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a b s t r a c t

We study an SEIQR (Susceptible–Exposed–Infectious–Quarantined–Recovered) model due to Young et
al. (2019) for an infectious disease, with time delays for latency and an asymptomatic phase. For
fast pandemics where nobody has prior immunity and everyone has immunity after recovery, the
SEIQR model decouples into two nonlinear delay differential equations (DDEs) with five parameters.
One parameter is set to unity by scaling time. The simple subcase of perfect quarantining and zero
self-recovery before quarantine, with two free parameters, is examined first. The method of multiple
scales yields a hyperbolic tangent solution; and a long-wave (short delay) approximation yields a first
order ordinary differential equation (ODE). With imperfect quarantining and nonzero self-recovery,
the long-wave approximation is a second order ODE. These three approximations each capture the
full outbreak, from infinitesimal initiation to final saturation. Low-dimensional dynamics in the DDEs
is demonstrated using a six state non-delayed reduced order model obtained by Galerkin projection.
Numerical solutions from the reduced order model match the DDE over a range of parameter choices
and initial conditions. Finally, stability analysis and numerics show how a well executed temporary
phase of social distancing can reduce the total number of people affected. The reduction can be by
as much as half for a weak pandemic, and is smaller but still substantial for stronger pandemics. An
explicit formula for the greatest possible reduction is given.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

This work is partially motivated by the global pandemic of
OVID-19. Understanding the dynamics of infectious diseases in
population can help in developing strategies to mitigate the

pread [1,2]. This paper presents new mathematical approxima-
ions and an asymptotic solution for a specific dynamic model for
uch infectious diseases. Some policy implications are discussed
s well.
Mathematical models for the spread of disease have almost a

entury old history. In their seminal paper, Kermack and McK-
ndrick [3] proposed a three-state model (popularly known as
IR) governing the evolution of susceptible (S), infected (I), and
ecovered (R) populations. In their model, the recovered popula-
ion is assumed to have developed immunity against the infec-
ion. The model contains two free parameters, one for infection
ate and one for recovery rate. The SIR model is widely used to
redict the number of infected people in closed populations. The
odel has an analytical solution. Over time, the SIR model [4] has
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been modified to study infections where the recovered popula-
tion can be reinfected (as with the common cold) and is known
as the two-state SIS model. In the classic endemic model [5], for
diseases that are active over 10-20 years, information of new
births and deaths are included. In another variant of the SIR
model known as the four-state MSIR [6] model, passive immunity
inherited by newborns from their mothers is included: for exam-
ple, newborn babies can be immune to measles for some time
after their birth, but become susceptible later on. Other modifica-
tions have considered the effect of a carrier population [6], which
never recovers from the disease but is asymptomatic (relevant to,
e.g., tuberculosis). Such people can again suffer from the disease
later, or continue to infect others while remaining asymptomatic.
In SEIR [7], a four-state model, one of the states (E) represents
the exposed population, infected but non-infectious. In the SEIQR
model [8], yet another state, representing a quarantined popula-
tion, is added to the SEIR model. All the models discussed above,
including SIR, SIS, MSIR, SEIR, and SEIQR are governed by nonlin-
ear differential equations. More complicated partial differential
equation models that include the effect of the age structure [4]
of the population and vaccination history are also available [7].

The models mentioned so far need not include time delays.
However, the incubation, asymptomatic, and symptomatic phases
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Nomenclature

β̄ Infection rate
m Density of contacts
β Net infectivity (β̄m)
βn Baseline infectivity in a society
βl Infectivity in the presence of social

distancing or lockdown
α Rate of immunity loss
γ Self-recovery rate
p Probability of identifying and isolating

an infected individual
σ Asymptomatic and noninfectious time

duration
τ Asymptomatic but infectious time dura-

tion
κ Time spent in quarantine
r Disease reproduction number
S(t) Fraction of susceptible population at

time t
E(t) Fraction of exposed population at time t
I(t) Fraction of infectious population at time

t
Q (t) Fraction of quarantined population at

time t
R(t) Fraction of recovered population at time

t
P(t) Integral of I(t)

(
i.e.

∫ t
−∞

I(ζ ) dζ
)

Sn(∞) Steady-state fraction of susceptible pop-
ulation with β = βn

SL(∞) Steady-state fraction of susceptible pop-
ulation with β = βl

H(t − a) Heaviside step function defined as H(t−

a) =

{
1, t ≥ a
0, t < a

To Time of implementing lockdown or
social distancing measures

Tc Time of removing lockdown or social
distancing measures

p̄ = pe−γ τ

ν = 1 + τ

µ = p̄(1 + τ )2 − 1

of a disease can be incorporated as time delays in mathematical
models. Including such delays in the differential equation models
make them delay differential equations (DDEs), also known as
retarded functional differential equations. Researchers have used
DDEs [9,10] to model the spread of infections like Zika [11],
HIV [12], influenza [13], and Hepatitis B [14]. Recently, a scalar
DDE with one delay (time of recovery) based on a logistic model
was used to study the spread of COVID-19 in Italy [15]. Some
policy implications based on parameter studies and simulations
were reported, but analytical progress on the delayed equation
was limited.

We observe that the abovementioned models, with a few
tates, can be formally developed from underlying network mod-
ls. Network epidemiological models with a large number of
tates [16–21] follow fine details of the spatial and temporal
pread of an infection. Their average or overall behavior can be
escribed using what we might call lumped, compartmental, or

ontinuum models.
In a recent article [22], a network of compartmental models,
with each model representing an age group was used to study
the COVID-19 outbreak in India. Other works that have recently
appeared, which study the progression of COVID-19 in different
parts of the world, include [23–26]. These works primarily deal
with parameter identification, numerical simulations, and predic-
tion of the number of cases with time, along with some policy
implications.

Even with lumped models, if various effects [4] like incuba-
tion times, natural birth and death rates, prior immunity, and
carrier states are included, then analytical solutions are usu-
ally unavailable. However, sometimes difficult problems can be
solved approximately using asymptotic methods [27,28] or re-
lated methods, and this paper presents such approximations for
a slightly simplified case that is relevant to a fast-spreading
pandemic.

In recent work that is directly related to our paper [9], a five-
state SEIQR system with delays has been developed as a contin-
uum limit from a network model under quite general conditions.
That system has then been examined as a generic model for
infectious diseases. The model, even after simplification, has mul-
tiple parameters and coupled states, and so analytical progress
is difficult. However, several interesting limits, steady states, and
stability criteria have been presented [9], along with supporting
numerical results and policy implications.

Here we take up a simplified version of that model [9]. Our
simplification is only that we ignore the possibility of some
past sufferers of the disease eventually losing their immunity,
and becoming vulnerable to infection all over again. With this
simplification, significant new analytical approximations and in-
sights are possible, and constitute the contribution of this paper.
We note that Young et al. [9] say the following (their state of
(1, 0, 0, 0, 0) is an uninfected population):

‘‘The fact that orbits starting from near (1, 0, 0, 0, 0) will ap-
proach an endemic equilibrium is difficult to prove; this part
of our prediction is supported by numerical simulations’’.

