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Abstract

Accurate gridded estimates of evapotranspiration (ET) are essential to the analysis of terrestrial 

water budgets. In this study, ET estimates from three gridded energy-balance based products 

(ETEB) with independent model formations and data forcings are evaluated for their ability to 

capture long term climatology and inter-annual variability in ET derived from a terrestrial water 

budget (ETWB) for 671 gaged basins across the CONUS. All three ETEB products have low spatial 

bias and accurately capture inter-annual variability of ETWB in the central US, where ETEB and 

ancillary estimates of change in total surface water storage (ΔTWS) from the GRACE satellite 

project appear to close terrestrial water budgets. In humid regions, ETEB products exhibit higher 

long-term bias, and the covariability of ETEB and ETWB decreases significantly. Several factors 

related to either failure of ETWB, such as errors in ΔTWS and precipitation, or failure of ETEB, 

such as treatment of snowfall and horizontal heat advection, explain some of these discrepancies. 

These results mirror and build on conclusions from other studies: on inter-annual timescales, 

ΔTWS and error in precipitation estimates are non-negligible uncertainties in ET estimates based 

on a terrestrial water budget, and this confounds their comparison to energy balance ET models. 

However, there is also evidence that in at least some regions, climate and landscape features may 

also influence the accuracy and long-term bias of ET estimates from energy balance models, and 

these potential errors should be considered when using these gridded products in hydrologic 

applications.
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1. INTRODUCTION

After precipitation, evapotranspiration (ET) is the largest term in the terrestrial surface 

hydrologic budget (Haddeland et al. 2011). Virtually all water taken up by vegetation is 

evapotranspired, and as the largest anthropogenic use of surface and groundwater is the 

irrigation of cropland (Shiklomanov 2000, Döll et al., 2012), characterization of ET has 

important implications for managing human water consumption. The importance of ET for 

surface hydrologic budgets and agricultural water use motivates the need for continuous 

observation-based data sources that can characterize the spatial and temporal variability of 

ET at a level of detail that can help resolve key aspects of the terrestrial hydrologic cycle.

Surface energy budget based models of ET have substantially enhanced the availability of 

spatially and temporally continuous ET estimates. Remotely sensed data have also been 

integrated into surface energy models (Kalma et al. 2008, Li et al. 2009, Glenn et al. 2011), 

including land surface models (LSMs, Lo et al. 2015), to further increase the accuracy of 

energy budget based ET estimates. Several methods for integrating remotely sensed 

observations into energy budget based ET estimates are available, ranging from using 

remotely sensed data to increase resolution of vegetation parameters in surface energy 

models (Mu et al., 2011) to utilization of direct measurements of surface energy fluxes 

(Kustas et al., 2011).

Regardless of whether remotely sensed data are used, most gridded ET products derived 

from surface energy budget models (hereafter referred to as ETEB products) still require 

ancillary data on surface meteorological conditions, including but not limited to incident and 

reflected short wave radiation, near-surface air temperature, vapor pressure, and wind speed 

(Kalma et al. 2008, Glenn et al. 2011). Because of differences in modeling approaches with 

regards to remotely sensed and meteorological data inputs, different ETEB products show 

unique patterns of space-time bias which are related to propagation of errors in forcing data 

(Ferguson et al. 2010, Vinukollu et al. 2011, Cai et al. 2014), conditions under which models 

are not well calibrated (Hain et al. 2015, Ferguson et al. 2010, French et al. 2005, Jiménez et 

al. 2011, Velpuri et al. 2013, Vinukollu et al. 2011), and to climatic conditions where model 

assumptions fail (Anderson et al. 2012, Choi et al. 2009, Kustas et al. 2012).

Because of a lack of spatially continuous ground-based measurements of ET, ETEB products 

are difficult to validate at large spatial scales. One of the most common approaches to 

validate ETEB estimates is to evaluate their consistency with empirical estimates of ET based 

on a terrestrial water budget (ETWB), calculated for individual basins as:

ET = P + G − Q − ΔTWS Eq. 1.1

where ET (mm) is the mean basin ET, P (mm) is mean basin precipitation, G (mm) accounts 

for net inter-basin groundwater flux, Q (mm) is basin runoff (normalized by drainage area), 

and ΔTWS (mm) is the change in basin total water storage between the current and previous 

time step (where total water storage is the total water stored in soil, surface water, 

groundwater, and vegetation). Inter-basin groundwater flux is often assumed to be zero, 

especially in basins with limited anthropogenic withdrawals. In gaged basins, Q is known 
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with high accuracy. If estimates of basin P are also available, then a water-budget based 

estimate of ET (ETWB) can be developed by assuming ΔTWS is zero:

ETWB = P − Q Eq. 1.2

The approximation in Eq. 1.2 has conventionally been accepted if all terms are evaluated 

over a sufficiently long time period (annual or longer) to support the assumption that 

ΔTWS=0 (Twine et al. 2004).

There has been consensus that ETEB products fail to close long-term (Sheffield et al. 2009, 

Gao et al. 2009) and inter-annual (Zhang et al. 2012, Zeng et al. 2014, Velpurri et al. 2013, 

Han et al. 2015, Liu et al. 2016) terrestrial water budgets (i.e., ETEB ≠ ETWB in many 

regions in the contiguous U.S. (CONUS). Long-term non-closure errors 

(εNC = ETEB − ETWB, with over-bars indicating multi-year averages) follow distinct spatial 

and climatic gradients, with arid regions exhibiting substantially lower long-term bias than 

humid regions (Sheffield et al. 2009, Gao et al. 2009). Similarly, most ETEB estimates 

appear better suited to estimate both multi-year trends and inter-annual variability in arid 

regions than in humid regions (Zhang et al. 2012, Zeng et al. 2014, Velpurri et al. 2013). As 

such, interannual non-closure errors (εNC = ETEB − ETWB) exhibit similar regional patterns 

as long-term bias (εNC).

The spatial characterization of long term and inter-annual non-closure errors provides 

insight into the accuracy of different ETEB products for different regions, providing valuable 

guidance for how such products can be used in different hydrologic applications. 

Unfortunately, these error estimates are confounded by potential error embedded in ETWB. 

For instance, basin-average P can exhibit long-term mean bias if estimated from a sparse 

gaging network, particularly in basins with stark topographic gradients (Prat et al. 2015). 

