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Abstract

Electromagnetic brain imaging is the reconstruction of brain activity from non-invasive recordings 

of magnetic fields and electric potentials. An enduring challenge in this imaging modality is 

estimating the number, location, and time course of sources, especially for the reconstruction of 

distributed brain sources with complex spatial extent. Here, we introduce a novel robust empirical 

Bayesian algorithm that enables better reconstruction of distributed brain source activity with two 

key ideas: kernel smoothing and hyperparameter tiling. Since the proposed algorithm builds upon 

many of the performance features of the sparse source reconstruction algorithm - Champagne and 

we refer to this algorithm as Smooth Champagne. Smooth Champagne is robust to the effects of 

high levels of noise, interference and highly correlated brain source activity. Simulations 

demonstrate excellent performance of Smooth Champagne when compared to benchmark 

algorithms in accurately determining the spatial extent of distributed source activity. Smooth 

Champagne also accurately reconstructs real MEG and EEG data.
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I. Introduction

Noninvasive functional brain imaging has made a tremendous impact in improving our 

understanding of the human brain. Functional magnetic resonance imaging (fMRI) has been 

the predominant modality for imaging the functioning brain during the past 2 decades. 

However, fMRI lacks the temporal resolution required to image the dynamic and oscillatory 

spatiotemporal patterns associated with activities in the brain. Direct non-invasive 

measurements of these neuronal oscillatory activity in the millisecond time scale can be 

achieved with magnetoencephalography (MEG) and electroencephalography (EEG), this 

temporal resolution is essential for epileptic form activity localization and for imaging 

dynamic of brain networks subserving perception, action and cognition.

MEG/EEG sensor data only provides qualitative information about underlying brain 

activities. Analysis is typically performed based on the qualitative analyses of experienced 

users regarding the sensitivity profile of the sensors. To extract more precise information 

from the sensor data, it is essential to reconstruct actual brain activity (source space 

reconstruction) from the recorded sensor data. This process involves two steps: the forward 

and inverse models. The forward model uses source, volume conductor, and magnetic field 

measurement models to calculate the lead field or gain matrix that describes a linear 

relationship between sources and the measurements. Inverse algorithms are then employed 

to estimate the parameters of neural sources from MEG and EEG sensor data. The illposed 

inverse problem for source localization with MEG/EEG data involves estimating brain 

activity from noise sensor data where the number of brain voxels (typically 3000 to 10000) 

is much larger than the number of sensors (typically ~ 300 sensors for MEG and ~ 128 

electrodes for EEG).

A wide variety of source localization algorithms exist for estimating source activity to 

overcome the difficult inverse problem. These algorithms may be roughly organized into 

three classes: dipole fitting, spatial scanning, and tomography. Dipole fitting can produce 

very sparse results but with two major caveats. First, the process of nonlinear optimization 

can result in poor performance when multiple sources are present due to local minima in the 

solution space. Second, for adequate performance, the number of active neuronal sources 

must be known a priori. Scanning algorithms, also known as spatial filters, are based on 

reconstructing activity at a specific voxel of a discretized cortex. Spatial filter methods do 

not need a priori knowledge of the number of the brain sources. However, traditional spatial 

filter methods such as beamformers perform poorly when different regional brain activities 

are correlated in time. In contrast, tomographic methods are estimating activity at all voxels 

simultaneously. Some tomographic methods are able to promote sparseness in the solution 

[1], [2], [3], where the majority of the candidate locations do not have significant activity. 

Empirical evidence shows that a sparse source model can improve the accuracy of 

localization in a noisy environment.

Most source reconstruction algorithms from the three categories can be framed in a Bayesian 

schema [4]. This perspective is useful because it demonstrates that various source 

localization methods are interrelated and, in fact, can be thought of as implicity or explicity 

imposed prior distributions within a Bayesian framework. Algorithms such as MNE [5], [6], 
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dSPM [7], sLORETA [8], MVAB (and other beamformers) [9], [10], [11], [12], [13] assume 

a known, fixed prior. Alternatively, the parameters of the prior distribution 

(hyperparameters) can be learned from the data for robust performance, commonly referred 

to as empirical Bayesian algorithms [4]. One such recent empirical Bayesian source 

reconstruction algorithm that we have developed is referred to as Champagne [1]. 

Champagne outperforms several benchmark algorithms in a variety of simulated source 

configurations, especially for sparse brain source activity [14]. Since the development of the 

original Champagne algorithm, we have proposed several extensions of this framework. We 

have proposed hierarchical spatiotemporal extensions of Champagne to deal with sparse 

spatial and smooth temporal sources [15]. Recently, we proposed a hierarchical version of 

the Champagne algorithm, called tree_Champagne, for reconstruction of sources with mixed 

spatial extents at a voxel and at a regional-level as specified by anatomical or functional 

atlases [16].

Here, we develop a novel algorithm designed for accurate reconstruction of source activity 

with distributed spatial extents. Since the algorithm builds upon the Champagne framework, 

we refer to it as Smooth Champagne. We propose two key ideas to better handle distributed 

source activity: kernel smoothing and hyperparameter tiling. First, we introduce a kernel 

filter that converts a spatially smooth generative model for brain sources into a sparse 

subspace. Second, we assume that this sparse subspace is clustered into regions or tiles, and 

we estimated variance hyperparameters for this model at a resolution of regions [1]. Model 

learning of Smooth Champagne deploys robust empirical Bayesian Inference and uses a 

principled cost function which maximizes a convex lower bound on the marginal likelihood 

of the data. Resulting update rules are fast and convergent. In Section II, we derive this new 

algorithm and in Sections III and IV we demonstrate its performance in simulated and real 

MEG and EEG data in comparison to benchmarks, followed by a brief discussion in Section 

V.