In this context, we will present a new asymptotic multiple-scales
solution for weak growth in a special case, and two informal long-
wave approximations for moderate growth, all three solutions
describing the complete evolution from infinitesimal infection
to final saturation. These new approximations provide useful
new analytical support and understanding that is not included
within [9].

An overview of the paper is depicted in Fig. 1. In Section 2, the
five-state SEIQR DDE model of Young et al. [9] is presented. Upon
setting α = 0 (for a fast pandemic), E, Q , and R become slave
variables. An SI DDE model with two-states is obtained.

A further simplified case of γ = 0 and p = 1 (zero self-
recovery and certain quarantine) is considered in Section 3. An
asymptotic solution for weak growth using the method of mul-
tiple scales (MMS) has been obtained. For moderate growth, a
long-wave approximation is considered, which converts the DDE
into a first-order scalar ODE.

In Section 4, the general case of γ > 0 and 0 < p ≤ 1 (nonzero
self-recovery and probability of quarantine less than or equal to
unity) is discussed. In this case, the long-wave approximation
converts the DDE (SI model) into a second-order ODE. Excellent
agreement is found between the solution of the ODE and that of
the DDE for parameters associated with various diseases.

In Section 5, the two-state SI model of Section 2 is modified to
account for time-varying β . A Galerkin approximation is used to
convert the DDE model with time-varying β into six first-order
ODEs. For both continuous and discontinuous variations in β , an
excellent match is found between the solutions of the ODEs and
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Fig. 1. Flow chart showing the overview of the paper.
the DDE. This match verifies the assumed low-order behavior of
the DDE model, assumed throughout this paper.

In Section 6, a policy of social distancing that involves piece-
wise constant variations in β in considered. In particular, a policy
hat uses a low value of β for an extended period, followed by
higher ‘‘normal" value, is shown to reduce the total fraction
ffected quite significantly (e.g., from 85% to 55% for some pa-
ameter choices). An explicit formula for the maximum reduction
ossible in this way is found. Notably, the reduction depends only
n fraction affected, and not on any other system parameters.
his provides a key policy implication and is the main practical
ontribution of the paper.

. Mathematical model

As mentioned above, our mathematical model is essentially
hat of Young et al. [9], with one of their small parameters set to
ero. Fig. 2, adapted from their paper, shows the lumped model
hich is itself obtained by them from an underlying network
odel. In the model there are five subpopulations (actually pop-
lation fractions) that add up to unity. The general governing
quations [9] are:

Ṡ(t) = −β̃mS(t)I(t) + αR(t) (1)
Ė(t) = β̃m [S(t)I(t) − S(t − σ )I(t − σ )] (2)
İ(t) = β̃mS(t − σ )I(t − σ ) − γ I(t) − β̃mpe−γ τ

× S(t − σ − τ )I(t − σ − τ ) (3)
Q̇ (t) = β̃mpe−γ τ [S(t − σ − τ )I(t − σ − τ )

− S(t − σ − τ − κ)I(t − σ − τ − κ)] (4)
Ṙ(t) = −αR(t) + γ I(t) + β̃mpe−γ τ S(t − σ − τ − κ)

× I(t − σ − τ − κ) (5)

In the above equations, the free parameters are interpreted as
follows: β̃ is the infection rate, m is the density of contacts, γ
is the self-recovery rate, p is the probability of identifying and
isolating an infected individual, and α is the rate of immunity
loss. We have not introduced any simplifications of our own so
far.

We note, first, that E and Q in Eqs. (2) and (4) are influenced
by S and I along with their delayed values, but E and Q do not
themselves influence S, I and R. In other words, E and Q are slave
variables, and we henceforth ignore them.

In the three equations that remain, we can clearly absorb m
into β̃ or equivalently, write

β̃m = β. (6)

If social distancing is practiced, then we expect m to decrease and
thus β to be lower, even though β̃ may remain the same. For
this reason, in the later portions of this paper, we will consider
time-varying β while holding other parameters constant.

For a fast-spreading pandemic, we assume α = 0 for simplic-
ity, which makes R a slave as well, and we need to only retain the
equations for S and I . Finally, by choice of units of time, we can
let σ = 1. This is equivalent to nondimensionalizing τ which has
units of time, as well as γ and β which have units of 1/time. Our
equations now are

Ṡ(t) = −β(t)S(t)I(t) (7)
İ(t) = β(t − 1)S(t − 1)I(t − 1) − γ I(t) − β(t − 1 − τ )

× pe−γ τ S(t − 1 − τ )I(t − 1 − τ ) (8)

In the above, if β was constant rather than time-varying, then its
t-dependence would be dropped. Note that, if β varies with time,
its variation can be considered externally specified and not a part
of the solution. Eqs. (7) and (8) make intuitive sense in a lumped-
variable setting as follows. Eq. (7) says that the instantaneous rate
of new infections is proportional to how infectious the disease
is (β̃), how much people are meeting each other (m(t)), how
many uninfected people there are (S(t)) and how many infectious
people are out in public (I(t)). Eq. (8) says that the rate of change
in the number of infectious people is equal to previously infected
people just exiting the latency phase and entering the infectious
phase, minus the rate at which people are recovering on their
own, minus also the rate at which people displaying symptoms
are being put into quarantine (these quarantined people are
slightly diminished in number due to self-recovery, which is
good; and due to some people not being quarantined, which is
a system inefficiency).

We are interested in near-unity initial conditions for S(−∞) =

1 that lead to growth of the infection and eventual saturation. In
particular, the net damage done by the disease is represented by
1 − S(∞).
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Fig. 2. The SEIQR model with delays. Healthy individuals S(t) are infected with rate constant β . Infected individuals E(t) remain asymptomatic and non-infectious
for a time duration σ . Subsequently, these individuals become infectious and enter population I(t), but remain asymptomatic for a time duration τ . Upon showing
symptoms, they enter population Q (t) and are quarantined with probability p for a time κ , beyond which they infect nobody. Some infectious asymptomatic
individuals may become non-infectious on their own, with rate γ . After quarantine, the cured population R(t) could in principle lose immunity at a small rate α,
but we take α = 0 for a fast-spreading pandemic.
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From now onward, until the start of Section 5, we will consider
β to be a constant parameter. For clarity, therefore, we write the
governing equations out with constant β ,

Ṡ(t) = −βS(t)I(t) (9)
İ(t) = βS(t − 1)I(t − 1) − γ I(t) − βpe−γ τ

× S(t − 1 − τ )I(t − 1 − τ ) (10)

Let

P(t) =

∫ t

−∞

I(ζ ) dζ , (11)

where we are interested in the asymptotic initial condition
P(−∞) = 0 as the limiting case of a tiny level of initial infection.
Then Eq. (9) yields

S(t) = e−βP(t) (12)

which incorporates the initial condition of interest, namely
S(−∞) = 1. Inserting S(t) from Eq. (12) into Eq. (10), we obtain

P̈(t) = βe−βP(t−1)Ṗ(t−1)−pe−γ τβe−βP(t−1−τ )Ṗ(t−1−τ )−γ Ṗ(t).
(13)

Integrating both sides with respect to time, and by defining

p̄ = pe−γ τ , (14)

we obtain

Ṗ(t) = p̄e−βP(t−1−τ )
− e−βP(t−1)

− γ P(t) + 1 − p̄, (15)

where 1 − p̄ is an integration constant chosen to match initial
conditions at −∞. Thus, for constant β and with the approxima-
tion of α = 0 for a fast-spreading pandemic, Eqs. (1) through
(5) effectively reduce to the single nonlinear delay differential
equation shown in (15).

