Skip to main content
. 2020 Aug 25;10(11):4191–4205. doi: 10.1007/s13204-020-01540-6

Table 2.

Comparison table between literature and present work for dye mixture

Materials Ex. source Dye mixture Dye removal capacity Refs.
SrTiO3 synthesized using sodium carboxymethylcellulose

Mercury lamp

365 nm

RhB–MB binary solution  ~ 100% in 180 min Xie et al. (2018)
Ag+ doped TiO2 UV lamp (365 nm) Crystal Violet and Methyl Red  > 99% on UV irradiation for 90 min Gupta et al. (2006)
TiO2 UV-a lamps Azodyes effluent from industry 28%(340 nm), 40(430 nm), 58(540 nm), 84 (610 nm) Adamek et al. (2013)
Multi–phase BiVO4 UV lamp (254 nm) MB and RhB 74% and 21% for catalyst (0.8 g/L) 60 min Chomkitichai et al. (2019)
GO-TiO2-graphite electrode 9 W UV lamp MB and AR14

86.74% (MB) and

82.48% (AR14) in 67 min at pH 10

Akerdi et al. (2020)
Graphene nanosheets Sun light CV, RhB and MB  ~ 99.9% in 180 min(MB) 225 min (RhB and CV) Gunture et al. (2019)
CoFe2O4–RGO (25%) catalyst 100 W reading lamp Methyl orange, Methylene blue, Rhodamine B 99.9% removal in 120 min Moitra et al. (2016)

PMMA Ag/ZnO/TiO2

nanofibers

Sun light

MB, Au, FB, Rh

Each 3 ppm

81.2% 66.0%

74.4% in 150 min

Present work
MB (3 ppm), Au (5 ppm), FB (1 ppm), Rh (1 ppm)

90.9% 62.4%

90.3% in 60 min

Present work

CV crystal violet, MB methylene blue, Rh or RhB rhodamine blue, MO methyl orange, FB fuchsin basic, MR methyl red, AR14 acid red14, Au auramine-O