II. Theory

A. The probabilistic generative model

The generative model for the sensor data with distributed brain activity is defined as

y(t) = ∑
i = 1

N
Lisi(t) + ε = LS(t) + ε, (1)

where, y(t) = [y1(t), …, yM(t)]T is the output of the sensors at time t, M is the number of 

channels, N is the number of voxels under consideration and Li ∈ ℜM × q is the lead-field 

matrix for i-th voxel, q is the number of directions for each voxel. The k-th column of Li 

represents the signal vector that would be observed at the scalp given a unit current source/

dipole at the i-th vertex with a fixed orientation in the k-th direction. It is common to assume 

q = 2 (for MEG) or q = 3 (for EEG), which allows flexible source orientations to be 

estimated in 2D or 3D space. Multiple methods based on the physical properties of the brain 

and Maxwell’s equations are available for the computation of each Li [17]. si(t) ∈ ℜq × 1 is 

the brain activity for i-th voxel at time t with q directions. The term ε is the noise-plus-
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interference whose statistics are estimated from the baseline period. We assume that the 

columns are drawn independently from N 0, Σε , where Σε is the noise covariance which 

could be estimated using a variational Bayesian factor analysis (VBFA) model [18]. 

Temporal correlations can easily be incorporated if desired using a simple transformation 

outlined in [19]. And L = [L1, …, LN] and S(t) = [s1(t)T, …, sN(t)T]T. For simplicity, we 

define matrix Y = [y(1), …, y(T)] and S = [S(1), …, S(T)] as the entire sensor and source 

time series. T is the number of time points.

In order to reconstruct the distributed brain activity robustly, we assume that distributed 

brain source activity arises from a sparse set of clustered sources that (1) are spatially 

contiguous and (2) share a common time courses. We define the sparse brain activity with 

clustered sources at time t as Z(t) = [z1(t)T, z2(t)T, …, zN(t)T]T, where zi(t) ∈ ℜq × 1. We also 

define a local spatial smoothing kernel matrix as H = [h1, h2, …, hN]T and hi = [hi1, hi2, …, 

hiN]T is the local spatial smoothing kernel for i-th voxel. S(t) = HZ(t) ensures spatial 

contiguity. The model of Eq. (1) can then be expressed as

y(t) = LHH−1S(t) + ε = GZ(t) + ε, (2)

where G = LH is the new modified leadfield matrix, G = [G1, …, GN] and Gi = Lihi.

There are many ways to define the local spatial smoothing kernel matrix hi. For 

mathematical convenience here, we define hi, a smoothing kernel that includes flexible 

parameterization for different kernel properties such as width, pass-band and transition-band 

characteristic, as follows:

ℎij =
1 j = i,

exp − dij
m D

p
j ≠ i,

(3)

where, we denote the minimum distance between i-th and j-th (j ≠ i) voxel as D and the 

distance between i-th voxel and j-th voxel is denoted as dij. In the above formulation, the 

parameter m determines the width of the smoothing kernel, uniformity in the pass-band, and 

the parameter p determines the slope of the transition region of the kernel. For the rest of this 

manuscript, unless otherwise specified, the default values for p is 4 and for m is 2.

Additionally, we divide the whole brain voxels into R regions (or tiles) specified either 

anatomically or functionally and the r-th region contains Nr voxels. By default the number of 

regions is assumed to be around one tenth of the total number of voxels, regions are assumed 

to be non-overlapping in this paper. We assume that voxels within the same brain region 

share a common variance hyperparameter. The prior distribution for sources can be written 

as

p(Z |Ω) = ∏
t = 1

T
∏
r = 1

R
∏

n ∈ ζr
N zn(t) 0, ΩrI , (4)
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where Z = [Z(1), …, Z(T)] is the entire sparse time series, ζr is the set of voxels in r-th 

region and n ∈ ζr indicates that the n-th voxel is in r-th region. Ωr is the prior variance 

hyperparameter of r-th region, I is a q×q identity matrix. If we use the distribution of noise 

and interference as ε N 0, Σε , the conditional probability p(Y|Z) can be expressed as

p(Y |Z) = ∏
t = 1

T
p(y(t) |Z(t)) = ∏

t = 1

T
N y(t) GZ(t), Σε . (5)

Eqs. (2), (4) and (5) form the sparse model appropriate for distributed sources, next, we will 

use Bayesian inference to derive the update rules of model parameters and hyperparameters. 

In the limit of when the kernel width or the tile/region size is equal to the number of voxels 

in the lead-field, the generative model will result in the algorithm commonly known as 

Bayesian minimum-norm algorithm. In such a limit, the algorithm will fail to capture 

distributed source clusters that are on the spatial scale of 5–35 contiguous voxels. 

Conversely, at the other limit of when the kernel width and the tile/region size is equal to 

that of a single voxel, the generative model will become similar to that for the Champagne 

algorithm, i.e. the algorithm will become more suited to reconstruct sparse source activity.