It may be noted that Ṗ = 0, i.e., P equals a constant, is allowed
by Eq. (15) for P that satisfy

(1 − p̄)
(
1 − e−βP)

− γ P = 0. (16)

Eq. (16) is satisfied by P = 0 for all parameter values. Addition-
ally, for γ > 0, it has a single strictly positive root if
β

(1 − p̄) > 1. (17)

γ

If γ = 0 (i.e., there is no self-recovery), and 0 ≤ p̄ < 1
i.e., not everybody is quarantined), then for β > 0, P = 0 is the
nly equilibrium solution. This means if P increases from zero,
t can grow without bound and S(∞) = 0, i.e., everybody in the
opulation gets infected. The case of β = 0 is not interesting
ecause the infection does not spread. Finally, if γ = 0 and p̄ = 1,

then Eq. (16) is identically satisfied for every constant P .
Thus, we conclude that a simple yet interesting situation

within Eq. (15) occurs when p = 1 (all infected people display
symptoms and are quarantined) and γ = 0 (there is no recovery
without displaying symptoms). We will first study this restricted
case in some detail, because some analytical progress is possible
that provides useful insights.

3. A simple subcase: p = 1 and γ = 0

For p = 1 and γ = 0, we have from Eq. (15),

Ṗ(t) = e−βP(t−1−τ )
− e−βP(t−1) (18)

As mentioned above, any constant P is an equilibrium, though
possibly an unstable one.

3.1. Linear stability analysis for small P

In the initial stages P(t) is small, and Eq. (18) can be linearized
to

Ṗ(t) = βP(t − 1) − βP(t − 1 − τ ) (19)

Eq. (19) has infinitely many characteristic roots, and has oscilla-
tory solutions which we must disallow because their decreasing
portions require negative I(t). However, monotonic solutions ex-
ist as well, and we will examine them. The characteristic equation
of Eq. (19) is

λ = βe−λ
(
1 − e−λτ

)
. (20)

Among the infinitely many roots of the above equation, those
with nonnegative real parts are of main interest because they lead
to growth of P(t) from initial tiny values. We note that if the real
part of λ is assumed nonnegative, then the magnitude of the right
hand side is bounded by 2β . This means, for infinitesimal β , any
right half plane roots of Eq. (20) are infinitesimal as well. We also
note that λ = 0 is a root regardless of β .
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For non-infinitesimal β , a criterion for real roots in the right
half plane is easily found because λ = 0 is a root of Eq. (20) and
the right hand side first increases and then decreases to zero as
λ → ∞. These conditions imply that a nonzero positive root is
assured if the slope of the right hand side at λ = 0 exceeds unity.
That condition is

βτ > 1. (21)

Eq. (21) suggests that the contagion may take hold if βτ > 1,
and perhaps not if βτ < 1. Note that τ is fixed by biology but
β can be lowered by practicing social distancing, which will be
discussed towards the end of the paper.

Incidentally, in Young et al. [9], the instability condition in-
cluding p ≤ 1 and γ > 0 is given as Eq. (17). For p = 1 and
γ → 0, Eq. (17) easily reduces to Eq. (21).

3.2. Initial numerical observations

For initial insight, we consider some numerical solutions of
Eq. (18) obtained using Matlab’s built-in solver dde23 with spec-
ified error tolerances of 10−7 or better. The initial function used
was

P(t) = a
(
1 +

t
1 + τ

)
, t ≤ 0, (22)

ith a small and positive, and mentioned in the figure captions.
nce P(t) is obtained (numerically or, later, analytically), we can
alculate S(t) by using Eq. (12). Results below will therefore be
resented only in terms of the original variable S(t), since the

impact of the disease is reflected by 1 − S(∞).
Two solutions for β = 1 and τ = 0.8 are shown in Fig. 3(a). It

is seen that not much decay occurs; and the solution in each case
saturates at a value proportional to the magnitude of the initial
function used. This is linear behavior (recall also the discussion
following Eq. (21)).

In contrast, two solutions for β = 1 and τ = 1.2 are shown in
Fig. 3(b). Numerical solutions for two different initial functions
show that the rapidly spreading phase of the disease and the
saturation value of S are essentially identical, independent of the
initial function. It is important to note that the relative time-shift
between these two solutions is inconsequential. The underlying
dynamical system is autonomous, and the use of asymptotic
initial conditions at −∞ leaves a free parameter in the solution
that allows time-translations (this will be explicitly clear in the
analytical approximations later in the paper). The solution that
starts from smaller initial values takes a little longer to climb to
larger values, resulting in the time-shift.

Next, two solutions for β = 1 and β = 2, but with βτ = 1.2
in each case, and with identical initial functions (a = 0.0001) are
hown in Fig. 4(a).
The limiting or saturation value S(∞), which is the population

raction that remains unaffected, appears independent of β for βτ

eld fixed. Similar behavior is seen in the two curves in Fig. 4(b)
or βτ = 2 and identical initial conditions. Again, S(∞) appears
ndependent of β for βτ held fixed.

.3. Saturation value of P

Prompted by numerics, let

(∞) =
C
β

(23)

for some C to be determined. In the solution of interest, I(t) starts
from infinitesimal values, and each individual who is a part of S(t)
stays in the infectious state for exactly τ units of time. Since the
total number of individuals thus affected is exactly 1− S(∞), we
an see that for the solution of interest1

(∞) = (1 − S(∞)) τ . (24)

rom Eq. (23), we obtain
C

1 − e−C = βτ (25)

Eq. (25) needs to be solved numerically, but two limits are clear.
As βτ → 1+, we have C → 0. A simple calculation shows

C ≈ 2(βτ − 1). (26)

The other limit is for βτ ≫ 1, where C → βτ .
Numerically, for βτ = 1.2, we find C = 0.376 or S(∞) =

e−0.376
≈ 0.687, which matches Fig. 3(a); and for βτ = 2, we find

C = 1.594 or S(∞) = e−1.594
≈ 0.203, which matches Fig. 3(b).

The difference between even βτ = 1.2 and βτ = 2, though both
are unstable, is large in terms of consequences for the population.

