Table 5. Univariate logistic classification models.
ROC AUC | Sensitivity | Specificity | PPV | NPV | |
---|---|---|---|---|---|
Control vs Anisometropia | |||||
Acuity difference | 0.83 | 1.00 | 0.67 | 0.72 | 1.00 |
Stereoacuity | 0.82 | 0.86 | 0.75 | 0.75 | 0.86 |
Imbalance factor | 0.59 | 0.52 | 0.54 | 0.50 | 0.57 |
Control vs Strabismic | |||||
Acuity difference | 0.84 | 1.00 | 0.68 | 0.72 | 1.00 |
Stereoacuity | 0.97 | 0.90 | 0.92 | 0.90 | 0.92 |
Imbalance factor | 0.83 | 0.95 | 0.72 | 0.74 | 0.95 |
Control vs Mixed | |||||
Acuity difference | 0.88 | 1.00 | 0.77 | 0.75 | 1.00 |
Stereoacuity | 0.98 | 0.90 | 0.97 | 0.95 | 0.94 |
Imbalance factor | 0.93 | 0.86 | 0.87 | 0.82 | 0.90 |
Control vs Accommodative | |||||
Acuity difference | 0.81 | 1.00 | 0.63 | 0.78 | 1.00 |
Stereoacuity | 0.92 | 0.90 | 0.81 | 0.86 | 0.87 |
Imbalance factor | 0.87 | 0.86 | 0.75 | 0.82 | 0.80 |
Control vs Non-accommodative | |||||
Acuity difference | 0.88 | 1.00 | 0.77 | 0.70 | 1.00 |
Stereoacuity | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Imbalance factor | 0.89 | 0.95 | 0.85 | 0.77 | 0.97 |
ROC.AUC: Area under the curve; PPV: Positive Predictive Value (PPV); NPV: Negative Predictive Value.