B. Bayesian inference

To estimate the sparse source activity Z, we use Bayesian inference and derive the posterior 

distribution p(Z|Y), which is given by

p(Z |Y ) = ∏
t = 1

T
p(Z(t) |y(t)) = ∏

t = 1

T
N Z(t) Z(t), Γ −1 , (6)

where the mean and the variance [1], [16], [20] are

Z(t) = Γ −1GTΣε
−1y(t), (7)

Γ −1 = Υ + GTΣεG . (8)

ϒ is a qN × qN diagonal matrix expressed as

Υ =

Υ1 0 ⋯ 0
0 Υ2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ ΥN

, (9)

ϒi = ΩrI if i-th voxel belongs to r-th region.

In order to compute Z t  in Eq. (7), we need to know the hyperparameter Ωr. The 

hyperparameter Ωr is obtained by maximizing the cost function ℱ(Ω, Φ), with an auxiliary 

variable Φ, and is expressed as
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ℱ = − 1
T ∑

t = 1

T
(y(t) − GZ(t))TΣε

−1(y(t) − GZ(t))

− 1
T ∑

r = 1, n ∈ ζr

R
∑
t = 1

T
zn t T ΩrI −1zn(t)

− ∑
r = 1

R
tr ΦrΩrI + Φ0 .

(10)

Eq. (10) is a convex lower bound of the logarithm of marginal likelihood of the data p(Y|Ω) 

(details of the derivation of this function can be found in Appendix A).

We then set the derivative of the cost function ℱ(Ω, Φ) with respect to Ω to zero, the regional 

resolution level hyperparameter Ωr for r-th region is given by [20]:

Ωr = 1
q

1
TNr

∑t = 1, n ∈ ζr
T tr zn(t)zn(t)T

Φr
. (11)

The optimization problem of Φr is equivalent to finding the hyperplane that forms a closest 

upper bound of log|Σy|. Such a hyperplane is found as the plane that is tangential to log|Σy|. 

Therefore, we set the derivative of log|Σy| with respect to ϒ to zero, the update rule for Φr is 

obtained as

Φr = 1
q ∑

n ∈ ζr
tr Gn

TΣy
−1Gn . (12)

The update rule for zn t  can also be derived by setting the derivative of the new cost 

function ℱ(Ω, Φ) with respect to zn t  to zero. The source time course for the n-th voxel at r-

th region is expressed as

zn(t) = ΩrIGn
TΣy

−1y(t) . (13)

The proposed algorithm then repeats the update steps Eqs. (11), (12) and (13) until the cost 

function Eq. (10) converges.

Finally, the estimated sparse brain activity for n-th voxel is Eq. (13) and the distributed brain 

activity is

sn(t) = hnzn(t) = hnΩrIGn
TΣy

−1y(t) . (14)

A summary of the proposed algorithm is shown in Table 1.
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III. Performance evaluation on simulation and real data

This section describes algorithm performance evaluations for different simulated complex 

source configurations and real datasets. We also compared performance with benchmark 

source localization algorithms.

A. Benchmark algorithms for comparison

We chose the following representative source localization algorithms to compare with the 

performance of Smooth Champagne: (1) an adaptive spatial filtering method, linearly 

constrained minimum variance beamformer (referred to as Beamformer) [9], [10], [11], [12], 

two non-adaptive weighted minimum-norm method, (2) standardized low-resolution 

tomographic analysis (referred to as sLORETA) [7], [8], (3) a variant of mixed-norm 

algorithm (MxNE) specially tailored to handle multiple time-points and unconstrained 

source orientations [2], [3], and two Bayesian based algorithms: (4) Champagne [1] and (5) 

MSP [19]. Champagne, Beamformer, and sLORETA, were implemented using NUTMEG 

libraries (nuts_Champagne.m, nuts_LCMV_Vector_Beamformer.m and nuts_sLORETA.m) 

[21]. Standard implementation of MSP from SPM12 was used (spm_eeg_invert.m).

B. Initialization

The initialization of the parameters for Smooth Champagne are as follows. We learn the Σε 
from the baseline period using Variational Bayesian Factor Analysis [18] and then assume it 

is fixed when estimating other model parameters from actual data. The local spatial 

smoothing kernel is set by Eq. (3) and after that, the value of hij less than 0.1 is set as 0 to 

eliminate the influence of voxels that are too far away. Initialization for Ω is set by first 

running Bayesian Minimum-Norm (BMN) [20] to determine a whole-brain level variance 

parameter, then the variance of region level is set by the average variance of voxels from the 

same region.

C. Choice of tuning parameters

In Smooth Champagne there are two free parameters namely the width of the smoothing 

kernel and the tile/region size. All other parameters are estimated from data. In principle, 

these two parameters can be estimated from data by computing the model evidence as a 

function of kernel width and the tile/region size. For other algorithms like MxNE, sLORETA 

and Beamformer the main free parameter is the regularization constant. In our 

implementation of MxNE, we set the regularization parameter based on the sensor noise 

levels from baseline data. For sLORETA, we use the default setting in NUTMEG software 

where the regularization parameter is equal to the maximum eigenvalue of the sensor data 

covariance [21]. For Beamformer, we set the regularization parameter to be 1e-3 times the 

maximum eigenvalue of the sensor data covariance.