3.4. Maximum value of stable S(∞)

The above results indicate that if βτ > 1, then a solution
that grows asymptotically from a zero value at minus infinity
saturates at a value given by Eq. (26). However, all P values are
equilibrium values: it is therefore interesting to ask what the
minimum value of P is for which the equilibrium is stable. We can
find this by considering the corresponding limiting steady value
of S to be S∗, writing Eq. (10) for p = 1 and γ = 0 as

İ(t) = βS∗I(t − 1) − βS∗I(t − 1 − τ ),

and concluding that the required stability condition is (by adapt-
ing Eq. (21))

βτS∗ < 1. (27)

For βτ slightly exceeding unity, referring to Eqs. (23) and (26),
the upper limit of

S∗
=

1
βτ

implied by Eq. (27) corresponds to about half as many people
being infected as would be if the asymptotic solution for constant
β was allowed to run its course all the way from initiation to
saturation. This situation will be clearly seen in the multiple
scales solution for constant β and weak growth starting from zero
at t = −∞. We now turn to that solution.

3.5. Multiple scales solution for weak growth

The foregoing results indicate that the P(t) solution starts
asymptotically from zero at t = −∞ and grows monotonically if
βτ > 1, but saturates at a small value when βτ slightly exceeds
unity. We can develop an asymptotic solution for the case where

β =
1
τ

+ ϵ, 0 < ϵ ≪ 1. (28)

We will use the method of multiple scales [27–30]. We rewrite
Eq. (18) as

Ṗ(t) = e−

(
1
τ +ϵ

)
P(t−1−τ )

− e−

(
1
τ +ϵ

)
P(t−1) (29)

1 An analogy may help explain this trick. Imagine a room where a finite
but large number of people, say M people, enter over a long period of time
and at a variable rate. The number of people in the room, N(t), is an arbitrary
nonnegative function of time. Each person stays in the room for exactly τ units
of time, and then leaves. Clearly,

∫
∞ N(t)dt = Mτ .

−∞
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Fig. 3. Two solutions each for (a) βτ = 0.8 < 1 and (b) βτ = 1.2 > 1. The initial function used for integrating Eq. (18) was P(t) = a
(
1 +

t
1+τ

)
, t ≤ 0. The two

solutions in (b) are relatively time-shifted because the underlying system is autonomous, and one solution grows from smaller initial values; see main text for further
discussion.
Fig. 4. Two solutions for (a) βτ = 1.2 > 1 and (b) βτ = 2 > 1. The parameters β and τ are individually varied. The initial function used for integrating Eq. (18)
was P(t) = 1 × 10−4

(
1 +

t
1+τ

)
, t ≤ 0.
w
t
e
M

w

f
t
t

nd note that the ϵ = 0 case is on the stability boundary for
(t) = 0. We introduce three time scales for a second order
xpansion,

0 = t, T1 = ϵt, T2 = ϵ2t, (30)

think of P(t) as P(T0, T1, T2) with a slight abuse of notation, and
observe that the time derivative is to be interpreted as

Ṗ =
∂P
∂T0

+ ϵ
∂P
∂T1

+ ϵ2 ∂P
∂T2

+ · · · . (31)

Further, a delayed quantity such as P(t − ∆) is to be interpreted
as

P(t − ∆) = P(T0 − ∆, T1 − ϵ∆, T2 − ϵ2∆), (32)

where due to the smallness of ϵ, Taylor series expansions in ϵ
can be used for the second and third arguments, but not the first
argument, i.e.,

P(t − ∆) = P(T0 − ∆, T1, T2) − ϵ∆
∂P(T0 − ∆, T1, T2)

∂T1

+
ϵ2∆2

2
∂2P(T0 − ∆, T1, T2)

∂T 2
1

− ϵ2∆
∂P(T0 − ∆, T1, T2)

+ O(ϵ3). (33)

∂T2 P
Finally, P itself is to be expanded as

P = ϵP0 + ϵ2P1 + ϵ3P2 + · · · (34)

here higher order terms in the expansion would require reten-
ion of still slower time scales. This much is routine, and yields an
quation of the form (using the symbolic computation software
aple; note that the leading order term is O(ϵ)):(
∂

∂T0
P0 (T0, T1, T2) +

P0 (T0 − 1 − τ , T1, T2)
τ

−
P0 (T0 − 1, T1, T2)

τ

)
ϵ + L2ϵ2

+ L3ϵ3
+ · · · = 0, (35)

here two long expressions have been written simply as L2 and
L3 (details omitted for brevity). At O(ϵ) we have

∂

∂T0
P0 (T0, T1, T2) +

P0 (T0 − 1 − τ , T1, T2)
τ

−
P0 (T0 − 1, T1, T2)

τ
= 0,

(36)

or which we adopt the solution (based on previous observa-
ions; and also upon rejecting fast-varying exponential decaying
erms [29,30])

(T , T , T ) = A(T , T ), (37)
0 0 1 2 1 2
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i.e., P0 is a constant on the fast or T0 time scale. Inserting Eq. (37)
into Eq. (35), we obtain at O(ϵ2),

∂

∂T0
P1 (T0, T1, T2) +

P1 (T0 − 1 − τ , T1, T2)
τ

−
P1 (T0 − 1, T1, T2)

τ
= 0,

(38)

ith terms containing A(T1, T2) canceling each other out at this
order. This means A(T1, T2) remains indeterminate at this order,
and we are free to choose

P1 (T0, T1, T2) = 0, (39)

because it adds nothing new to the already retained P0. Inserting
the above into Eq. (35), we obtain at O(ϵ3),

∂

∂T0
P2 (T0, T1, T2) +

P2 (T0 − 1 − τ , T1, T2)
τ

−
P2 (T0 − 1, T1, T2)

τ
= L3,

(40)

where L3 is a long expression independent of T0 and containing
the function A(T1, T2) along with its T1-derivatives only. Now,
appealing to the required boundedness of P2 (which corresponds
to removal of secular terms, and can also be viewed as a choice
that allows the approximation to stay valid for a longer time), we
insist that L3 = 0. Further, since T2 derivatives of A do not appear,
we set A back to a function of T1 alone (no contradiction up to this
order). In this way, we finally obtain(
1 +

τ

2

)
A′′

− τA′
+

AA′

τ
= 0, (41)

where we note that τ is a positive parameter, A is a function of T1,
and primes denote T1-derivatives. The above differential equation
is to be solved as a function of T1, with the initial condition
A(−∞) = 0. The solution turns out to be

A = τ 2
{
1 + tanh

(
τ (T1 − c0)

τ + 2

)}
, (42)

where c0 is an indeterminate constant that allows time-shifting
(recall Fig. 3(b) and the related discussion). Inserting T1 = ϵt , and
then (recall Eq. (28))

ϵ = β −
1
τ

, (43)

we finally obtain the leading order approximation for the entire
solution, for βτ slightly greater than unity, as

P(t) ∼ (βτ − 1)τ
{
1 + tanh

(
(βτ − 1)(t − c1)

