Skip to main content
. 2020 Aug 24;15(8):e0231995. doi: 10.1371/journal.pone.0231995

Table 5. Machine learning classification results (2nd run) in motor activity time series of motor retarded depressed patients (n = 17) and healthy controls (n = 32).

Machine Learning Approach Class Balancing Technique Classification results by label
Sensitivity Specificity Weighted Recall PPV NPV Weighted Precision Accuracy MCC TP TN FP FN
Baseline 0.18 0.75 0.55 0.27 0.63 0.51 0.55 −0.08 3 24 8 14
Random Forest No oversampling 0.47 0.84 0.71 0.62 0.75 0.70 0.71 0.34 8 27 5 9
Random oversampling 0.65 0.81 0.76 0.65 0.81 0.76 0.76 0.46 11 26 6 6
SMOTE
0.76 0.78 0.78 0.65 0.86 0.79 0.78 0.53 13 25 7 4
Baseline 0.06 0.91 0.61 0.25 0.64 0.51 0.61 −0.06 1 29 3 16
Deep No oversampling 0.53 0.91 0.78 0.75 0.78 0.77 0.78 0.48 9 29 3 8
Neural Network Random oversampling 0.82 0.78 0.80 0.67 0.89 0.81 0.80 0.58 14 25 7 3
SMOTE
0.82 0.84 0.84 0.74 0.90 0.84 0.84 0.65 14 27 5 3
Weighted Deep Baseline 0.06 0.88 0.59 0.20 0.64 0.49 0.59 −0.10 1 28 4 16
Neural Network No oversampling
0.82 0.75 0.78 0.64 0.89 0.80 0.78 0.55 14 24 8 3
Weighted Convolutional Baseline 0.18 0.78 0.57 0.30 0.64 0.52 0.57 −0.05 3 25 7 14
Neural Network No oversampling 0.65 0.81 0.76 0.65 0.81 0.76 0.76 0.46 11 26 6 6

TP: True Positives (condition cases classified correctly as labeled).

FN: False Negatives (condition cases misclassified as control cases).

TN: True Negatives (control cases classified correctly as labeled).

FP: False Positives (controls cases misclassified as condition cases).

Sensitivity: True Positive Rate; TP / (TP + FN). Specificity: True Negative Rate; TN / (TN + FP). Weighted Recall: (Sensitivity x (TP + FN)) + (Specificity x (TN + FP)) / (TP + FN + TN + FP). PPV: Positive Predictive Value; TP / (TP + FP). NPV: Negative Predictive Value: TN / (TN + FN). Weighted Precision: (PPV x (TP + FN)) + (NPV x (TN + FP)) / (TP + FN + TN + FP). Accuracy: (TP + TN) / (TP + TN + FP + FN). MCC: Matthews Correlation Coefficient: ((TP x TN)–(FP x FN)) / sqrt ((TP + FP) x (TP + FN) x (TN + FP) x (TN + FN)).