D. Quantifying performance

To evaluate the performance of Smooth Champagne in simulations, we use free-response 

receiver operator characteristics (FROC) which shows the probability for detection of a true 

source in an image vs. the expected value of the number of false positive detections per 

image [22], [16], [14], [23]. Based on the FROC, we compute an A′ metric [24] which is an 
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estimate of the area under the FROC curve for each simulation. If the area under the FROC 

curve is large, then the hit rate is higher compared to the false positive rate. The A′ metric is 

computed as follows:

A′ = HR − FR
2 + 1

2 (15)

We make modifications to this performance metric to be applicable for reconstruction of 

distributed and clustered sources that are balanced metrics across a variety of sparse and 

non-sparse reconstruction algorithms. We use the following definitions of hit rate and false 

rate for the performance evaluation. First, the voxels localized by each algorithm that are 

included in the calculation of hit-rates are defined as voxels that are i) at least 0.1% of the 

maximum activation of the localization result; and ii) within the largest 10% of all of the 

voxels in the brain.

Within these subset of voxels, we test whether each voxel is within the three nearest voxels 

to a true source cluster. If a particular voxel’s estimated activity lies within a true cluster, 

that voxel gets labeled as a ‘sub-hit’. If the number of ‘sub-hits’ within a particular true 

cluster is more than 50% of the number of voxels in that cluster, that cluster gets labeled as a 

‘hit’. HR is then calculated by dividing the number of hit clusters by the true number of 

clusters. For FR, the false positive voxels localized by each algorithm are defined as voxels 

that lie within the largest 10% of the whole voxels. FR is defined by dividing the number of 

potential false positive voxels by the total number of inactive voxels for each simulation. 

Lastly, we use Eq (15) to calculate the extent scores A′ metric which ranges from 0 to 1, 

with higher numbers reflecting better performance.

E. MEG simulations

In this paper, we generate data by simulating dipole sources with fixed orientation. Damped 

sinusoidal time courses are created as voxel source time activity and then projected to the 

sensors using the leadfield matrix generated by the forward model, assuming 271 sensors 

and a single-shell spherical model [17] as implemented in SPM12 (http://

www.fil.ion.ucl.ac.uk/spm) at the default spatial resolution of 8196 voxels at approximately 

5 mm spacing and unless otherwise indicated, we set the number of voxels in a region to be 

around eight resulting in about one thousand regions, and the average kernel width is set to 

around ten voxels. The time course is then partitioned into pre- and post-stimulus periods. In 

the pre-stimulus period (480 samples) there is only noise and baseline brain activity, while in 

the post-stimulus period (480 samples) there is also source activities of interest on top of 

statistically similarity distributed noise plus interfering brain activity. The noise activity, 

which is added to achieve a desired signal to noise ratio, consists of actual resting-state 

sensor recordings collected from a human subject presumed to have only spontaneous brain 

activity and sensor noise.

Signal-to-noise ratio (SNR), correlations between voxel time courses in the same cluster 

(intra-cluster αintra), and correlations between voxel time courses from different clusters 

(inter-clusters αinter) were varied to examine algorithm performance. SNR and time course 
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correlation are defined in a standard fashion [16], [14]. The following configurations were 

tested:

1. Cluster number: 3, 5, 7, 11, 13, and 15 clusters were seeded with 20 sources 

each, corresponding to 60, 100, 140, 220, 260, and 300 active voxels. Each 

cluster consists of the center, chosen randomly, and 19 nearest neighbors.

2. Cluster size: 5 clusters were seeded with 5, 10, 15, 20, 25, 30, 35 and 40 active 

dipoles each.

3. SNR: Simulations were performed with 5 randomly seeded clusters at SNRs of 0 

dB, 3 dB, 6 dB, 9 dB, 12 dB, and 15 dB.

4. Inter-cluster correlation: 5 clusters were seeded with 20 sources each. 

Correlation between clusters was varied from 0.1, 0.3, 0.5, 0.7, and 0.9. Intra-

cluster correlation was set to 0.8.

5. Influence of width of local smoothing kernel and size of tiles: We evaluate the 

algorithm performance as a function of local smoothing kernel width. We 

examine performance for reconstruction of 5 clusters of different sizes (from 5–

35 voxels per cluster). We increase the width of the local smoothing kernel from 

3 voxels to 121 voxels while the tile size is maintained at 6 voxels. We also 

examine performance as a function of average tile size ranging from 4–132 

voxels per tile and fix the average kernel width (15 voxels).

If not indicated above, each of the simulations was conducted with the following parameters: 

SNR of 10 dB, intra-cluster correlation coefficient of αintra = 0.8, and inter-cluster 

correlation coefficient of αinter = 0.25. Correlations within clusters were modeled higher 

than between clusters to simulate real cortical activity. Results for A′ and localization were 

obtained by averaging over 50 simulations for each of the configurations above.

F. EEG simulations

The algorithm was also tested on simulated EEG data with a scalar lead field computed for a 

three-shell spherical model in SPM12 (http://www.fil.ion.ucl.ac.uk/spm) with more than 

5000 voxels at approximately 8 mm spacing and 120 sensors. EEG sensor recordings were 

simulated through the forward model in the same way as the MEG data. Since the algorithm 

has similar performance with EEG data as with MEG, only one specific example is shown in 

the paper. Three clusters are seeded with SNR of 20 dB, intra-cluster correlation of 0.9, and 

inter-cluster correlation of 0.9.