τ + 2

)}
, (44)

where c1 is an undetermined constant. The above solution satu-
rates, as t → ∞, at

P(∞) ∼ 2τ (βτ − 1), (45)

which matches Eq. (26) upon noting that we can replace C
β
with

Cτ with no errors introduced at leading order. At the same order
of approximation, we can also write

P(t) ∼
βτ − 1

β

{
1 + tanh

(
β(βτ − 1)(t − c1)

1 + 2β

)}
, (46)

whence

S(t) ∼ e
−(βτ − 1)

{
1 + tanh

(
β(βτ − 1)(t − c1)

1 + 2β

)}
, (47)

where we have used the ‘∼’ notation because this is an asymp-
totic approximation. A numerical example is given in Fig. 5 for
βτ = 1.025 (β = 1 and τ = 1.025) and βτ = 1.05 (β = 1 and
τ = 1.05). The match is good, but deteriorates for larger values
of βτ .
It may be noted that, for such weak growth where only a small
fraction of the total population gets infected before the pandemic
runs its course, by Eq. (46),

S(∞) ∼ 1 − 2(βτ − 1). (48)

In comparison (recall Eq. (27)), S could in principle be stable at a
value as high as

S∗
=

1
βτ

=
1

1 + (βτ − 1)
∼ 1 − (βτ − 1), (49)

.e., the uncontrolled and constant-β solution infects about twice
s many people as seems strictly necessary; we will return to this
n Section 5.

We will next develop a long-wave approximation that per-
orms better for somewhat larger βτ .

.6. Long-wave approximation for moderate growth

The advantage of using an asymptotic method like the method
f multiple scales is that we have formal validity as ϵ → 0. We are
eassured that the solution we are seeking does in fact exist, and
as approximately the shape obtained as the leading order ap-
roximation. However, in the present case, for somewhat larger ϵ

he solution is not very accurate; moreover, proceeding to higher
rders leads to long expressions that seem difficult to simplify
sefully. Therefore, encouraged by our asymptotic solution, we
ow develop a more informal but more accurate approximation.
n particular, we try a long-wave (LW) approximation as follows.

We suppose that there is a ‘‘long’’ scale (technically a time
cale, for this problem) which we shall call L, such that

(t) = P̂
(
t
L

)
, L ≫ 1. (50)

et

=
t
L
. (51)

Now Eq. (18) becomes

P̂ ′(ξ )
L

= e−βP̂
(
ξ−

1+τ
L

)
− e−βP̂

(
ξ−

1
L

)
. (52)

xpanding the above in a series for large L, retaining terms up to
(L−2), and solving for P̂ ′′, we obtain

ˆ ′′
= βP̂ ′2

+
2LP̂ ′

τ + 2

(
1 −

eβP̂

βτ

)
. (53)

e note that on the right hand side the second term is dom-
nant because it contains the large parameter L, while the first
erm does not. The left hand side has the highest derivative and
annot be dropped without changing the order of the differential
quation. For these reasons, a further approximation to Eq. (53)
s

ˆ ′′
=

2LP̂ ′

τ + 2

(
1 −

eβP̂

βτ

)
. (54)

q. (54) is integrable, and yields

ˆ ′
=

2L
τ + 2

(
P̂ −

eβP̂

β2τ

)
+ C0, (55)

here C0 is an integration constant. The initial condition of in-
erest is P̂ ′

= 0 and P̂ = 0 as ξ → −∞, whence we obtain

ˆ ′
=

2L
τ + 2

(
P̂ −

eβP̂

β2τ

)
+

2L
β2τ (τ + 2)

. (56)
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Fig. 5. Comparison between numerical solution and asymptotic (method of multiple scales, or MMS) solution for (a) β = 1, τ = 1.025, a = 1×10−5 (numerical) and
1 = 310 (MMS); (b) β = 1, τ = 1.05, a = 1×10−5 (numerical) and c1 = 200.5 (MMS). The initial condition used for integrating Eq. (18) is P(t) = a

(
1 +

t
1+τ

)
, t ≤ 0.

he arbitrary time-shift c1 of the multiple scales solution (Eq. (47)) is chosen here to obtain a good visual match.
H

We now return to Eq. (53), where we can insert Eq. (56) into
he non-dominant term as an approximation. A simple way to
o it is to replace the first term on the right hand side with an
pproximation that is integrable, i.e.,

P̂ ′2
= βP̂ ′

{
2L

τ + 2

(
P̂ −

eβP̂

β2τ

)
+

2L
β2τ (τ + 2)

}
. (57)

his gives

ˆ ′′
= βP̂ ′

{
2L

τ + 2

(
P̂ −

eβP̂

β2τ

)
+

2L
β2τ (τ + 2)

}

+
2LP̂ ′

τ + 2

(
1 −

eβP̂

βτ

)
. (58)

The above is integrable, and after enforcing the initial condition
P̂ ′

= 0 and P̂ = 0 as ξ → −∞, setting L = 1 (it was a
bookkeeping parameter all along, helping us keep track of which
effects are big and which are small), and dropping the hat, we
obtain the informal long-wave approximation
dP
dt

=
(2 + βP)P

τ + 2
+

2P
βτ (τ + 2)

+
4

β2τ (τ + 2)

(
1 − eβP) . (59)

We mention that Eq. (59) is indeed a significant simplification,
ecause it replaces a DDE (infinite-dimensional phase space) with
first order ODE (one-dimensional phase space). It also applies to
specific solution, all the way from infinitesimal initiation to final
aturation. The freedom in a single initial condition that it offers
s equivalent to simply the arbitrary time-shift already noted in
he multiple scales solution. While it cannot be solved explicitly
n closed form, its solution can be formally expressed in implicit
orm using an indefinite integral (omitted for brevity).

The qualitative behavior of the approximation in Eq. (59) may
e checked easily for small positive P by linearizing the right hand
ide to obtain

˙ =
2(βτ − 1)
βτ (τ + 2)

P, (60)

which is consistent with the earlier result that growth requires
βτ > 1 (inequality (21)). In Fig. 6, numerical solutions for βτ

somewhat greater than unity are shown. We consider βτ = 1.15
(see Fig. 6(a)) and βτ = 1.25 (see Fig. 6(b)). The numerically
obtained long-wave solutions match well with full numerical
solutions of the original DDE; in fact, they match significantly
better than the multiple scales solution.
Finally, a direct analytical comparison with the multiple-scales
solution can be made by expanding the right hand side of Eq. (59)
in a power series for small P , retaining up to quadratic terms. That
equation can be solved in closed form, and gives a hyperbolic
tangent solution as well, which initially looks a little different
from the multiple scales solution:

P(t) =
βτ − 1

β(2 − βτ )

{
1 + tanh

(
(βτ − 1)(t − c1)

βτ (τ + 2)

)}
. (61)

owever, noting that the multiple scales solution was for βτ

close to unity, if we replace (2− βτ ) with 2− 1 = 1, and replace
βτ (τ + 2) with 1 ·

(
1
β

+ 2
)
, then we recover Eq. (46). This is not

surprising because for βτ slightly greater than unity, the long-
wave approximation is asymptotic as well. The approximation
is only informal (as opposed to asymptotic) when we use it for
arbitrary values of β and τ , with βτ not close to unity.