The inter-annual variance of basin-average P can also be biased if the variance of 

precipitation at the gages used to develop the basin-averaged estimate is a poor 

representation of the true precipitation variability across the basin. Most likely, the variance 

of basin-average P will be too high because variances of true areal averages should be lower 

than individual point estimates, but there are limited numbers of gages available to estimate 

the areal averages. In addition to precipitation biases, recent studies that have incorporated 

changes to ΔTWS derived from the Gravity Recovery and Climate Experiment (GRACE) 

satellites indicate that inter-annual variability in ΔTWS may be an important component of 

the annual terrestrial water budget in many regions (Rodell and Famiglietti 2001, Rodell et 

al. 2004, Sahoo et al., 2011, Zeng et al. 2012, Han et al. 2015). Therefore, non-closure errors 

between ETWB and ETEB are difficult to disentangle from uncertainty in basin P and ΔTWS. 

There have been attempts to disentangle these terms using sensitivity analyses to elucidate 

regions where εNC is significantly influenced by precipitation uncertainty (Ferguson et al., 

2009; Sheffield et al. 2009; Gao et al., 2009; Hain et al., 2014), or GRACE Tellus based 

measures of ΔTWS (Sheffield et al. 2009; Gao et al., 2010), with results generally showing 

that precipitation uncertainty is an important component of εNC.
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A key question underscoring these efforts is whether non-closure errors are caused by bias in 

the mean or variance of components used to estimate ETWB (e.g., P, ΔTWS), or if the model 

formulations that underscore different ETEB products fail to capture fundamental processes 

that drive ET variability. In this study, we seek to advance the evaluation of ETEB across the 

CONUS, building on recent work exploring the accuracy of ETEB estimates at different 

spatial and temporal scales (Zhang et al., 2012; Han et al., 2015). Han et al. (2015) explored 

evidence of hydrologic consistency between ETWB and two very different ETEB products: 

the NOAH land surface model (Chen et al., 1996) and the ALEXI model (Anderson et al. 

1997). In that study, the authors hypothesized that inter-annual non-closure errors in NOAH 

ET estimates ETEB
NOAH  were not due to failure of the model as previously argued (Zhang et 

al., 2012), but rather were linked to errors in estimated values of ETWB. They found a 

marked improvement in correlation between ETWB and ETEB
NOAH over a 10 year period in the 

Mississippi River Basin, particularly in the Ohio and Upper Mississippi sub-basins, when 

they included GRACE Tellus ΔTWS in the ETWB approximation in Eq. 1.1 (assuming G to 

equal zero). Further, they found that the inter-annual correlation between ETEB
NOAH and 

ALEXI ET estimates ETEB
ALEXI  was high across 15 different basins in the central U.S., 

although the magnitude of inter-annual variability of ET from both products was low 

compared to the inter-annual variability of ETWB. They concluded that higher inter-annual 

variability in ETWB over ETEB
NOAH and ETEB

ALEXI is an artifact of erroneously excluding 

ΔTWS from the ETWB estimate. The results supported the argument that the NOAH land 

surface model could provide accurate estimates of inter-annual ET variability in humid 

basins, in contrast to the conclusions of Zhang et al. (2012).

The work in Han et al. (2015) showed the importance of possible errors in ETWB when 

assessing ETEB estimates. However, their conclusions were limited to the Mississippi River 

basin and based on 10 years of data, which limits the conclusions that can be made for 

ETEB
NOAH in humid basins across the CONUS. In addition, the study used consistency 

between ETEB
NOAH and ETEB

ALEXI as evidence that ETEB
NOAH estimates were correct, which 

ignores the possibility that both products could exhibit similar errors despite their different 

estimation approaches. We also note that comparisons between ETEB
NOAH and spatially 

interpolated ET estimates from a network of eddy covariance towers (Jung et al. 2009) in the 

Ohio Basin were poor (correlation coefficient of ~0.4, Han et al. 2015), somewhat 

countering the claim that discrepancies between ETEB
NOAH and ETWB in the Ohio were due to 

errors in ETWB. Finally, error in P has been shown to be a potentially large source of 

uncertainty in ETWB as well as in land surface model ET (Hain et al. 2015), yet annual 

ETEB
NOAH was the only ET estimate compared directly to ETWB. Since ETEB

NOAH and ETWB 

used in that study had the same P forcing (from NLDAS-2), basin level correlation between 

these two ET estimates could have been influenced by correlated errors in P.

In this study, we revisit the results of Han et al. (2015) using an expanded analysis to address 

some of the limitations of the original analysis. Specifically, we consider the following 

additions:
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1. In addition to using ETEB
NOAH and ETEB

ALEXI, we include an ET product that uses a 

similar model formulation to NOAH, but which uses different information on 

local moisture anomalies and real-time remotely sensed vegetation indices from 

the MODIS platform to force moisture based reductions in ET (ETEB
MOD16, Mu et 

al. 2011).

2. We compare all 3 ET products (ETEB
NOAH, ETEB

MOD16, ETEB
ALEXI) directly to ETWB, 

expanding the study area to include 671 basins with substantial coverage over the 

CONUS.

3. We examine both long-term bias between ETWB and ETEB and inter-annual 

anomalies between ETWB and ETEB after accounting for long-term bias. By 

contrasting ETEB performance across products, comparing long term and inter-

annual non-closure errors between ETEB and ETWB, and relating these non-

closure errors to watershed characteristics, we characterize regional variability in 

ETEB performance.

4. We integrate a new ΔTWS product derived from the GRACE satellite data 

(GRACE Mascon, Wiese 2015) to evaluate hydrologic consistency between 

ETEB and ETWB, and assess the ability to combine ETEB with both GRACE 

Tellus and Mascon ΔTWS to describe the difference between precipitation and 

runoff across the CONUS. Regional variability in the importance of ΔTWS for 

annual water budgets across the CONUS is discussed.

5. To further diagnose the cause of non-closure errors, we assess regional 

relationships between non-closure errors and other atmospheric and 

meteorological proxies besides ΔTWS (e.g., precipitation, horizontal heat 

advection, snow cover) that could be a source of error in either ETEB or ETWB 

estimates.

