Table 6. Predictive performance of different approaches based on the variance-stability transformation for dataset 2 and 3.
Dataset 2 | Dataset 3 | |||||
---|---|---|---|---|---|---|
Method | ER (SD) | AUC (SD) | AUPRC (SD) | ER (SD) | AUC (SD) | AUPRC (SD) |
Oracle | 0.04 (0.02) | 0.97 (0.02) | 0.97 (0.03) | 0.08 (0.04) | 0.96 (0.04) | 0.94 (0.07) |
LASSO | 0.2 (0.04) | 0.87 (0.04) | 0.87 (0.06) | 0.28 (0.07) | 0.79 (0.07) | 0.79 (0.1) |
ZINB+GLM | 0.23 (0.05) | 0.84 (0.06) | 0.84 (0.08) | 0.36 (0.08) | 0.68 (0.11) | 0.68 (0.15) |
TPNB+GLM | 0.19 (0.05) | 0.88 (0.04) | 0.88 (0.06) | 0.3 (0.08) | 0.75 (0.09) | 0.74 (0.13) |
NB+GLM | 0.23 (0.05) | 0.84 (0.06) | 0.84 (0.08) | 0.36 (0.08) | 0.68 (0.11) | 0.68 (0.15) |
ZINB+LASSO | 0.23 (0.05) | 0.84 (0.06) | 0.84 (0.08) | 0.34 (0.08) | 0.69 (0.1) | 0.69 (0.15) |
TPNB+LASSO | 0.19 (0.05) | 0.88 (0.04) | 0.88 (0.06) | 0.3 (0.07) | 0.75 (0.09) | 0.75 (0.12) |
NB+LASSO | 0.23 (0.05) | 0.84 (0.05) | 0.84 (0.08) | 0.34 (0.07) | 0.7 (0.09) | 0.7 (0.14) |