This concludes our study of the p = 1 and λ = 0 subcase,
which is interesting both because it is a reasonable limit and
because it permits any constant P as an equilibrium. The latter
is not true for general parameter values, to which we turn next.
Encouraged by the simplicity of the long-wave approximation as
opposed to the multiple scales solution, we try only the former.

4. Long-wave approximation for general parameter values

We now discuss approximating a specific solution. This solu-
tion starts from an infinitesimal infection level, changes mono-
tonically but slowly over a long time, then accelerates over a
relatively short time, to finally saturate at a finite value as the
time goes to infinity. We now take up Eq. (15), reproduced below:

Ṗ(t) = p̄e−βP(t−1−τ )
− e−βP(t−1)

− γ P(t) + 1 − p̄.

Proceeding with the same ansatz as Eq. (50), expanding up to
second order, and setting L to unity, we obtain

P̈ = βṖ2
+

2
µ

(
p̄(1 + τ ) − 1 −

eβP

β

)
Ṗ

+
2

βµ

(
p̄ − 1 + (1 − p̄ − γ P)eβP) , (62)

where

µ = p̄(1 + τ )2 − 1. (63)

A few things may be noted here. First, assuming that τ and p̄ are
not too small, we assume µ > 0 in Eq. (63). Second, we were
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ble to use a trick for the p = 1 and γ = 0 case to reduce
the order of the approximating long-wave differential equation;
for those parameter values, the last term on the right hand side
in Eq. (62) becomes zero. Here, we have had to retain the second
order ordinary differential equation. Third, if there is a nonzero
positive P for which Eq. (62) has an equilibrium solution, then
that P must satisfy

p̄ − 1 + (1 − p̄ − γ P)eβP
= 0, (64)

which is equivalent to Eq. (16). This means the steady state P
in this general case will be exactly correct, unlike the previous
subcase of p = 1 and γ = 0. However, note that this unique
limiting P is for the specific solution that starts asymptotically at
zero, at t = −∞. Since we now have a second order differential
equation in the long-wave approximation, trying to approximate
what is purportedly a single solution, we have a minor dilemma
in interpreting the two degrees of freedom available in initial
conditions for Eq. (62). One of those corresponds to an arbitrary
time-shift, as noted earlier. That leaves one other initial condition.
Since our derivation has not identified what this initial condition
should be, we expect that it should be inconsequential. This does
turn out to be the case, as seen next.

For small P and small Ṗ , Eq. (62) can be linearized to give

P̈ + C1Ṗ + C2P = 0, (65)

where C1 and C2 are given by

C1 = −
2
µ

(
p̄(1 + τ ) − 1 −

1
β

)
, (66)

C2 = −
2

βµ
(β(1 − p̄) − γ ). (67)

For stability of P = 0 we must have C1 > 0 and C2 > 0, but this
solution is of little interest because the infection does not grow. If
C1 < 0 and C2 > 0, then growing oscillations are predicted. Such
solutions are non-physical for our application, because P must be
monotonic.

For monotonic growth with a single unstable growth direction,
we require C > 0 and C < 0. We assume that µ > 0 (recall
1 2
Eq. (62) and Eq. (63)) accordingly our conditions become

β

γ
(1 − p̄) > 1, (68)

p̄(1 + τ ) − 1 −
1
β

< 0. (69)

q. (68) matches the loss of stability condition of Young et al. [9]
s well as our own Eq. (17). In other words, the condition for
solution growing from zero exactly matches the condition for

he existence of another equilibrium for strictly positive P . This
ondition, though obtained here from the long-wave approxima-
ion, matches the theoretical result exactly because it is near this
tability boundary that the long-wave approximation is asymp-
otic. Note that if C1 > 0 and C2 < 0 in Eq. (65), then the
wo characteristic roots are real: one is positive and one is neg-
tive. The positive root leads to the growing solution, which is
f primary interest in this paper. The negative root absorbs the
pparently free initial condition, contributes an exponentially de-
aying term that dies soon, and has no influence on the growing
olution provided the initial conditions are sufficiently early in
he outbreak.

A numerical example is shown in Fig. 7 for the case of C1 > 0
nd C2 < 0. The parameter p = 0.98 implies that the probability
f detecting infected individuals is not perfect. Further, γ = 0.1
odels a small fraction of the infectious population recovering
ithout being quarantined. The Long-wave solution almost per-

ectly matches the solution from numerical integration of the DDE
Eq. (18)). The phase portrait shown in Fig. 7(b) indicates that the
tability properties of the solution of interest (shown in red) are
orrectly inherited by the long-wave approximation. Nearby solu-
ions are attracted towards the same asymptotic solution starting
rom infinitesimal initial infection and growing monotonically
owards final saturation.

For this specific kind of solution, the long-wave approximation
ives a good match to the DDE solution as long as µ > 0, C1 > 0
nd C2 < 0.
In Fig. 8, we compare the solution of the long-wave ODE

Eq. (62)) and that of the DDE (Eq. (15)) for parameters corre-
ponding to six different diseases. These parameters are reported
n Table 1 and are taken from Refs. [9,31–36]. In Fig. 8, the long-
ave solution captures the disease progression accurately in all
ases.
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able 1
arameters for different infections.
Infection r 1

γ
β = rγ p τ

H1N1 2016 (Brazil) [9] 1.7 7 0.242 0.8 6
Ebola 2014 (Guin./Lib) [31] 1.5 12 0.125 0.8 17
Spanish Flu 1917 [32] 2 7 0.2857 0.8 5
SARS [33] 2.9 21.6 0.134 0.8 9
Hepatitis A [33] 2.25 13.4 0.197 0.8 8
COVID-19 [34–36] 2.6 12.5 0.208 0.2 10

We now consider more general dynamics, starting from less
estricted initial conditions, and allowing for a time-varying in-
ection rate β .