G. Real datasets

Real MEG data was acquired in the Biomagnetic Imaging Laboratory at University of 

California, San Francisco (UCSF) with a CTF Omega 2000 whole-head MEG system from 

VSM MedTech (Coquitlam, BC, Canada) with 1200 Hz sampling rate. The lead field for 

each subject was calculated in NUTMEG [21] using a single-sphere head model (two 

spherical orientation lead fields) and an 8 mm voxel grid. Each column was normalized to 

have a norm of unity. The data were digitally filtered from 1 to 160 Hz to remove artifacts 

and DC offset.
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Six algorithms were run on three real MEG data sets: 1. Somatosensory Evoked Fields 

(SEF); 2. Auditory Evoked Fields (AEF); 3. Audio-Visual Evoked fields. The data sets have 

been reported in our prior publications using the Champagne algorithm, and details about 

these datasets can be found in [1], [14].

The EEG data (128-channel ActiveTwo system) was downloaded from the SPM website 

(http://www.fil.ion.ucl.ac.uk/spm/data/mmfaces) and the lead field was calculated in SPM8 

using a three-shell spherical model at the coarse resolution of 5124 voxels at approximately 

8 mm spacing. The EEG data paradigm involves randomized presentation of at least 86 faces 

and 86 scrambled faces. The averaged scrambled-faces data was subtracted from the 

averaged faces data to study differential response [25]. The EEG data has been reported in 

our prior publication using the Champagne algorithm, and details about our analyses of this 

dataset can be found in [16], [14].

IV. Results

A. Simulation Results

1) MEG simulations: Figure 1 shows a representative example of localization results for 

an MEG simulation with 3 clusters. In this configuration, the SNR, correlation of dipole 

activities within the cluster and between clusters are 10 dB, 0.9 and 0.9, respectively. 

Compared with the ground truth, Beamformer and sLORETA can localize all three clusters 

but produce blurred and spurious activity, while MxNE can localize two of the three clusters 

but produces focal sources and misses one cluster. In contrast, MSP can localize all three 

clusters, but reconstructions are smoother than ground truth and produces additional sources 

that are not present in the simulations. Champagne can accurately localize all three clusters 

but estimates activity that is more focal than the true spatial extent of the sources. Smooth 

Champagne is able to localize three clusters which are the closest spatially distributed to the 

ground truth.

1. Influence of the number of clusters - In Figure 2 (A), we plot the number of 

clusters versus A′ metrics at SNR levels of 10 dB and correlations within and 

between clusters as 0.8 and 0.25. All algorithms have the same trend, with 

decreasing performance as number of clusters increases. However, Smooth 

Champagne outperforms all benchmark algorithms. MxNE shows higher A′ 
scores than MSP, Beamformer and sLORETA.

2. Effect of increasing cluster size - Results of all algorithms in response to 

increasing cluster size are presented in Figure 2 (B). From the performance 

scores, Smooth Champagne outperforms all benchmarks except for when the size 

of clusters is less than 10 voxels. In this sparse source activity scenario, as to be 

expected, Champagne performs better than Smooth Champagne. Champagne 

performs better than other benchmark algorithms when cluster size is less than 

35, when cluster size increases to 40, MSP outperforms Champagne. In contrast, 

MSP, MxNE, sLORETA and Beamformer show no change with increasing 

cluster size, MxNE outperforms MSP, sLORETA and Beamformer.
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3. Effects of increasing SNR - In the subplot (C) of Figure 2, SNR versus 

performance score is plotted. All algorithms demonstrate improved performance 

with increasing SNR. Again, Smooth Champagne outperforms all benchmark 

algorithms. MxNE shows higher A′ scores than MSP, sLORETA and 

Beamformer.

4. Influence of the correlation between clusters - The subplot (D) of Figure 2 shows 

the influence of increasing the correlation between clusters on algorithm 

performance. Increasing the correlation between clusters has little influence on 

the performance of all algorithms. Based on the plots, it is clear that smooth 

Champagne outperforms all benchmarks. Champagne again outperforms MxNE, 

which outperforms MSP, sLORETA and Beamformer.

5. Influence of width of local smoothing kernel and size of tiles - Figure 3 (A) 

shows the performance of the novel algorithm as a function of local smoothing 

kernel width. We examine performance for reconstruction of 5 clusters of 

different sizes (from 5–35 voxels per cluster). We increase the width of the local 

smoothing kernel from 3 voxels to 121 voxels while the averaged tile size was 

maintained around 6 voxels. For small cluster sizes (of 5 voxels) performance 

deteriorates when smoothing kernel size is increased. However, for moderate to 

large clusters, performance is invariant to kernel size up to 42. Only for very 

large kernel size of 121 voxels does performance start to deteriorate. Figure 3 (B) 

shows the performance of the novel algorithm as a function of the tile size. We 

again examine performance for reconstruction of 5 clusters of different sizes 

(from 5–35 voxels per cluster). We examine performance as a function of 

average tile size ranging from 4–132 voxels per tile while the averaged 

smoothing kernel size was maintained around 7 voxels. Here, we observe that 

across all cluster sizes, performance deteriorates when the tile size increases. For 

optimal performance the size of the smoothing kernel and the tile/region size 

should be smaller than the true size of the clusters. If the kernel width exceeds 

the true cluster size, then some deterioration in performance is observed. If the 

tile/region size exceeds the true cluster size, performance also deteriorates. 

However, in real data and absence of ground truth, the true cluster size is 

unknown. Our analysis suggests that for cluster sizes between 15–35 voxels, 

which are thought to the size of blobs typically reported in fMRI studies and may 

represent realistic clustered brain activity, performance is fairly uniform for a 

range of kernel sizes from 3–40 and for tile sizes between 4–25. This indicates 

some robustness in algorithm performance. However, examining Figure 3 (A) 

and (B) indicates that robustness is conferred more by kernel size than by tile/

region size, especially for smaller clusters. In this context, if there is a mismatch 

between the kernel width and the tile/region size, indeed performance will 

deteriorate due to the leadfield columns which are divergent such that the 

regional lead-field cannot fit the scalp topography.