2. METHODS

2.1 ET Data Overview

2.1.1 Water balance ET (ETWB)—ETWB. was calculated for the 671 watersheds 

included in the large-sample basin scale hydrometerological dataset developed by Newman 

et al. (2015) from the Hydro-Climatic Data Network (HCDN) 1988 dataset (marked “HCDN 

2009” in the GAGES-II dataset, Falcone et al. 2010). The selection of these small to mid-

sized gaged watersheds (median area 336 km2) was based on criteria for minimal human 

disturbance (Falcone et al. 2010) and data quality (including basin-level density of 

precipitation gages) and continuity. As an additional screening, we validated that basins 

included in the database had minimal irrigation by calculating the percent irrigated area 

using the MODIS Irrigated Agriculture Dataset for the United States (MIrAD, Pervez et al. 

2010). The vast majority of basins had negligible irrigated area.

Annual water year (October-September) discharge for each gage was calculated between 

2003–2015 and converted to annual runoff (Q, mm) by dividing by drainage area. 

Precipitation data were taken from the National Land Data Assimilation System 2 
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(NLDAS-2, Xia et al. 2012) primary forcing dataset. Basin-average P was calculated for 

water years 2003–2015 by averaging all NLDAS grid cells whose centers are located within 

the basin (Hijmans 2014). For each basin for each year, annual ETWB was calculated using 

Equation 1.2, as was the 13-year mean ETWB . Basins with any ETWB values less than zero 

were eliminated from the analysis.

2.1.2 Energy Balance Based ET Products (ETEB)—In addition to the water budget 

approach, ET can be characterized using a surface energy budget as follows:

Rn = H + LE + G Eq. 2

where Rn (net radiation, generally expressed as W m−2) is partitioned to sensible heat flux 

(H, W m−2), latent heat flux (LE, W m−2), and ground heat flux (G, W m−2), with the 

partitioning dependent on surface and atmospheric characteristics and conditions. ETEB 

(mm) can then be derived from LE by dividing by the latent heat of vaporization of water.

When there is unlimited water available for evapotranspiration, the partitioning of Rn 

between H, G, and LE can be modeled using a variety of physically-based or empirical 

methods, where G is generally assumed to be constant (often zero) on a daily or greater time 

step, and the relative partitioning of energy to H and LE is dependent on surface 

meteorological conditions, including air temperature, relative humidity, wind speed, and 

vegetation cover.

While numerous surface energy budget based ETEB exist (see Kalma et al. 2008 for a 

review), for the purposes of this study, we consider two basic classes:

1. Penman-Monteith based ET (ETEB
NOAH, ETEB

MOD16): Potential Evapotranspiration 

(PET) is calculated from daily surface meteorological variables (reanalysis data) 

using a modified Penman-Monteith equation, with spatially variable vegetation 

indices used to estimate surface emissivity and resistance. PET is scaled to ET 

using time varying estimates of moisture availability.

a. ETEB
NOAH(Chen et al., 1996): NLDAS-2 Noah LSM ET output is 

calculated by the National Centers for Environmental Prediction 

(NCEP) using North American Regional Reanalysis (NARR) surface 

meteorological data fields, with NARR downward shortwave radiation 

bias-corrected to the University of Maryland Surface Radiation Budget 

(SRB) (Pinker et al. 2003), which uses data from the GOES-8 satellite. 

Resistance terms are applied to Penman-based PET for four separate 

terrestrial surface types (canopy transpiration, canopy evaporation of 

intercepted precipitation, soil evaporation, sublimation). Resistance 

terms are modified by the underlying soil moisture, which is forced by 

NLDAS-2 P (Xia et al. 2012, Xia et al. 2015, Peters-Lidard et al. 2011).

b. ETEB
MOD16(Mu et al. 2011): The ETEB

MOD16 product developed by the 

University of Montana uses Global Modeling and Assimilation Office 

(GMAO) Modern-Era Retrospective analysis for Research and 
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Applications (MERRA, Rienecker et al., 2011) data, in conjunction 

with 8-day data inputs from the MODIS platform of the AVHRR 

satellite (leaf area index, enhanced vegetation index, and albedo) to 

calculate PET. As vegetation growth is primarily limited by water 

availability, real-time updates of local vegetation conditions from 

MODIS data are used to capture water limited ET (Cleugh et al. 2007). 

Mu et al. (2007) updated this algorithm to scale evaporation by relative 

humidity and scale transpiration by vapor pressure deficit, used as a 

proxy indicator of soil moisture limitations

2. Remotely-sensed thermal infra-red ET (ETEB
ALEXI, Anderson et al. 1997, Kustas et 

al., 2011): H is calculated from a time-differential linear model of atmospheric 

boundary layer (ABL) development which is forced with two measurements of 

radiometric surface temperature taken in the morning from GOES satellites, an 

initial estimate of ABL height from early morning sounding data, and wind 

speed to give an estimate of instantaneous H flux at 1.5 hour prior to solar noon. 

Instantaneous LE is then calculated using Equation 2, and is converted to daily 

cumulative LE using ancillary estimates of daily cumulative insolation assuming 

a diurnally constant value of (LE/Sdn), where Sdn is instantaneous solar 

radiation.

2.2 Long-term Non-Closure Error

To examine long-term non-closure errors, the period of record bias was calculated as:

εNC = ETEB − ETWB Eq.3

where the overbar indicates the 2003–2015 mean, and ETEB is based on either NOAH, 

MOD16, or ALEXI estimates. We first evaluate and compare the distribution and spatial 

patterns of εNC across the three energy-balance models.

We then calculate the rank correlation between εNC and a variety of watershed 

characteristics to determine the potential drivers of long-term bias. The majority of these 

watershed characteristics were extracted from the Geospatial Attributes of Gages for 

Evaluating Streamflow, version II (GAGES II) database (Falcone et al 2010), with several 

exceptions. For example, percent (%) irrigated area in each basin, a potential source of 

anthropogenic decoupling of true ET from ETWB, was taken as the basin mean value for the 

MIrAD-US dataset (Pervez and Brown 2010). Mean horizontal heat advection (HHORIZ, a 

possible error source in ETEB) was calculated as the basin mean of the square root of the 

sum of squared northward and eastward components of vertically integrated sensible heat 

flux for June, July, and August (JJA) for the years 2003–2015 from the ERA-Interim 

reanalysis product (Dee et al., 2011). For potential long-term water balance errors, mean 

ΔTWS for each basin was calculated using the method in Landerer and Swenson (2012) 

from 2003–2015 for the GRACE Tellus (Swenson, 2012) and the newer GRACE Mascon 

(Save et al. 2016) data products (see Supplemental Text 1 for more detail). Since both 

ETEB
MOD16 and ETEB

ALEXI depend on remotely sensed data that may not be available on certain 
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days (e.g., because of cloud cover), estimates depend on gap-filling procedures that could 

degrade their accuracy. Therefore, we used the average percent of pixel-days with missing 

values per basin per year (mean % NA pixel-days) from the direct retrievals from GOES 

thermal imagery in the ALEXI product as a proxy for obstructive cloud cover.

