Table 4. Predictive performance of different approaches based on the variance-stability transformation for dataset 1.
Dataset 1, including random effect W | Dataset 1, excluding random effect W | |||||
---|---|---|---|---|---|---|
Method | ER (SD) | AUC (SD) | AUPRC (SD) | ER (SD) | AUC (SD) | AUPRC (SD) |
Oracle | 0.04 (0.02) | 0.98 (0.02) | 0.97 (0.03) | 0.04 (0.02) | 0.98 (0.02) | 0.32 (0.1) |
LASSO | 0.21 (0.05) | 0.87 (0.04) | 0.87 (0.07) | 0.22 (0.05) | 0.86 (0.05) | 0.86 (0.07) |
ZINB+GLM | 0.24 (0.06) | 0.82 (0.06) | 0.82 (0.09) | 0.25 (0.06) | 0.81 (0.07) | 0.81 (0.09) |
TPNB+GLM | 0.2 (0.05) | 0.87 (0.05) | 0.86 (0.08) | 0.21 (0.05) | 0.86 (0.05) | 0.85 (0.09) |
NB+GLM | 0.23 (0.05) | 0.83 (0.05) | 0.83 (0.08) | 0.24 (0.06) | 0.82 (0.06) | 0.82 (0.09) |
ZINB+LASSO | 0.24 (0.06) | 0.82 (0.06) | 0.82 (0.09) | 0.25 (0.06) | 0.81 (0.07) | 0.81 (0.09) |
TPNB+LASSO | 0.2 (0.05) | 0.87 (0.05) | 0.86 (0.08) | 0.21 (0.05) | 0.86 (0.05) | 0.85 (0.09) |
NB+LASSO | 0.23 (0.05) | 0.83 (0.05) | 0.83 (0.08) | 0.24 (0.06) | 0.82 (0.06) | 0.82 (0.09) |