2) EEG simulations: Figure 4 shows a representative example of localization results for 

an EEG simulation. In this configuration, the SNR, correlation of dipole activities within the 
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cluster and between clusters are 20 dB, 0.9 and 0.9, respectively. As is shown, the 

performance of all algorithms for EEG simulation is almost the same as the performance for 

MEG simulations. Compared with the ground truth, Beamformer and sLORETA localize all 

three cluster activities but produce blurred and spurious solutions, while MxNE localizes all 

three clusters with several focal point sources. In contrast, MSP lcalizes all three clusters, 

but reconstructions are smoother than ground truth and additional sources that are not 

present in the simulations are produced. Champagne can localize all three clusters but it 

estimates activity that is more focal than the true spatial extent of the sources. Smooth 

Champagne outperforms the benchmarks as it most accurately localizes three clusters when 

compared to the ground truth.

3) Summary for simulations: As can be seen from the simulation results and analyses 

above, Smooth Champagne outperforms all the benchmark source reconstruction algorithms 

with various complex distributed source configurations. Next, we extend the evaluation of 

the performance using real MEG and EEG data.

B . Results of real datasets

1) MEG - Somatosensory Evoked Field Paradigm: Figure 5 shows the results of 

the somatosensory evoked field response due to somatosensory stimuli presented to a 

subject’s right index finger, average derived from a total of 240 trials. A peak is typically 

seen ~50 ms after stimulation in the contralateral (in this case, the left) somatosensory 

cortical area for the hand, i.e., dorsal region of the postcentral gyrus. All algorithms can 

localize this activation to the correct area of somatosensory cortex with focal 

reconstructions. MxNE and Champagne are the most focal while sLORETA produces the 

most diffuse reconstruction.

2) MEG - Auditory Evoked Fields—The localization results for AEF data from four 

subjects are shown in Figure 6. The power of at each voxel in a 50–75 ms window around 

M100 peak is plotted for every algorithm. MxNE, Champagne and Smooth Champagne are 

able to consistently localize bilateral auditory activity for all subjects (shown in the last two 

columns in Figure 6). The activity is in Heschl’s gyrus, which is the location of primary 

auditory cortex. The localization results of Smooth Champagne are more spatially 

distributed than MxNE and Champagne. Beamformer and sLORETA can find the two 

auditory cortices only in one subject, whereas for the rest of the subjects the activations are 

mostly biased towards the center of the head; suggesting that the correlation of bilateral 

auditory cortical activity greatly and negatively impacts the performance of Beamformer and 

sLORETA. MSP can localize bilateral auditory activity but with some location bias and 

diffuse activation.

3) MEG - Audio-Visual Evoked Fields: Figure 7 shows results of the audio-visual 

evoked fields for Smooth Champagne. In subplot (A) and (B) we show the brain activations 

associated with the auditory stimulus. Smooth Champagne is able to localize bilateral 

auditory activity in Heschl’s gyrus in the window around the M100 peak, shown in the first 

row of Figure 7. The two auditory sources have the maximum power in the window around 

the M100 peak. We show the early visual response in the second row of Figure 7. Smooth 
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Champagne is able to localize a source in the medial, occipital gyrus with a peak around 150 

ms. We plot the power in the window around this peak and the time course of the source 

marked with the cross hairs. Our algorithm can localize a later visual response with a time 

course that has power extending past 150 ms. Compared to the results obtained with 

Champagne [14], Smooth Champagne shows more diffuse activation and smoother time 

courses.

4) EEG - Face-Processing task: In Figure. 8, we present the results from using five 

algorithms on the face-processing task EEG data set. Figure 8 shows the average power, 

M100 peak power, and M170 peak power at different rows separately. MxNE is unable to 

localize brain activity and localizes one focal activity for all conditions. Champagne is able 

to localize brain activity with sparse peaks at visual areas and fusiform gyrus [25], [26]. 

Smooth Champagne demonstrates spatially distributed activity in the appropriate 

corresponding locations. Performance of benchmarks algorithms on this dataset can be 

found in [14].

V. Discussion

This paper derives a novel and robust Empirical Bayesian algorithm for accurate 

reconstruction of distributed source activity from MEG and EEG data. The algorithm, which 

we refer to as Smooth Champagne, readily handles a variety of configurations of distributed 

brain sources under high noise and interference conditions, especially correlated distributed 

sources with complex spatial extent - a situation that commonly arises even with simple 

imaging tasks. Smooth Champagne is based on a principled cost function which maximizes 

a convex lower bound on the marginal likelihood of the data and resulting update rules are 

fast and convergent. The algorithm displays significant theoretical and empirical advantages 

over many existing benchmark algorithms for electromagnetic brain imaging. We compared 

Smooth Champagne’s performance with benchmark algorithms such as Beamformer, 

sLORETA, MxNE, Champagne and MSP on both simulated and real data and demonstrated 

its superiority. Simulations of MEG and EEG data explored algorithm’s performance for 

complex source configurations with highly correlated time-courses and high levels of noise 

and interference. Smooth Champagne outperforms all benchmarks, including Champagne, 

for distributed source clusters as it demonstrates more accurate spatial extent reconstructions 

regardless of SNR or source correlations. In general it is difficult to evaluate localization 

algorithm performance with real data since the ground truth is unknown. For this reason, we 

chose real data sets that have well-established patterns of brain activity. Performance on 

these real MEG and EEG data sets demonstrates the superior ability of Smooth Champagne 

to localize real brain distributed brain activity across a variety of tasks (SEF, AEF, AV, and 

face-Processing) when compared to benchmarks.