Finally, to ensure that the results are not sensitive to the NLDAS-2 precipitation product 

used in the calculation of ETWB, we reevaluate the distribution of εNC with ETWB calculated 

from several different precipitation datasets (see Supplemental Text 2).

2.3 Inter-annual Non-Closure Error

Inter-annual non-closure errors can arise from a variety of error sources in ETEB or ETWB. 

In the case that these errors are caused by bias in the mean or variance of ETEB or ETWB, it 

may still be possible to show hydrologic consistency in the direction of inter-annual change 

between ETEB and ETWB if the data are first mean adjusted and scaled. Therefore, we center 

both variables to remove long-term mean biases (with prime indicating annual departure 

from the mean, ET′ = ET − ET), and also produce a scaled version of these data by dividing 

by the standard deviation (denoted sET′ = (ET − ET)
sd(ET) ). We then use geographically weighted 

regression (GWR) to explore how the relationship between ETWB and ETEB varies across 

space. GWR is a localized regression method that uses a kernel function and spatial 

bandwidth to pool data at nearby sites in the estimation of a regression linking response and 

predictor variables (Brunsdon et al. 1998). The resulting regression exhibits smooth 

variations in the coefficient estimates at different sites across space. GWR provides a 

compromise between calculating a single regression coefficient on the global dataset, which 

would eliminate spatial variability in the process, or calculating individual regression 

estimates for each point in the study area, which could result in unstable coefficient 

estimates with high standard errors due to low sample size. In this analysis, GWR models 

were built to explore the spatial variability in how well ETEB′  tracks inter-annual variability 

in ETWB′ .

For each ETEB product, two GWR models were built:

sETEB,i,t′ = βisETWB,i,t′ + εi,t (Eq. 3.1)

ETEB,i,t′ = βiETWB,i,t′ + εi,t (Eq. 3.2)

where t indicates the year and i indicates the ith basin. βi is allowed to smoothly vary across 

the CONUS by pooling nearby basins using a Gaussian kernel function with optimal 

bandwidth selected via cross validation (Bivand and Yu, 2017). The first model (Eq. 3.1) 

explores whether sETEB′  exhibits hydrologic consistency with sETWB′  after accounting for the 

potential of both mean and variance biases in all water and energy balance terms The second 

model (Eq. 3.2) explores the ability of ETEB′  to close inter-annual terrestrial water budgets in 

an absolute sense (less any mean biases in either ETEB or ETWB). In particular, βi from Eq. 

3.2 not only reflects the strength of the relationship between ETEB′  and ETWB′ , but also the 
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difference in magnitude of inter-annual fluctuations between energy-balance and water-

balance ET (i.e., variance bias).

To better understand the distribution of errors exhibited by the GWR, we also examine the 

distribution of scaled, inter-annual non-closure errors, calculated as the difference between 

the scaled, annual anomalies:

sεNC = sETEB′ − sETW B′ (Eq. 4)

For a particular region, any clustering in sεNC in certain years and not others would suggest 

that characteristics of specific climate events contribute substantially to discrepancies 

between sETEB′  and sETW B′ . These discrepancies could arise from errors in both energy-

balance and water-balance based models. Likely sources of error in annual estimates of 

ETWB include errors in estimates of basin P or violations in the assumption that changes in 

basin surface water storage (ΔTWS) are negligible on an annual time-step. Energy balance 

models were not originally designed to operate at the continental scale, where horizontal 

fluxes of energy can lead to violations of the assumption of daily local conservation of 

energy (Trenberth et al. 2009). In addition, these models have parameterizations of 

sublimation that have been previously questioned (Wang et al. 2015). Therefore, we explore 

clustering in sεNC by product and year, and then correlate sεNC to several variables on an 

annual scale, including basin-average P, ΔTWS for both GRACE Tellus (ΔTWST) and 

GRACE Mason (ΔTWSM) data products, % of precipitation as snow from the ERA-Interim 

monthly data, and JJA horizontally advected sensible heat flux (HHORIZ).

3. RESULTS

3.1 Long-term non-closure error

The mean annual estimates for all water and energy balance models (ETWB, ETEB
ALEXI, 

ETEB
NOAH, and ETEB

MOD16) show similar spatial patterns, with the highest and lowest mean 

annual ET estimates seen in the Southeast and Southwest and western continental interior, 

respectively (Figure 1a). However, ETEB models exhibit several areas of disagreement in 

estimates of long-term mean annual ET with respect to ETWB, as well as with each other 

(Figure 1b). For example, in basins to the west of the Rockies along the California coast, 

ETEB
ALEXI predicts higher ET values compared to ETEB

MOD16 and ETEB
NOAH, which are similar to 

those seen in the ETWB model. Over the entire CONUS, ETEB
NOAH tends to predict lower 

annual ET compared to the other three models. ETEB
MOD16 and ETEB

ALEXI tend to be higher than 

ETWB in the Pacific Northwest and in basins along the Appalachian Mountain Chain, while 

ETEB
ALEXI is higher than all other ET estimates along the Gulf Coast and through Florida, and 

ETEB
MOD16 is lower than all other models in the central U.S. The range (maximum-minimum) 

of ET estimates across the CONUS is smaller for ETEB
MOD16 (924 mm) and ETEB

NOAH

(881mm) compared to ETEB
ALEXI (1060 mm), which is more similar to that of ETWB (1136 
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mm). In general, spatial consistency between the long-term means established by the four 

ET models appears to be lowest in the eastern third of the country and along the western 

coastline.

When analyzing Figure 1, we note that errors in long-term basin-average P (and thus ETWB) 

are expected for any particular basin, for example due to gage location within basin 

topography. It is less likely, however, that long-term error in orographically-adjusted basin-

averaged P would be biased in the same direction across the 671 basins, although this 

possibility cannot be precluded due to documented undercatch of gage precipitation linked 

to surface winds (Adam and Lettenmaier 2003, Yang et al. 2005) and/or potential systematic 

errors in data processing. However, the latter issue can be controlled for through the 

comparison of multiple products in the calculation of ETWB. Further, if the mean of the 

distribution of εNC is significantly above zero for some ETEB products and below zero for 

others, we argue that one or more of these ETEB products are systematically biased 

compared to the true (and unknown) long-term ET.

