered as alignment depth 

bigWig files (see PRO-seq section) separately for nascent RNA with a Crick-and-Watson 

origin, and with other options set to their defaults. This generated 58,920 candidate sites 

with a signal range from 0.32 to 1.46. Since many of these sites had only a very weak PRO-

seq signal, we selected the top c. 5% of sites (3,600 sites) with signal ≥ 1.0 for further 

characterization. These were in turn refined for exactly 1,000 locations at least 1 kb distal of 

genes (featureBits) - while enhancers can be located within gene and promoter regions, 

without high resolution looping predictions we were unable to distinguish these sites from 

regular promoters and splice elements.

Chromatin mark correlations

For each annotation class (TE, upstream500, upstream25, CDS, intronic), chromatin signal 

for each chromatin mark used in the ChromHMM model was summed for each location and 

standardized for location length. To avoid spurious correlations in introns related to TE 

content, TEs were masked from intronic regions. Similarly, to avoid correlations 

characteristic of introns in TEs, only TEs 1 kb distal of genes were considered. Correlations 

between marks in each annotation class were then visualized using the R corrplot package 

(https://github.com/taiyun/corrplot).

Profiles of feature density

Profiles of bedGraph signal 1 kb either side of features of interest were generated by 

dividing the upstream and downstream regions into 50 × 20-bp blocks, and the interior of the 

feature into 5 equally sized blocks. Signal within and around the features was then totaled 

from the bedGraph files at each region to create (i) a composite profile of total signal 

integrated over all the features, and (ii) a representation of the distribution of signal at each 

location as a set of single lines where more intense color represents more signal and total 

signal is used to order the lines.

Minor allele frequency shift

For each of the 246 fitCons classes, the frequency distribution of the minor allele was 

calculated from a summary of alleles derived from the 3k RGP11 VCFs. To contrast these 

values with ρ generated for each class by INSIGHT a metric was generated that contrasted 

the standardized minor allele distribution of each class relative to the standardized minor 
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allele frequency distribution of class 11, the largest neutral class covering 22% of the rice 

genome with a nominal ρ close to zero. The metric was generated by adding the excess of 

rare alleles in the class of interest in frequency classes 1 and 2 (i.e. sites where there were 

only 1 or 2 members of the populations with segregating variants) relative to class 11, to the 

excess of more common alleles in frequency classes 4, 5 and 6 in class 11 relative to the 

class of interest.

Gene Ontology

ArgriGO version 1.2 (http://bioinfo.cau.edu.cn/agriGO/) was used for GO analysis.

URLs

dREG, https://dreg.dnasequence.org;

3k RG project, https://www.ncbi.nlm.nih.gov/bioproject/PRJEB6180/

NCBI (accession PRJEB6180);

greenINSIGHT page, http://purugganan-genomebrowser.bio.nyu.edu/greenInsight/

Accession codes

All epigenomic data tracks, genome annotations, multiple alignments, conservation scores, 

fitCons scores and site classes are available for visualization and download on a local 

installation on the USCSC Genome Browser at http://purugganan-

genomebrowser.bio.nyu.edu, as well as available for download from the NCBI SRA (<SRA 

identifier here>). The greenINSIGHT-specific code and data used to generate the 

greenINSIGHT online tool, as well as the code described in the Methods are available in the 

Additional Materials section at http://purugganan-genomebrowser.bio.nyu.edu/

insightJuly2018/greenInsight.html.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. greenINSIGHT across different genomic annotations in rice.
a, Violin plots of the ρ distribution within annotated gene and intergenic site classes. 

Annotations for neutral and CNS refer to distal neutral and distal CNS. White dots indicate 

the median ρ for each class. b, Mean ρ across seven types of annotated noncoding RNAs. c, 

Mean ρ across annotated gene and intergenic site-classes in humans, Arabidopsis, and rice. 
d) Distribution of rho values at different intergenic locations for the plant G-box motif 

(CACGTG).
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Figure 2. Partitioning and scoring the rice genome for selection (ρ).
a, Pearson’s correlation matrices for high-confidence uniquely mapped reads for histone 

modification, DNA methylation, open chromatin and transcriptomic datasets in five genomic 

regions (see also Supplementary Table 3). b, A conceptual overview of the analysis pipeline 

used to generate the fitness consequence map. See Table 1 and Supplementary Table 5 for 

details about the 246 fitCons scores. c, Emission parameters from the 20-state ChromHMM 

model for seven covariates of chromatin state.
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Figure 3. Distribution of ρ across the rice genome.
a, Rice locus Os07g0153400 illustrating the partitioning of a locus by genomic class and the 

associated ρ. A high-ρ class immediately upstream of the transcription start site coincides 

both with open chromatin and sequence conservation, whilst the short 3’ UTR peak lies 

immediately downstream of two canonical polyA signals, coinciding with paused-

polymerases. b, The size distribution of blocks that make up the 246 genomic classes used to 

partition the genome. c, Genome-wide distribution of class ρ: most of the genome (right 

axis, percentage genome coverage) is contained in large low-ρ classes (left axis, class 
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density), contrasting with the much smaller high-ρ classes. d, Cumulative distribution of ρ| 

in the 3.2-Gbase human genome relative to the 0.4-Gbase rice genome. e, f, Class densities 

around Type I and Type II transposable elements. g, Standardized minor allele frequencies of 

rare SNPs (subset of f:1–20) for three fitCons classes; those with higher ρ [class 145 (0.69) 