Smooth Champagne builds upon our prior framework of Champagne for sparse brain source 

reconstructions with two key ideas: local spatial kernel smoothing and hyperparameter tiling 

both of which contribute to algorithm performance. Kernel size and tile/region size appear to 

independent affect performance. Our analysis suggests that for optimal performance the size 

of the smoothing kernel and the tile/region size should match the true size of the clusters. If 

the kernel width exceeds the true cluster size, then some deterioration in performance is 
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observed. If the tile/region size exceeds the true cluster size, performance also deteriorates. 

However, in real data the true cluster sizes are unknown. Across simulations, we find that 

with a setting for the kernel and tile size around 10 voxels, i.e. the number of regions is 10% 

of the number of voxels in the lead field, we are able to accurately reconstruct distributed 

sources that are even larger in size. In principle, the kernel width parameter of the smoothing 

kernel and the tile/region size of the hyperparameter tiling can be estimated from data by 

computing the model evidence as a function of kernel width and the tile/region size, we 

relegate this effort to future work.

Related approaches for estimating distributed sources have used Type-1 penalized likelihood 

methods. Many publications have examined mixed-norm (MxNE) optimization for MEG, 

typically L1 priors to impose sparsity in space and L2 priors are used to impose smoothness 

in time [2], [3], [27], [28], [29], [30], [31]. For example, Haufe et al. [27] proposed Focal 

Vector Field Reconstruction (FVR) by defining the regulating penalty function, which 

renders the solutions unique, as a global l1-norm of local l2-norms. In contrast, Zhu et al. 

[28] proposed variation and wavelet based sparse source imaging (VW-SSI) to better 

estimate cortical source locations and extents, which utilizes the L1-norm regularization 

method with the enforcement of transform sparseness in both variation and wavelet domains. 

Extensions have also been proposed for time-frequency sparsity decompositions [3]. The 

latent parameters of both of these approaches are often estimated by a Second-Order Cone 

Program (SOCP). More recently, iterative reweighting strategies (IRES) have been used to 

penalize locations that are less likely to contain any source and can provide reasonable 

information regarding the location and extent of the underlying sources [3], [32]. In contrast 

to these Type-I likelihood estimation methods, in this paper we use a Type-II likelihood 

estimation method. We have previously shown that Type-I likelihood methods which make 

use of non-factorial, lead-field and noise-dependent priors can be shown to have a dual with 

Type-II likelihood methods with comparable performance [33]. However, in general, as we 

have shown here, performance of Type-II likelihood estimation methods yields superior 

results.

In the future, the Smooth Champagne framework can be incorporated into related 

hierarchical algorithms that we have proposed recently, such as tree_Champagne [16], that 

combines voxel and region level inferences for mixed source configurations which may 

include both distributed and sparse brain sources. The region-based variance model in 

Smooth Champagne is different from other approaches in several ways [34], [35]. First, in 

contrast to Bayesian model averaging (BMA), which implements multiple variance models 

and then averages the individual primary current density (PCD) for each model using 

gradient descent methods, Smooth Champagne uses a single generative model for all sources 

and uses empirical Bayesian inference to learn the regions distribution using closed-form 

update rules and built-in model selection features [4]. Second, unlike greedy algorithms like 

those proposed in Babadi et al. and Friston et al. [34], [36], which are approximation to 

Bayesian inference and are highly sensitive to initialization and have the possibility of sub-

optimal solutions, our closed form solutions with principled cost functions that have 

convergence guarantees for Bayesian inference with no subspace selection or pruning. 

Finally, Smooth Champagne also has faster update rules based on convex-bounds on true 

marginal likelihood of the data [4].
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Future directions of our work are motivated by several further extensions of the current 

algorithm. First, all priors in Smooth Champagne are assumed to be Gaussian. However, the 

algorithm could easily be modified to incorporate additional sparse priors both across space, 

and especially across time. Even within a Gaussian scale mixture modeling framework it is 

possible to incorporate many sparse priors implicitly [37], [38] and we plan to explore 

algorithm performance for such non-Gaussian extensions. Further more the current 

algorithm makes no assumptions about temporal smoothness for source reconstructions. It is 

possible to include various forms of priors about temporal information within our framework 

of covariance component estimation. One such idea is to use temporal basis functions [39], 

and another is to use autoregressive models for source distributions over time. Such 

autoregressive models can also include spatiotemporal correlations both in source time-

courses and in the time-course of the background noise and interference in the data [40], 

[41], [42]. Another idea that we plan to pursue is to incorporate forward modeling errors by 

probabilistic modeling of the lead-field kernel within our framework, an approach similar to 

related to the following recent work [13], [43], [44].
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Appendix A

Derivation of the cost function

Here, we derive the expression for the cost function ℱ(Ω, Φ) shown in Eq. (10). Taking the 

logarithm of the marginal likelihood of the data p(Y|Ω), then we make the use of the form 

[20] (pp.244)

logp(Y Ω) = Ep(Z Y) log p(Y, Z Ω)
p(Z Y)

= Ep(Z Y)[logp(Y Z)] + Ep(Z Y)[logp(Z Ω)]

− Ep(Z Y)[logp(Z Y )] .