In this context, we examine the distribution of εNC for each of the three energy balance 

models in Figure 1c. The mean of ETEB
MOD16 is relatively unbiased relative to ETWB, with a 

mean bias of about 4% above ETWB. The mean ALEXI-based ET estimates are 

approximately 120 mm/year higher than mean ETWB on average, suggesting that ETEB
ALEXI

has a positive mean bias of 21% across CONUS. However the majority of the basins with 

the highest values of εNC
ALEXI are in mountainous regions (i.e. along the Cascades, Sierra 

Nevada, Rockies, and Appalachian Mountains), where topographic (slope and aspect) effects 

on the assumed net radiation (Rn in Eq. 2) will impact the information content of remotely 

sensed data inputs. Removing basins with average slopes above 15% from the analysis 

(Supplemental Figure S1) reduces the positive mean bias of ETEB
ALEXI to approximately 49 

mm/year (or 9%) above mean ETWB.

While the ALEXI and MOD16 products produce slightly higher long-term ET estimates on 

average than the water balance based estimate, which is potentially consistent with 

undercatch in the NLDAS-2 precipitation product, the mean ETEB
NOAH is about 80 mm/year 

lower than mean ETWB on average (negative mean bias of about 13%). Importantly, since 

both ETWB and ETEB
NOAH are based on the same NLDAS-2 precipitation dataset, it is unlikely 

that this discrepancy is linked to systematic bias in the precipitation field. Further, the results 

are very similar if the scatterplots in Figure 1c are replicated for ETWB calculated with three 

additional gridded precipitation products (Supplemental Text 2, Figure S2). A notable 

exception occurs when using the less accurate NLDAS-2 secondary precipitation forcing, 

which is based on the NARR reanalysis and is thus likely to be less accurate than gaged 

data. In this case, the NOAH model exhibits the least long-term bias compared to ETWB. 

Assuming that any systematic, long-term bias in ETWB across the majority of basins would 

be a downward bias associated with undercatch, the results in Figure 1 indicate that ALEXI 

and MOD16 models are more likely to be relatively unbiased with respect to the true, long-
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term ET across the CONUS, particularly in regions of mild terrain. Under this same 

assumption, Figure 1 also suggests that there may be moderate negative biases in the mean 

long-term annual ET estimated by the NOAH model.

The assessment above does not consider ΔTWS as a potential source of error in ETWB but 

this error should be minimized in the long-term average ETWB because it is unlikely that 

there would be large changes in basin storage in basins with relatively little anthropogenic 

influences over a decadal period (i.e., ΔTWS should be near zero). To validate this 

assumption, 2003–2015 ΔTWS was calculated using the GRACE Tellus ΔTWST  and 

GRACE Mascon ΔTWSM  products (Figure 2, left column). We found that for most regions 

in the CONUS, ΔTWS was very close to zero, with an interquartile range across basins of 

−1.5 – 6.4 mm for ΔTWST and 0.1–11.8 mm for ΔTWSM. It should be noted, however, that 

the standard deviations of ΔTWS (Figure 2, right column) suggests that inter-annual 

variability in ΔTWS may be important in some regions, and estimates are higher for ΔTWSM
than for ΔTWST. ΔTWSM indicates that the highly irrigated regions of southern California 

and near the Ogallala Aquifer are losing between approximately 20–30mm of TWS per 

water year, and that TWS in the Midwest may be increasing by about 10–20 mm per year. 

However, large εNC values for all of the energy balance products are found in regions where 

the absolute magnitudes of ΔTWS are negligible, and even in regions with high-magnitude 

ΔTWS, these values are still several times smaller than εNC (Figure S3). Further, changes in 

basin storage linked to irrigated water withdrawn from hydraulically disconnected 

groundwater sources (e.g., Ogallala Aquifer) should not substantially affect the ET in 

relatively natural basins without much irrigation. Therefore, it does not seem likely that 

ΔTWS plays a large role in the long-term biases between ETWB and ETEB estimates.

To identify regional characteristics that could explain long-term non-closure error (εNC), we 

evaluated the Spearman correlation between εNC and physical and meteorological 

characteristics associated with each watershed (Figure 3). We note that absolute correlation 

coefficients above 0.08 are statistically significant (α = 0.05) in a sample of 671 basins, but 

we focus on stronger relationships with absolute correlation coefficients above 0.4–0.6 that 

indicate potentially more important relationships between watershed characteristics and εNC. 

Since many watershed characteristics are collinear, we interpret large correlations between 

εNC and these characteristics as indicative of a strong association, but not necessarily a 

causal relationship.

One of the most notable results of the correlation analysis is that εNC
ALEXI and εNC

MOD16 are 

strongly and positively correlated with mean annual P. In contrast, εNC
NOAH, which is forced 

with the same NLDAS-2 P used to calculate ETWB, shows no significant correlation with 

mean annual P. This result suggests that long-term bias in NLDAS-2 P (and thus ETWB) for 

each basin may be a leading driver of long-term non-closure error for the ALEXI and 

MOD16 models, but not for the NOAH model because it is based on the same precipitation 
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dataset. This conclusion is consistent with the smaller variance in the scatter of Figure 1c for 

the NOAH model compared to the ALEXI and MOD16 models.

Another notable result is that both εNC
ALEXI and εNC

MOD16 show significant positive correlation 

with increasing mean percent slope in the basin, a result that may indicate degradation of 

remotely sensed information in basins with complex terrain (also see Figure S1). 

Alternatively, correlation between εNC
ALEXI and εNC

MOD16 and % SLOPE may be further 

evidence that NLDAS-2 P, and therefore ETWB, are negatively biased in regions with 

complex terrain. Though cloud cover has been associated with degraded performance of 

ETEB
ALEXI at shorter time scales, mean % NA pixel-days over each basin was not significantly 

correlated to εNC
ALEXI, suggesting that cloudiness does not contribute to long-term model bias. 

However, εNC
MOD16 was significantly and negatively correlated to mean % NA pixel-days, 

suggesting that ETEB
MOD16 may be more likely to underestimate ET in cloudier basins. This 

discrepancy may be explained by the different ways that the ALEXI and MOD16 models 

gap-fill remotely sensed data.