. Time-varying β

As a part of its public health policy, based on observed spread
f the disease, a government may prescribe temporarily greater
ocial distancing. Social distancing effectively lowers β . We can
hen use Eqs. (7) and (8), rewritten here for readability (incorpo-
ating p̄ from Eq. (14)):

˙(t) = β(t)S(t)I(t), (70)
İ(t) = β(t − 1)S(t − 1)I(t − 1) − p̄β(t − 1 − τ )

× S(t − 1 − τ )I(t − 1 − τ ) − γ I(t). (71)

It is worthwhile to verify that the system has low dimensional
ehavior. To this end, in this section we present a six-state
alerkin approximation for Eqs. (70) and (71) using Legendre
olynomials as basis functions. The ODEs from the Galerkin ap-
roximation are shown below (see the appendix for a derivation
nd [37,38] for details). Writing ν = 1 + τ , α2 = 1 −

2
ν

and
α3 =

3
2

(
1 −

2
ν

)2
−

1
2 , the reduced order model is

˙1 =
2
ν
η2, (72)

˙2 =
6
ν
η3, (73)

˙3 = −
2
ν
η2 −

6
ν
η3 − β(t) (η1 + η2 + η3) (η4 + η5 + η6) , (74)

˙4 =
2
η5, (75)
ν
ξ

η̇5 =
6
ν
η6, (76)

˙6 = −
2
ν
η5 −

6
ν
η6 + β(t − 1) (η1 + α2η2 + α3η3)

× (η4 + α2η5 + α3η6)

− p̄β(t − ν) (η1 − η2 + η3) (η4 − η5 + η6)

− γ (η4 + η5 + η6) . (77)

n the above approximation S(t) = η1(t)+η2(t)+η3(t) and I(t) =

4(t) + η5(t) + η6(t). Here, β(t) is a known function of time and
he state variables do not have delays. Note that we approximate
he dynamical system here, and not a specific solution as we did
ith the long wave approximation.
The accuracy of the reduced order model is demonstrated in

ig. 9. For each of several sets of parameters, we find an excellent
atch between numerical solutions of the DDEs and the Galerkin
ased ODEs. Both continuous and discontinuous β ’s are consid-
red. The reduced order model shows that our DDEs (Eqs. (70)
nd (71)), though formally infinite-dimensional systems, are ef-
ectively finite-dimensional. The remaining dynamics consists of
apidly decaying components that are soon inconsequential.

In the next section, we present some policy implications of
ime-varying β .

. Policy implications

Since social distancing lowers β , we consider the implications
f time-varying β in the simple case where β is set to a low
alue βl early in the pandemic, held at that value for a sufficiently
ong time, and then set back to its higher, normal value βn. We
mphasize that βn is a matter of culture and lifestyle, which
eople may not like to change permanently; and use of βl < βn
s a temporary measure. We will show that the implications can
e significant in terms of reducing the total number of people
ffected. Moreover, a simple analytical formula for the obtainable
enefits will be found.
Consider a country with a constant β = βn under normal

iving conditions. If the pandemic runs its course without any
ocial distancing measures, the solutions of Eqs. (70) and (71)
pproach S(t) = Sn and I(t) = 0. To study the stability of these
olutions, we substitute S(t) = Sn + ξ and leave I unaltered, and
rop the subscript n from β , to obtain from Eqs. (70) and (71)

˙ = −βS I, (78)
n
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(b) Ebola [31] (c) Spanish Flu 1917 [33] (d) SARS [33] (e) Hepatitis A [33], and (f) COVID-19 [34,35]. Initial conditions and other parameter values used to generate
the results are shown in each figure separately.
İ = βSnI(t − 1) − γ I(t) − βSnp̄I(t − 1 − τ ). (79)

he stability of Eq. (79) determines the stability of the system.
ubstituting I = eλt into Eq. (79), and setting λ = 0 at the
ifurcation point, the condition for stability is seen to be

S (1 − p̄) ≤ γ . (80)
n
From Eq. (64), the steady-state value Sn satisfies (note the n
subscript on β)

(p̄ − 1) Sn +

(
1 − p̄ +

γ log(Sn)
βn

)
= 0. (81)

It is seen above that if γ > 0 but p̄ = 1, then Sn = 1. This means
that, for large p and small τ , S will not be much smaller than
n
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Fig. 9. Comparison between numerical and Galerkin solutions for various parameters. H(t − c) = 1 if t > c , and is zero otherwise. Initial functions used for Eqs. (70)
nd (71) are S(t) = 1 − 10−5

(
1 +

t
1+τ

)
, t ≤ 0 and I(t) = 10−5

(
1 +

t
1+τ

)
, t ≤ 0. Initial conditions for Eqs. (72)–(77) are fitted by Galerkin projection (see the

ppendix).
nity. However, in practice, γ τ is not very small, and p is not
ery large. As an example representative of COVID-19 (γ = 0.08,

p = 0.2, τ = 10, and βn = 0.1962, and p̄ = pe−γ τ ), we find that
Sn = 0.15 from Eq. (81).

The possible advantages of social distancing are now seen
from the inequality (80). Substituting βn = 0.1962, Sn = 0.15,
along with the abovementioned values for p̄ and γ , we find the
inequality (80) is met by a relatively large margin:

0.0268 < 0.08.
In fact, for the same β = βn, stability could potentially be
achieved by a significantly larger steady value of S(t), say

SL =
γ

βn(1 − p̄)
, (82)

which works out to 0.45 for the parameter values being consid-
ered in this example. In other words, the number of unaffected
people could potentially be three times larger, and the number of
affected people could be less by about one third (0.55 as opposed
to 0.85). The policy implication is that if we hold β at a lower
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value βl and let the pandemic run its course and stabilize at
S(t) = SL, then subsequently raising β back to βn will yield a
stable state, and further infections will not grow. Stated another
way, if β is held at a constant value for all time, the pandemic
progresses beyond the point of first herd immunity to a state
where more people are affected than necessary. However, with
a temporary phase of social distancing, the controlled pandemic
can in principle grow to precisely the level where herd immu-
nity just becomes effective for the normal level of interactions,
at which point social distancing can be lifted with no further
penalties. In this way, while preserving our long term levels of
social interactions, we can achieve the smallest possible numbers
of people affected.

The precise value of βl needed is easy to compute for the
present model. We first use our normal parameters in Eq. (82)
to compute the best achievable outcome, SL. The corresponding
β = βl is found using Eq. (64), which here becomes

(p̄ − 1) SL +

(
1 − p̄ +

γ log(SL)
βl

)
= 0, (83)

which for the parameter values of the present example yields
βl = 0.1279.

The simple social distancing policy recommendation now is

β(t) =

{
βn for 0 < t < To,
βl for T0 ≤ t ≤ Tc,
βn for t > Tc,

(84)

where social distancing is imposed at time To, early in the pan-
demic when very few people have been affected; and Tc is under-
stood to be sufficiently late such that an intermediate equilibrium
at SL is established. Subsequently, β is set back to βn and life
proceeds as usual.

In Fig. 10, we show the evolution of the pandemic for three
cases: (i) β(t) = βn = 0.1962 (constant for all time), (ii) β(t) =

βl = 0.1279 (held constant for all time), and (iii) β(t) given
by Eq. (84) with T0 = 50 and Tc = 550. In case (i), 85% of the
population is affected. In case (ii), only 55% of the population is
affected. In case (iii), too, only 55% is affected even though β is
later increased to the level of case (i).