(A.1)

Substitution of Eqs. (4), (5) and (6) into Eq. (A.1) results in

logp(Y |Ω) = − 1
T ∑

t = 1

T
(y(t) − GZ(t))TΣε

−1(y(t) − GZ(t))

− 1
T ∑

r = 1, n ∈ ζr

R
∑
t = 1

T
zn t T ΩrI −1z t n

−log Σy ,

(A.2)

where Σy is the model data covariance matrix expressed as
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Σy = GΥ GT + Σε . (A.3)

Since log|Σy| is a concave function with respect to ϒ [4], we can find an auxiliary parameter, 

Φr(r = 1, …, R), that satisfies the relationship

− ∑
r = 1

R
tr ΦrIΥ r + Φ0 ≤ − log Σy , (A.4)

where, Φ0 is a scalar term [45] [46]. Then we define a cost function ℱ(Ω, Φ), such that

ℱ(Ω, Φ) = − 1
T ∑

t = 1

T
(y(t) − GZ(t))TΣε

−1(y(t) − GZ(t))

− 1
T ∑

r = 1, n ∈ ζr

R
∑
t = 1

T
zn t T ΩrI −1zn(t)

− ∑
r = 1

R
tr ΦrΩrI + Φ0 .

(A.5)

Eq. (A.4) guarantees that the relationship

ℱ(Ω, Φ) ≤ log p(Y Ω)), (A.6)

always holds. That is, the cost function ℱ(Ω, Φ) forms a convex lower bound on the 

logarithm of the marginal likelihood p(Y|Ω)). When we maximize ℱ(Ω, Φ) with respect to Ω 
and Φ, such Ω also maximizes the marginal likelihood.
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Fig. 1: 
A single MEG simulation example of the localization results with three clusters for six 

algorithms: Beamformer, sLORETA, MxNE, MSP, Champagne and Smooth Champagne. 

The ground truth location of clusters are shown for comparison. Only Smooth Champagne 

captures the true spatial extent of all the sources. In this configuration, the SNR, correlation 

of dipole activities within the cluster and between clusters are 10 dB, 0.9 and 0.9, 

respectively.

Cai et al. Page 19

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2: 
Simulation results of A′ metric with four different configurations. (A) Increasing cluster 

number; (B) Increasing cluster size; (C) Increasing SNR; (D) Increasing intra-cluster 

correlation. The results are averaged over 50 simulations at each data point and the error 

bars show the standard error.
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Fig. 3: 
Simulation results of the performance of the novel algorithm as a function of local 

smoothing kernel width and the tile size. We examine performance for reconstruction of 5 

clusters of different sizes (from 5–35 voxels per cluster). (A) Results of the performance as a 

function of increasing the width of the local smoothing kernel from 3 voxels to 121 voxels 

while the averaged tile size was maintained at 6 voxels. (B) Results of the performance as a 

function of average tile size ranging from 4–132 voxels per tile while the averaged 

smoothing kernel size was maintained around 7 voxels. The results are averaged over 50 

simulations at each data point and the error bars show the standard error.
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Fig. 4: 
A single EEG simulation example of the localization results with three clusters for six 

algorithms: Beamformer, sLORETA, MxNE, MSP, Champagne and Smooth Champagne. 

The ground truth location of clusters are shown for comparison. In this configuration, the 

SNR, correlation of dipole activities within the cluster and between clusters are 20 dB, 0.9 

and 0.9, respectively.
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Fig. 5: 
Sensory Evoked Field localization results. All six algorithms localize to somatosensory 

cortical areas. Here we set the threshold as half of the maximum value.
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Fig. 6: 
Auditory evoked field (AEF) results with four subjects for six algorithms: Beamformer, 

sLORETA, MxNE, MSP, Champagne and Smooth Champagne. The results from both 

Champagne and Smooth Champagne are shown in the last two columns, which outperform 

the other benchmark algorithms shown in the first to fourth columns.
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Fig. 7: 
Audio-Visual data localization results from Smooth Champagne. Smooth Champagne is able 

to localize a bilateral auditory response at 100 ms after the simultaneous presentation of 

tones and a visual stimulus. For bilateral auditory activity, the results of locations and time 

courses are shown in (A), (B). Smooth Champagne can localize an early visual response at 

150 ms after the simultaneous presentation of tones and visual stimulus shown in (C) and 

(D).
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Fig. 8: 
Face processing (EEG) localization results for five algorithms: Beamformer, sLORETA, 

MxNE, Champagne, and Smooth Champagne. The first row is the average power mapping 

from 0 ms to 400 ms, the second and third rows are for peak power activity at 100 ms and 

170 ms separately.
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Table 1

The Smooth Champagne Algorithm

1: Input sensor data y(t), leadfield matrix L.

2: Create the local smoothing kernel matrix H using Eq (3), calculate the new modified leadfield matrix using G = LH.

3: Set appropriate initial values to Ωr (r = 1,…, R), and ∑ε.

4: Compute Φr, and zn t , (n = 1,…, T) using Eq. (12) and Eq. (13).

repeat

 5: Update Ωr using Eq. (11).

 6: Update Φr, and zn t  using Eq. (12) and Eq. (13).

until The cost function Eq. (10) converges.

7: Derive the time course using Eq. (14), output s(t).
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