Table 5. Machine learning classification results (2nd run) in motor activity time series of motor retarded depressed patients (n = 17) and healthy controls (n = 32).
Machine Learning Approach | Class Balancing Technique | Classification results by label | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sensitivity | Specificity | Weighted Recall | PPV | NPV | Weighted Precision | Accuracy | MCC | TP | TN | FP | FN | ||
Baseline | 0.18 | 0.75 | 0.55 | 0.27 | 0.63 | 0.51 | 0.55 | −0.08 | 3 | 24 | 8 | 14 | |
Random Forest | No oversampling | 0.47 | 0.84 | 0.71 | 0.62 | 0.75 | 0.70 | 0.71 | 0.34 | 8 | 27 | 5 | 9 |
Random oversampling | 0.65 | 0.81 | 0.76 | 0.65 | 0.81 | 0.76 | 0.76 | 0.46 | 11 | 26 | 6 | 6 | |
SMOTE |
0.76 | 0.78 | 0.78 | 0.65 | 0.86 | 0.79 | 0.78 | 0.53 | 13 | 25 | 7 | 4 | |
Baseline | 0.06 | 0.91 | 0.61 | 0.25 | 0.64 | 0.51 | 0.61 | −0.06 | 1 | 29 | 3 | 16 | |
Deep | No oversampling | 0.53 | 0.91 | 0.78 | 0.75 | 0.78 | 0.77 | 0.78 | 0.48 | 9 | 29 | 3 | 8 |
Neural Network | Random oversampling | 0.82 | 0.78 | 0.80 | 0.67 | 0.89 | 0.81 | 0.80 | 0.58 | 14 | 25 | 7 | 3 |
SMOTE |
0.82 | 0.84 | 0.84 | 0.74 | 0.90 | 0.84 | 0.84 | 0.65 | 14 | 27 | 5 | 3 | |
Weighted Deep | Baseline | 0.06 | 0.88 | 0.59 | 0.20 | 0.64 | 0.49 | 0.59 | −0.10 | 1 | 28 | 4 | 16 |
Neural Network | No oversampling |
0.82 | 0.75 | 0.78 | 0.64 | 0.89 | 0.80 | 0.78 | 0.55 | 14 | 24 | 8 | 3 |
Weighted Convolutional | Baseline | 0.18 | 0.78 | 0.57 | 0.30 | 0.64 | 0.52 | 0.57 | −0.05 | 3 | 25 | 7 | 14 |
Neural Network | No oversampling | 0.65 | 0.81 | 0.76 | 0.65 | 0.81 | 0.76 | 0.76 | 0.46 | 11 | 26 | 6 | 6 |
TP: True Positives (condition cases classified correctly as labeled).
FN: False Negatives (condition cases misclassified as control cases).
TN: True Negatives (control cases classified correctly as labeled).
FP: False Positives (controls cases misclassified as condition cases).
Sensitivity: True Positive Rate; TP / (TP + FN). Specificity: True Negative Rate; TN / (TN + FP). Weighted Recall: (Sensitivity x (TP + FN)) + (Specificity x (TN + FP)) / (TP + FN + TN + FP). PPV: Positive Predictive Value; TP / (TP + FP). NPV: Negative Predictive Value: TN / (TN + FN). Weighted Precision: (PPV x (TP + FN)) + (NPV x (TN + FP)) / (TP + FN + TN + FP). Accuracy: (TP + TN) / (TP + TN + FP + FN). MCC: Matthews Correlation Coefficient: ((TP x TN)–(FP x FN)) / sqrt ((TP + FP) x (TP + FN) x (TN + FP) x (TN + FN)).