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Abstract
Computer vision systems (CVS) have been shown to be a powerful tool for the measurement of live pig body weight (BW) 
with no animal stress. With advances in precision farming, it is now possible to evaluate the growth performance of 
individual pigs more accurately. However, important traits such as muscle and fat deposition can still be evaluated only 
via ultrasound, computed tomography, or dual-energy x-ray absorptiometry. Therefore, the objectives of this study were: 
1) to develop a CVS for prediction of live BW, muscle depth (MD), and back fat (BF) from top view 3D images of finishing 
pigs and 2) to compare the predictive ability of different approaches, such as traditional multiple linear regression, partial 
least squares, and machine learning techniques, including elastic networks, artificial neural networks, and deep learning 
(DL). A dataset containing over 12,000 images from 557 finishing pigs (average BW of 120 ± 12 kg) was split into training 
and testing sets using a 5-fold cross-validation (CV) technique so that 80% and 20% of the dataset were used for training 
and testing in each fold. Several image features, such as volume, area, length, widths, heights, polar image descriptors, 
and polar Fourier transforms, were extracted from the images and used as predictor variables in the different approaches 
evaluated. In addition, DL image encoders that take raw 3D images as input were also tested. This latter method achieved 
the best overall performance, with the lowest mean absolute scaled error (MASE) and root mean square error for all traits, 
and the highest predictive squared correlation (R2). The median predicted MASE achieved by this method was 2.69, 5.02, and 
13.56, and R2 of 0.86, 0.50, and 0.45, for BW, MD, and BF, respectively. In conclusion, it was demonstrated that it is possible 
to successfully predict BW, MD, and BF via CVS on a fully automated setting using 3D images collected in farm conditions. 
Moreover, DL algorithms simplified and optimized the data analytics workflow, with raw 3D images used as direct inputs, 
without requiring prior image processing.
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Introduction
The world human population is forecasted to reach 8.6 billion 
people by 2030 and, following current trends, the overall 
consumption of meat will increase substantially as low-
income countries have more than tripled their overall meat 
consumption in recent years (FAO, 2018). To meet this expanding 
demand, farmers are faced with the challenge of increasing 
productivity while maintaining adequate animal welfare and 
reducing the use of human-edible crops as well as the waste 
produced (FAO, 2017). In this context, changes to the current 
livestock production systems for more efficient monitoring 
animal welfare and productivity are highly desirable.

Precision livestock farming proposes to address this challenge 
via the use of sensors, such as activity trackers and cameras 
(Berckmans, 2017; Benjamin and Yik, 2019). The use of computer 
vision systems (CVS) is particularly appealing since they provide 
nondisruptive monitoring of the animals and high-throughput 
measurements of traits of interest. In pig production, the 
literature presents applications for tracking behavior (Kashiha 
et al., 2013; Maselyne et al., 2017), identification of leg and back 
disorders (Stavrakakis et al., 2014), measurement of pig weight 
(Kongsro, 2014; Pezzuolo et  al., 2018; Fernandes et  al., 2019), 
among others.

Automatic measurement of weight on live pigs can be an 
extremely useful management tool for assessment of individual 
growth and to monitor group homogeneity, ultimately helping 
farmers with more efficient problem detection and optimal 
management decision. Another important application of 
monitoring pig growth is for precision feeding, i.e., precision 
adjustment of feed composition and quantity delivered for 
a group or individual pigs (Pomar and Remus, 2019). With 
precision feeding, farmers can reduce production costs, protein 
intake, excretion, and greenhouse gas emissions.

Nevertheless, for an optimal balance of rations, measurements 
of animal body composition can be even more important 
than just live body weight (BW). Currently, traits related to 
body composition, such as lean muscle and fat deposition, 
are occasionally measured via ultrasound, dual-energy x-ray 
absorptiometry (DXA), or computed tomography (Scholz et al., 
2015; Carabús et  al., 2016). Even though DXA and computed 

tomography produce the most accurate measurements and 
bring more information on body composition (Font-i-Furnols 
et  al., 2015; Lucas et  al., 2017), these methods are generally 
expensive and require the animal to be anesthetized, making 
them impractical in commercial operations. On the other hand, 
ultrasound scanners are portable and do not require pigs to be 
anesthetized. Therefore, DXA and computed tomography are 
mainly used for research purposes, while ultrasound is used 
mostly by breeding companies, as a mean to evaluate candidate 
breeders.

