Table 5. Predictive performance of different approaches based on the binary transformation for dataset 1.
Dataset 1, including random effect W | Dataset 1, excluding random effect W | |||||
---|---|---|---|---|---|---|
Method | ER (SD) | AUC (SD) | AUPRC (SD) | ER (SD) | AUC (SD) | AUPRC (SD) |
LASSO | 0.43 (0.06) | 0.56 (0.06) | 0.56 (0.13) | 0.44 (0.06) | 0.56 (0.05) | 0.55 (0.13) |
ZINB+GLM | 0.38 (0.06) | 0.62 (0.06) | 0.62 (0.12) | 0.39 (0.06) | 0.6 (0.06) | 0.61 (0.12) |
TPNB+GLM | 0.38 (0.06) | 0.63 (0.07) | 0.63 (0.13) | 0.38 (0.06) | 0.62 (0.06) | 0.62 (0.13) |
NB+GLM | 0.37 (0.06) | 0.63 (0.07) | 0.64 (0.12) | 0.38 (0.06) | 0.62 (0.07) | 0.62 (0.13) |
ZINB+LASSO | 0.37 (0.06) | 0.63 (0.06) | 0.63 (0.12) | 0.39 (0.06) | 0.6 (0.06) | 0.61 (0.12) |
TPNB+LASSO | 0.38 (0.06) | 0.63 (0.07) | 0.63 (0.13) | 0.38 (0.06) | 0.62 (0.06) | 0.62 (0.13) |
NB+LASSO | 0.37 (0.06) | 0.64 (0.06) | 0.64 (0.13) | 0.38 (0.06) | 0.62 (0.07) | 0.62 (0.13) |