The effectiveness of this variable-β policy can be expressed
using the ratio ρ < 1, defined by

ρ =
1 − SL
1 − Sn

.

f ρ is significantly less than unity, then the benefits of adopting
he above optimal social distancing policy are high. A simple ex-
ression for ρ can be obtained as follows. First, Eq. (82) is solved

for βn, which is inserted into Eq. (81). Simple manipulations then
ield

=
1

1 − Sn
+

1
log(Sn)

. (85)

he above formula is in terms of Sn, which is formally a quantity
hat depends on model parameters β , τ , γ and p. However,
n terms of interpretation, the dependence on Sn alone is both
nteresting and useful, because it shows the answer is dependent
nly on the severity of the pandemic. In particular, for very small
n, ρ ≈ 0.5. However, even for Sn = 0.15 (i.e., 85% of the
population would normally be affected), we find that ρ = 0.65,
or about two thirds.

In the popular press, the idea is commonly expressed that
social distancing spreads the infected people out by flattening the
curve, and this gives the medical services of a country more time
to respond. Our result shows that the total number affected can
be significantly reduced as well.
Fig. 10. Fraction of susceptible population with β(t) = βn = 0.1962, β(t) =

βl = 0.1279, and β(t) = βn − βdH(t − 55) + βdH(t − 550). The parameters
used for the generating the results are γ = 0.08, p = 0.2, and τ = 10. Here
βd = βn − βl .

7. Concluding discussion

In this paper we have taken up a recently presented SEIQR
model with delays. For a fast-spreading pandemic, loss of immu-
nity of previously infected and cured people may reasonably be
ignored. Under that simplification, the SEIQR model decouples so
that only the S and I population equations need to be tackled.
It is known for this model that, for fixed parameter values in the
unstable regime, an outbreak can occur. An initially small infected
population can grow, and a significant portion of the original
population can be affected.

We have first studied this model in some detail, seeking use-
ful approximate solutions. For a weakly growing outbreak that
affects a small proportion of the total population, and under
a further simplification that neglects self-recovery and assumes
perfect quarantining, the method of multiple scales yields an an-
alytical expression for the complete progression of the outbreak,
from infinitesimal initiation to final saturation. For moderate
growth rates, a long wave approximation for the same parameters
provides a nonlinear first order ODE for the same progression.
With imperfect quarantining and nonzero self-recovery the long
wave approximation for the full progression of the outbreak is
given by a second order ODE. Finally, although the underlying
DDE system is technically infinite dimensional, we have shown
that a six-state Galerkin-based reduced order model for the sys-
tem does an excellent job of capturing a wide range of solutions,
i.e., the dynamics is effectively low-dimensional.

Subsequently, we have examined the implications of policy-
induced social distancing, incorporated in our model as a time-
varying infection rate β(t). Interestingly and promisingly, we
have found that an extended period of social distancing, imposed
early in the outbreak, followed by an eventual relaxation to usual
levels of interaction, can significantly lower the total numbers
infected without losing stability of the final state. In the limit
of weak growth, the number of infected people is cut in half.
For faster growth, the reduction is a smaller but still significant.
We have obtained a simple analytical formula for the reduction
possible.

The above policy implications seem simple and robust. The
intuitive key to understanding this reduction caused by social
distancing lies in stability under fresh, but small, infection. Here,
stability implies that with a small infected population, the out-
break will not grow very much (recall Fig. 3(a) versus 3(b)).
Under identical conditions, a larger infected population could
cause the outbreak to grow: the assumption is that once the
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infected numbers are contained, a fresh large influx of infected
people will be avoided. If β is set to βl with social distancing, the
outbreak saturates at a relatively high SL. Subsequently, assuming
no large influx of infected people, β can be increased back to the
normal βn, and the outbreak does not grow significantly further.
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Appendix

Here we outline our Galerkin projection calculation. Read-
ers interested in the theoretical background may see, e.g., the
so-called tau method of imposing boundary conditions in [39].

The initial functions for Eqs. (70) and (71) are assumed to be
S(t) = U1(t), −ν ≤ t ≤ 0 and I(t) = U2(t), −ν ≤ t ≤ 0. Define
y1(s, t) = S(t + s) and y2(s, t) = I(t + s). Eqs. (70) and (71)
along with their history functions can be equivalently posed as
the following partial differential equations with time dependent
boundary conditions

∂y1
∂t

=
∂y1
∂s

, −ν ≤ s ≤ 0, (86)

∂y2
∂t

=
∂y2
∂s

, −ν ≤ s ≤ 0, (87)

∂y1
∂t

⏐⏐⏐⏐
s=0

= −β(t)y1(0, t)y2(0, t), (88)

∂y2
∂t

⏐⏐⏐⏐
s=0

= β(t − 1)y1(−1, t)y2(−1, t) − p̄β(t − ν)

× y1(−ν, t)y2(−ν, t) − γ y2(0, t). (89)

ow, we assume a solution for y1(s, t) and y2(s, t) as follows

y1(s, t) = φ1(s)η1(t) + φ2(s)η2(t) + φ3(s)η3(t) (90)
y2(s, t) = φ1(s)η4(t) + φ2(s)η5(t) + φ3(s)η6(t) (91)

The basis functions φ1(s) = 1, φ2(s) = 1 +
2s
ν
, and φ3(s) =

3
2

(
1 +

2s
ν

)2
−

1
2 are shifted Legendre polynomials defined on the

omain −ν ≤ s ≤ 0. Substitute (90) into (86) and (91) into (87).
remultiplying each equation with φ1(s) and then by φ2(s) and
ntegrating over the domain −ν ≤ s ≤ 0 each time, we obtain

˙1 =
2
ν
η2, and η̇2 =

6
ν
η3. (92)

˙4 =
2
ν
η5, and η̇5 =

6
ν
η6. (93)

The inner products with φ3(s) are not taken. Instead, we substi-
tute (90) and (91) in the boundary conditions (88) and (89). There,
we have y1(0, t) = η1+η2+η3 , y2(0, t) = η4+η5+η6 , y1(−1, t) =

η1 +φ2(−1)η2 +φ3(−1)η3 , y1(−ν, t) = η1 −η2 +η3 , y2(−1, t) =

η4+φ2(−1)η5+φ3(−1)η6 , and y2(−ν, t) = η4−η5+η6. Eqs. (88)
and (89) become

η̇1 + η̇2 + η̇3 = −β(t) (η1 + η2 + η3) (η4 + η5 + η6) , (94)
η̇ + η̇ + η̇ = β(t − 1) η + α η + α η η + α η + α η
4 5 6 ( 1 2 2 3 3) ( 4 2 5 3 6)
− p̄β(t − ν) (η1 − η2 + η3) (η4 − η5 + η6)

− γ (η4 + η5 + η6) , (95)

iving us six ODEs for the six states, equivalent to Eqs. (72)–
77). The initial conditions for our ODEs can be obtained from
istory functions as ηk(0) =

2k−1
ν

∫ 0
−ν

U1(s)φk(s)ds, k = 1, 2, 3 and
ηr (0) =

2(r−3)−1
ν

∫ 0
−ν

U2(s)φr−3(s)ds, r = 4, 5, 6.
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