> class 782 (0.27) > class 11 (0.001)] show an expected bias towards rare SNPs 

(Supplementary Table 9). The MAF shift (x) towards rarer variants in each class relative to a 

control neutral class (class 11) illustrates h, an expected increase with class ρ, with the 

exception of classes that experience high levels of indirect rather than direct selection (such 

a subset of intron-enriched classes are highlighted).
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Figure 4. Proximal upstream chromatin class distribution correlates with downstream gene 
expression.
Actual (x-axis) and predicted (y-axis) leaf tissue gene expression per class coverage on 

chromosome 1. The predicted expression is derived from a multiple linear regression model 

of upstream chromatin classes used as covariates against gene expression for protein coding 

genes on rice chromosomes 2–12 [r2 = 0.18, (grey line)].
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Figure 5. Characterization of three categories of intergenic fitCons classes.
a, The density of higher ρ/conserved classes (category I, blue, solid) and lower ρ/open 

chromatin classes (category II, red, dotted) around protein-coding genes (PCGs) (grey box) 

suggest a rice promoter of mean size ≈320 bps b, Regions upstream of genes (grey box) 

with a high fold-change (HFC – purple line) across tissues are enriched for blocks of 

conserved classes relative to regions upstream of genes with a stable expression across 

tissues [low fold-change (LFC - dotted line)]. A breakdown by tissue (inset) suggests that 

regions upstream of genes with differential expression relative to leaf (En=Endosperm; 

In=Inflorescence; Em=Embryo; Ov=Ovary; Ro=Root and St=Stamen tissues) consistently 

show greater promoter coverage with blocks of more conserved classes. c, Motif (6–8 bps) 
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enrichment (blue - red) differs between the three categories of noncoding classes (I - 

conserved, II- open chromatin and III- enhancer candidate classes). Open chromatin classes 

are relatively enriched for simple repetitive motifs similar to those found in enhancer 

candidate regions. d, Genes whose upstream regions are enriched for open chromatin classes 

rather than conserved classes show a broader activation across tissues, but no similar 

enrichment for differential expression across tissues. Density plots +/− 1 kb around the 

1,000 enhancer candidate (EC) sites show e, a defining bi-directional diverged PRO-seq 

signal (plus strand – blue, minus strand- red, arbitrary strands) identified by dReg54, f, a 

marked enrichment for open chromatin, and g, a generally asymmetric H3K27ac location 

beyond the nucleosome-depleted core (indicated by the dashed rectangle). EC sites are also 

associated with h, low ρ, i, low conservation, and, j, a two-fold excess of weak negative 

selection (Pw).
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Table 1.

Properties of a subset of 246 inferred FitCons classes (see Supplementary Table 5).

Class ID* Genome Coverage % CDS Introns Promoter 500 End 500 CNS ATAC ProSeq TEs Class ρ

1 2.851 0.3 0.19 0.31 0.26 0 0.04 0.01 2.66 0.083

4 6.302 0.24 0.21 0.27 0.27 0 0.01 0 2.61 0.085

10 6.312 0.16 1.3 1.08 1.46 0 0.02 0.44 0.41 0.146

11 22.004 0.23 1.06 1.07 1.36 0 0.02 0.21 0.66 0.001

15 2.988 0.66 0.38 0.81 0.55 0 0.08 0.05 1.78 0.065

44 0.1 0.47 0.48 3.23 3.08 0 15.65 13.72 0.46 0.064

48 0.142 0.25 0.35 4.05 3.94 0 15.16 14.95 0.52 0.019

49 0.41 0.06 0.33 3.77 3.57 0 10.47 14.93 0.71 0.023

50 0.182 0.16 0.41 2.75 3.96 0 7.6 17.32 0.58 0.014

52 0.282 0.03 0.4 3.12 2.1 0 2.34 8.11 2.03 0.084

102 0.005 0.04 3.93 0.63 1.38 0 0.61 8.64 2.5 0.061

108 0.031 0.4 3.08 1.95 1.31 0 12.98 17.22 0.23 0.363

112 0.011 0.28 2.02 2.66 2.97 0 16.71 18.24 0.4 0.256

138 0.268 0.8 1.63 0.94 1.21 36.36 0.01 0.44 0.04 0.693

144 0.12 0.81 0.52 3.62 1.26 40.82 13.72 1.14 0.04 0.738

145 0.158 0.54 0.82 2.26 1.5 42.34 10.45 1.19 0.02 0.684

174 0.005 1.29 0.48 1.47 6.19 36.38 0 16.28 0.07 0.700

200 0.017 2.69 0.33 3.5 4.37 3.77 0.25 0 0.09 0.994

201 0.014 1.88 0.42 1.99 2.87 4.96 10.56 0.08 0.14 0.946

234 0.005 1.43 4.65 0.74 1.02 22.67 0 21.87 0.01 0.802

300 0.07 0.36 0.21 1.76 0.86 0 21.79 8.59 0.35 0.416

306 0.043 0.25 0.28 1.8 1.59 0 14.12 11.96 0.41 0.237

466 0.016 0.99 0.93 0.5 1.34 41.39 1.56 11.97 0.02 0.806

782 1.205 7.02 0.18 0.27 0.25 0 0.01 0.31 0.14 0.271

908 0.122 7.7 0.06 0.41 0.28 0 1.46 3.5 0.16 0.768

970 0.33 7.76 0.11 0.07 0.29 0 0 2.78 0.01 0.817

974 0.378 7.77 0.09 0.04 0.26 0 0 1.8 0.02 0.807

977 0.096 7.76 0.1 0.05 0.31 0 0.27 2.98 0.01 0.802

978 0.055 7.74 0.14 0.23 0.32 0 0.51 8.38 0.04 0.797

1003 0.011 7.75 0.11 0.08 0.8 0 0 17.34 0.01 0.848

1010 0.023 7.71 0.17 0.31 0.56 0 2.79 24.31 0.06 0.824

*
The class ID numbering is not continuous
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