Many of the remaining correlation coefficients are small, suggesting these relationships have 

little biophysical importance, though some are interesting to observe in the context of 

contrasting model formulation. For example, mean JJA horizontal heat advection HHORIZ

showed significant correlation with εNC
MOD16, but not εNC

ALEXI. This is interesting, as an 

increase in HHORIZ (i.e., large-scale heat advection) would be associated with an increase in 

estimation of LE and ET in the MOD16 model, whereas increasing HHORIZ would be 

associated with a direct decrease in estimates of LE and ET (and an increase in estimates of 

H) in the ALEXI model.. Also, weak correlations between εNC and ΔTWSM and ΔTWST, 

particularly for εNC
ALEXI and εNC

NOAH, further suggest that changes in basin storage are not 

driving discrepancies between water-budget and energy-budget based estimates of average 

annual ET (also see Figure S3)

3.2 Inter-annual non-closure error

We first evaluate the relationship between annual ETEB and ETWB estimates for water years 

2003–2015 over the CONUS using GWRs. By contrasting the β estimates for NOAH, 

ALEXI, and MOD16 products and looking for regional coherence and discordance in these 

estimates, we hope to elucidate regions where hydrologic inconsistency is caused by annual 

errors in either ETEB or ETWB. In particular, hydrologic consistency between ETWB and 

ETEB
NOAH would be expected to be higher than hydrologic consistency between ETWB and 

both ETEB
ALEXI or ETEB

MOD16 in basins where annual error in basin-level estimates from 

NLDAS-2 P were of sufficient magnitude to lead to correlated errors in ETEB
NOAH and ETWB 

estimates.
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Figure 4 shows the spatial distribution of β (4a) and R2 (4b) for the GWR on scaled data 

(i.e., sETWB′  against sETEB′ , Equation 3.1). These spatial patterns are validated with location-

specific regressions and Pearson correlation coefficients (see Supplemental Figure S4) to 

ensure that results are not an artifact of the spatial bandwidth chosen in the GWR models 

(Wheeler and Tiefelsdorf, 2005). Several patterns emerge when looking at the spatial 

distributions in Figure 4 a,b. First, the eastern portions of the Missouri, Arkansas White-Red, 

and Texas-Gulf River basins have β values that approach one, suggesting that for all three 

products, ETWB and ETEB track each other very closely. For all three models, β values are 

also moderately high for basins in the Lower Mississippi River, Lower Colorado, and the 

southern part of the California basin. However, in all other regions of the CONUS, the 

variability in ETEB relative to ETWB diverges, and this divergence varies by energy balance 

model. For all ETEB estimates, β values are lower in the east than in the continental interior 

and southwest coast. In addition, β and R2 values are higher for ETEB
NOAH than for ETEB

ALEXI

and ETEB
MOD16 in the Pacific Northwest and across most regions east of the Mississippi. For 

instance, where β values are below 0.1 for ETEB
MOD16 and ETEB

ALEXI for several basins in the 

New England and Mid-Atlantic regions (suggesting no hydrologic consistency), they range 

between 0.1 and 0.4 for ETEB
NOAH. This suggests that in these regions, inter-annual errors in 

NLDAS-based basin P likely play a role in the variability of non-closure errors. Still, the β 
(R2) values for the NOAH model are consistently below 0.5 (0.25) for many eastern regions 

of the CONUS, indicating that there are other drivers of non-closure error besides errors in 

P.

We also explore how the variance differs between ETEB and ETWB. Pooling data from all 

gages across the CONUS, the inter-annual variance of ETWB is (17167.8), which is much 

larger than that for MOD16 (1344.1), NOAH (1890.9), and to a lesser extent, ALEXI 

(2751.6). The catchment level standard deviations of all ET estimates, as well as the ratios of 

variances between ETEB and ETWB for each basin are shown in Supplemental Figure S5. 

This variance bias is also reflected in Figure 4c and d, which shows the β and R2 values for 

the GWR on unscaled data (Eq 3.2). These β values are substantially lower than those for 

the scaled data (Figure 4a), highlighting the large variance biases between ETWB and ETEB. 

Figure 4 and Figure S5 show that, in regions where hydrologic consistency between sETWB′

and sETEB′  is highest (see Figure 4a), the variance of ETEB is about a quarter of that for 

ETWB, regardless of energy balance model. In regions where hydrologic consistency is 

moderate or low, the variance of ETEB is almost two orders of magnitude less than that of 

ETWB. This suggests that there is significant variance bias in either or both of the energy and 

water balance based estimates. We speculate that for the water balance model, this may be 

related to inflated variance in basin-averaged estimates of annual precipitation.

Figure 4 and the comparison of β and R2 values between the energy balance models indicate 

that annual errors in basin P have a large role in non-closure errors, but other factors are also 

likely important. To explore this further, we first examine the distribution sεNC in individual 

years to determine if there are spatial patterns in the error term. Any clustering in sεNC in 

certain regions and years would suggest that characteristics of specific climate events 

contribute substantially to discrepancies between sET’EB and sET’WB. Figure 5 shows the 
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values of sεNC for 2 years with large-magnitude errors (2006 and 2012), with all years 

shown in Figure S6. Clustering in sεNC is clearly apparent. For instance, in 2012, all three 

sET’EB estimates were well above sET’WB in the Northeast region, whereas in 2006 the 

opposite trend occurs. Further, in 2006, the errors are of much higher magnitude for MOD16 

than the other products. Clustering of higher magnitude annual sεNC appears to be strongest 

in regions where hydrologic consistency between ETEB and ETWB is lowest (Figure 4).

To further diagnose this clustering and the cause of inconsistencies (i.e., low β and R2 values 

and low variance ratios) revealed in the regressions above, scaled, non-closure errors (sεNC) 

are related to a series of atmospheric and meteorological proxies that could represent the 

cause of errors in ETWB or ETEB estimates. The first row of Figure 6 shows the correlation 

between sεNC and basin P. sεNC
ALEXI shows broad negative correlations with basin P 

estimates across CONUS, particularly in the Northeast, suggesting that scaled anomalies of 

ETEB
ALEXI are low relative to scaled anomalies in ETWB when P is above average. For 

sεNC
MOD16 and sεNC

NOAH, the pattern of correlation coefficients for P is similar to that for 

ALEXI but somewhat muted, particularly along the Rocky Mountains. These results could 

be interpreted to suggest that when estimates of P are either too high or too low, the error 

propagates into ETWB and contributes to non-closure errors (i.e., we have high variance bias 

in P). Alternatively, it might suggest that errors in ETEB could be anti-correlated with P.

