Table 2. Machine learning classification results (1st run) in motor activity time series from depressed patients (n = 23) and healthy controls (n = 32).
Machine Learning Approach | Class Balancing Technique | Classification results by label | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sensitivity | Specificity | Weighted Recall | PPV | NPV | Weighted Precision | Accuracy | MCC | TP | TN | FP | FN | ||
Baseline | 0.22 | 0.75 | 0.53 | 0.38 | 0.57 | 0.49 | 0.53 | −0.4 | 5 | 24 | 8 | 18 | |
Random Forest | No oversampling | 0.44 | 0.75 | 0.62 | 0.56 | 0.65 | 0.61 | 0.62 | 0.19 | 10 | 24 | 8 | 13 |
Random oversampling | 0.52 | 0.75 | 0.65 | 0.60 | 0.69 | 0.65 | 0.65 | 0.28 | 12 | 24 | 8 | 11 | |
SMOTE | 0.61 | 0.75 | 0.69 | 0.64 | 0.73 | 0.69 | 0.69 | 0.36 | 14 | 24 | 8 | 9 | |
Baseline | 0.22 | 0.88 | 0.60 | 0.56 | 0.61 | 0.59 | 0.60 | 0.12 | 5 | 28 | 4 | 18 | |
Deep | No oversampling | 0.43 | 0.84 | 0.67 | 0.67 | 0.68 | 0.67 | 0.67 | 0.31 | 10 | 27 | 5 | 13 |
Neural Network | Random oversampling | 0.52 | 0.81 | 0.69 | 0.67 | 0.70 | 0.69 | 0.69 | 0.35 | 12 | 26 | 6 | 11 |
SMOTE | 0.57 | 0.75 | 0.67 | 0.62 | 0.71 | 0.67 | 0.67 | 0.32 | 13 | 24 | 8 | 10 | |
Weighted Deep | Baseline | 0.22 | 0.88 | 0.60 | 0.56 | 0.61 | 0.59 | 0.60 | 0.12 | 5 | 28 | 4 | 18 |
Neural Network | No oversampling | 0.61 | 0.69 | 0.65 | 0.58 | 0.71 | 0.66 | 0.65 | 0.29 | 14 | 22 | 10 | 9 |
Weighted Convolutional | Baseline | 0.35 | 0.59 | 0.49 | 0.38 | 0.56 | 0.48 | 0.49 | −0.06 | 8 | 19 | 13 | 15 |
Neural Network | No oversampling | 0.65 | 0.78 | 0.73 | 0.68 | 0.76 | 0.73 | 0.73 | 0.44 | 15 | 25 | 7 | 8 |
TP: True Positives (condition cases classified correctly as labeled).
FN: False Negatives (condition cases misclassified as control cases).
TN: True Negatives (control cases classified correctly as labeled).
FP: False Positives (controls cases misclassified as condition cases).
Sensitivity: True Positive Rate; TP / (TP + FN). Specificity: True Negative Rate; TN / (TN + FP). Weighted Recall: (Sensitivity x (TP + FN)) + (Specificity x (TN + FP)) / (TP + FN + TN + FP). PPV: Positive Predictive Value; TP / (TP + FP). NPV: Negative Predictive Value: TN / (TN + FN). Weighted Precision: (PPV x (TP + FN)) + (NPV x (TN + FP)) / (TP + FN + TN + FP). Accuracy: (TP + TN) / (TP + TN + FP + FN). MCC: Matthews Correlation Coefficient: ((TP x TN)–(FP x FN)) / sqrt ((TP + FP) x (TP + FN) x (TN + FP) x (TN + FN)).