However, the similarity of the relationship between P and both sεNC
MOD16 and sεNC

NOAH is 

somewhat surprising, given similar formulations of the NOAH and MOD16 products and 

that the NOAH product is the only ETEB model based on the same P data as the ETWB 

model. This may be partially explained by correlations between the precipitation products 

used by NOAH (NLDAS-2) and MOD16 (GMAO). This may also be partially explained 

when examining the correlations between ΔTWS and sεNC. Like Han et al. (2015), we 

examine how sεNC relates to ΔTWS, but examine this relationship for both the Tellus and 

Mascon GRACE products (Figure 6, rows 2 and 3) to evaluate whether recent advances in 

processing of GRACE data has improved ΔTWS estimates. The sεNC values for all three 

models show high negative correlation with both GRACE products in the Souris Red Rainy, 

Great Lakes, New England, and Mid-Atlantic regions. sεNC
NOAH and sεNC

ALEXI also show strong, 

negative correlations with ΔTWSM and ΔTWST in the Upper Mississippi basin, while 

sεNC
MOD16 and sεNC

ALEXI show strong negative correlations with both GRACE products in the 

Pacific Northwest. The results are very similar across both GRACE products, although some 

differences can be seen (e.g.,for MOD16 in the Ohio River basin), and the relationships are 

slightly stronger with the newer Mascon data compared to the Tellus data (see Figure S7), 

which exhibits slightly more inter-annual variability than Tellus (Figures 2 and S7). We note 

these results were seen in spite of the fact that many basins used in this study were well 

below the minimum spatial resolution of the GRACE products. We also note that if ΔTWS is 

included directly in the ETWB estimates, the sign of sεNC generally does not change, and 

there are only modest impacts to the magnitude of non-closure errors (Figures S8 and S9). 

These modest impacts may be caused by a variance bias in either P or ΔTWS, motivating the 

use of the correlation analysis in Figure 6 to control for these potential biases and maximize 

the potential signal between non-closure errors and ΔTWS (Supplemental Text 3).
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Overall, the correlations between sεNC and ΔTWS are strongest in many of the same basins 

with strong correlations between P and sεNC. These results indicate that the correlations 

between P and sεNC may be the result of errors in ETWB linked to ΔTWS that are strongest 

when conditions are wet. This makes it difficult to assess whether errors in P or the omission 

of ΔTWS is driving the non-closure error. Furthermore, both NOAH and MOD16 scale ET 

by moisture availability, and so in theory, errors in this scaling process could lead to the 

correlations between sεNC, P, and ΔTWS seen in Figure 6. However, ALEXI does not scale 

ET based on moisture and still has similar correlations between sεNC, P, and ΔTWS. 

Therefore, the strong relationships between sεNC and both P and ΔTWS suggest that some 

combination of uncertainties linked to ETWB play a large role in non-closure errors.

We are also interested in whether violations of assumptions in the energy balance models 

drive non-closure errors, particularly as they relate to regional climate phenomena that could 

translate to regional clustering of sεNC. We consider two such phenomena: % P from snow 

(Figure 6, row 4) and large-scale horizontal heat advection (Figure 6, row 5). sεNC shows 

positive correlations to % P as snow in the Ohio River and northern Mid-Atlantic regions for 

all models, suggesting that in these areas, overestimation of sET′EB relative to sET′WB was 

higher in years when more P came as snowfall. This relationship is strongest for MOD16, 

suggesting that wintertime ET (associated with sublimation) may be overestimated in this 

routine. It should be noted, however, that P undercatch is accentuated during snowy 

conditions, which could further bias ETWB downwards (Yang et al. 2005, Pan et al. 2003).

An interesting pattern also emerges when sεNC is compared to HHORIZ. Years when HHORIZ 

is high seem to be associated with underestimation of all three sET′EB relative to sET′WB in 

the Mid-Atlantic, southern Ohio, Tennessee, and South Atlantic Gulf regions. In contrast, 

large values of HHORIZ appear to be associated with an overestimation of sETEB
MOD16 relative 

to sETWB at the corner of the Missouri, Upper Mississippi, Arkansas White-Red, and Lower 

Mississippi regions. Interestingly, in these same regions, MOD16 appears to differ most 

strongly from other ET products in general, though more research is needed to identify the 

reasons for this discrepancy. Overall, errors in P and ΔTWS appear more related to non-

closure errors than % P as snow and HHORIZ for most products and regions, although all 

variables appear important in at least some regions.

4. DISCUSSION AND CONCLUSION

In this study, long-term average and inter-annual ET from three gridded energy balance 

products were evaluated against ET calculated from a simple terrestrial water budget in 671 

basins across CONUS for water years 2003–2015. For long-term biases, ETEB
ALEXI showed 

evidence of some overestimation of annual ET relative to ETWB, although this bias was 

mostly limited to basins with complex terrain. ETEB
NOAH showed evidence of some systemic 

underestimation of annual ET across the entire CONUS region, while the mean of ETEB
MOD16

was very close to the mean of ETWB. All three ETEB products seem capable of tracking ET 

climatology in the central part of the country, albeit with some underestimation from 

MOD16, while the three ETEB products differed from ETWB and each other in the eastern 
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third of CONUS and along the west coast, a result consistent with previous analysis 

(Anderson et al. 2013). Our examination of rank correlations between εNC and watershed 

characteristics (Figure 3) suggested that 1) ETEB
ALEXI is overestimated in basins with high 

mean annual precipitation and complex terrain, 2) ETEB
MOD16 is also overestimated in basins 

with higher mean precipitation and complex terrain, but also underestimates ET in basins 

with more cloud cover (% NA retrievals from ALEXI as a proxy), and overestimates ET in 

basins with more summertime vertically integrated heat flux (HHORIZ).

Importantly, the high correlation coefficients seen between mean annual precipitation and 

εNC
ALEXI and εNC

MOD16 where absent for εNC
NOAH. Since NOAH has NLDAS-2 P as forcing, and 

is of similar model formulation to MOD16, the differences between these two products may 

highlight regions where long-term errors in P play an important role in depressing the bias 

term εNC
NOAH. Accordingly, the regions with most prominent contrasts in bias terms between 

ETEB
NOAH and ETEB

MOD16 (as well as ETEB
ALEXI) are in mountainous regions of the Eastern US 

and Pacific Northwest, where gage placement is expected to have an outsized role in long-

term bias in gridded P estimates. However, information content of the remotely sensed 

inputs to MOD16 and ALEXI may be degraded in regions of complex terrain, so it is 

difficult to distinguish if long-term non-closure error in complex terrain is related to 

degradation of remotely sense data inputs or error in precipitation

This analysis also confirms that at very long time scales (10+ years, Figure 2), ΔTWS is a 

negligible part of the terrestrial water budget in most of the basins considered, reducing a 

potential error term in ETWB. Taken together, the results above suggest that, at least on a 

long-term basis, the accuracy of at least some of the ETEB estimates are degraded, 

particularly in humid regions. This is consistent with previous analyses of long-term bias 

(Sheffield et al. 2009, Gao et al. 2009). Further, we argue that the analysis presented here 

points most strongly to some degradation for the NOAH product, given that it shares the 

same precipitation forcing as and is biased downward against ETWB--a bias which cannot be 

explained by known, systematic sources of precipitation error (e.g., undercatch).

Many studies have indicated that ETEB cannot be used to close annual terrestrial water 

budgets (Zhang et al. 2012, Zeng et al. 2014, Velpurri et al. 2013, Han et al. 2015, Liu et al. 

2016). Our analysis indicates that in regions with water-limited ET and low inter-annual 

ETWB variability—specifically in the central US ranging from Texas up through the High 

Plains—all three ETEB products demonstrated hydrologic consistency with ETWB. Even in 

these areas, however, the ETEB products were still only able to capture less than half the 

magnitude of scaled inter-annual variance estimated by ETWB Also, in many regions of the 

country like the Eastern US and the Pacific Northwest, no or weak consistency is seen 

between sETEB′  and sETWB′ . In addition, the variance of unscaled ETWB is twice to more than 

ten times the variance of unscaled ETEB estimates throughout the CONUS, although this 

variance bias is smallest with the ALEXI product.
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Clustering was seen in basin-level sεNC in certain regions and years, a phenomenon that 

suggests some of these errors are linked to specific climate events that contribute 

substantially to discrepancies between ETEB and ETWB. To explore whether errors in ETWB 

or ETEB were the cause of clustering in non-closure errors, we correlated sεNC with four key 

variables that might drive these errors in either ETWB (P, ΔTWS), or ETEB (% P as snow, 

and HHORIZ). Results showed interesting patterns of correlation between sεNC and all of 

these variables, although correlations were largest and most widespread with P and ΔTWS. 

This was despite the mismatch in resolution between the GRACE-based ΔTWS estimates 

and basin sizes. These results generally support the conclusions of Han et al., 2015 that 

uncertainties in water budget ET estimates play a large role in inter-annual non-closure 

errors, although these conclusions should likely be modulated somewhat given the long-term 

biases in energy budget based methods and potential sources of inter-annual errors linked to 

sublimation and large-scale heat advection.

Further research is needed to identify whether large-scale climatic drivers of terrestrial ET, 

including phenomena that contribute to atmospheric coupling and the thresholds for energy 

limited ET, are adequately parameterized in continental-scale energy balance models. A 

significant question that remains is whether the variance bias contributing to εNC across 

CONUS is due to overestimation of inter-annual variability in ETWB or underestimation of 

inter-annual variability in ETEB. While some of this bias is due to inter-annual fluctuation in 

basin ΔTWS and inflated variance bias in estimates of basin P, it is unclear if this is the sole 

source. As ET is commonly assumed to have relatively low variability on an inter-annual 

basis, resolution to this question could serve to validate or challenge a critical assumption of 

terrestrial hydrologic models.

The modestly improved relationships seen between non-closure errors and the higher 

resolution GRACE Mascon data over the Tellus data suggest that further improvements in 

the resolution of ΔTWS estimates may be needed to help resolve these questions. We feel 

the mismatch in resolution between the ΔTWS data and basin sizes used in this study was a 

major limitation of the approach, despite the significant signals that were uncovered. 

Therefore, as new and higher resolution GRACE products continue to be developed, we 

argue for the importance of revisiting ETWB and ETEB comparisons in future work using 

this data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
a: Spatial distribution of long-term mean annual ET from terrestrial water balance and 

energy balance models. Color scale is in units of mm/year. Each point represents a 

streamflow gaging station. b: εNC
NOAH, εNC

MOD16, and εNC
ALEXI in mm/year, where positive εNC

(blue) indicates that ETEB overpredicts relative to ETWB. c: Scatterplot of ETEB versus ETWB
with 1-to-1 line shown. Regular and square brackets represent inclusive and exclusive 

bounds of the interval, respectively.
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Figure 2: 
Left column: 2003–2015 mean ΔTWS (in mm) calculated using GRACE Tellus (top) and 

GRACE Mascon (bottom) data products. Non-zero values indicate long term change in Sep-

Oct annual water storage, with positive (blue) values indicating net gain in ΔTWS and 

negative (red) values indicating net loss in ΔTWS. Right column: standard deviation of 

2003–2015 ΔTWS (in mm) calculated using GRACE Tellus (top) and GRACE Mason 

(bottom) data products.
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Figure 3: 

Spearman’s correlation coefficient between εNC
ALEXI (left column), εNC

NOAH(center column) and 

εNC
MOD16 (right column) and watershed characteristics. Color scale represents strength of 

negative (red) or positive (blue) correlation between non-closure error and watershed 

characteristic. Correlation coefficients which were not significant at α =0.05 are indicated 

with an X.
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Figure 4: 
a: Geographically weighted β estimates and b: local R2 for centered and scaled data (Eqn. 

3.1), where each dot represents a basin. c: Geographically weighted β estimates and d: local 

R2 for unscaled data (Eqn. 3.2). Outlines represent USGS HUC02 Hydrologic regions across 

CONUS.
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Figure 5: 

2006 and 2012 spatial patterns in sεNC
NOAH (left), sεNC

MOD16(middle), and sεNC
ALEXI (right).
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Figure 6: 

Basin specific correlations between sεNC
NOAH (left), sεNC

MOD16(center), and sεNC
ALEXI (right), and 

annual P (top row), annual ΔTWST (second row), annual ΔTWSM (third row), % P as snow 

(fourth row) and JJA vertically integrated sensible heat flux (HHORIZ, bottom row).
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