CVS has also been proposed for the estimation of body 
composition of live animals, with the advantage of allowing 
indirect measurements of the pigs. However, there are only a few 
studies on the use of CVS for measurement of muscle and fat 
composition in live pigs, using either features extracted from 2D 
images or reconstruction of the body shape via computer stereo 
vision (Wu et al., 2004; Doeschl-Wilson et al., 2005). From these 
early studies, only Doeschl-Wilson et al. (2005) reported results 
for prediction of body composition, with predictive squared 
correlation (R2) ranging from 0.19 to 0.31 for fat, and from 0.04 
to 0.18 for lean muscle. Regarding muscle deposition, recently, 
Alsahaf et al. (2019) used Kinect cameras for the estimation of 
muscle score, which is an indirect and subjective measurement 
of pig muscularity traditionally scored by a trained evaluator on 
a scale from 1 to 5. By using a gradient tree boosting classifier, 
the authors achieved an accuracy ranging from 0.30 to 0.58. Even 
though these are promising results, better predictions should be 
achieved before CVS can be successfully used for the prediction 
of muscle and fat deposition on commercial pig farms.

In this context, the objectives of this study were: 1) to develop 
a CVS for prediction of live BW, muscle depth (MD), and back fat 
(BF) from top view 3D images of finishing pigs and 2) to compare 
different predictive approaches, including multiple linear (ML) 
regression, partial least squares (PLS), and machine learning 
techniques, such as elastic networks (EN), artificial neural 
networks (ANN), and deep learning (DL) image encoder.

Material and Methods
The datasets of video recordings and measurements of BW, MD, 
and BF were supplied by the Pig Improvement Company (PIC, 
a Genus company, Hendersonville, TN). The data collection 
followed rigorous animal-handling procedures that comply with 
federal and institutional regulations regarding proper animal 
care practices (FASS, 2010).

Animals and data acquisition

A total of 557 finishing pigs were used, including boars and gilts 
from three different PIC commercial lines with average BW of 
120  kg (± 12.4  kg) and an average age of 151  ± 3 d, all on the 
same multiplier farm and raised under standard commercial 
settings. Pigs from the same pen were moved to a specific area 
for evaluation, where they had their identification tag read 
using an RFID (radio frequency identification) sensor, followed 
by measurements of BW, MD, BF, and videos recorded for each 
pig. For the measurement of the traits of interest, groups of pigs 
that were housed together were moved to a management area 
that was usually used for the collection of BW and ultrasound 
measurements. The video recordings from the top view of the 
pigs (Figure  1A) were acquired using a Microsoft Kinect V2 
(Microsoft, Redmond, WA, USA) and automatically processed 
in MATLAB (The MathWorks, 2017) for feature extraction, as 
previously described in Fernandes et al. (2019). Measurements 

Abbreviations

ANN artificial neural networks
BF back fat
BW body weight
CV cross-validation
CVS computer vision system
DL deep learning
DXA dual-energy x-ray absorptiometry
EN elastic networks
LM linear regression model
MAE mean absolute error
MASE mean absolute scaled error
MD muscle depth
ML multiple linear regression
PFD polar Fourier descriptors
PIC Pig Improvement Company
PLS partial least squares
PSD polar shape descriptors
R2 squared correlation
ReLU rectified linear unit
RMSE root mean square error
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of BW were taken with an EziWeigh5i (Tru-Test Inc., Mineral 
Wells, TX, USA) electronic scale that has a measured standard 
error of ±1% of the weight load. The MD (mm) and BF (mm) were 
measured using an Aloka SSD 500 ultrasound device (Hitachi-
Aloka, Tokyo, Japan) equipped with a 3.5-MHz, 12-cm linear 
probe. The measurements were collected by placing the probe 
perpendicular to the loin at the 10th intercostal space. The data 
acquisition was performed in the course of 3 mo, from February 
to April 2016, and all data were collected by the same team of 
trained professionals; Table 1 presents the descriptive statistics 
of the traits measured.

Image processing and feature extraction

From each video recording, images from the pigs were extracted 
along with their respective features. This process was completely 
automated with the video recordings emulated on a virtual 
Kinect camera via the Kinect for Windows SDK v2.0 (Microsoft, 
2014) and a CVS for processing the video feed initialized on an 
independent MATLAB routine. The connection between both 
instances was performed using a custom encapsulation of 
the Kinect for Windows SDK on a MATLAB MEX following the 
directions in the Kin2 toolbox (Terven and Córdova-Esparza, 
2016). The CVS used for video processing and extraction of 

suitable images and their respective image features corresponds 
to a library of custom codes developed by the authors in MATLAB 
(Release 2017b; The MathWorks, 2017). This CVS is a combination 
of image processing and segmentation steps for the selection of 
frames with a well-positioned pig and subsequent removal of 
its head and tail as well as background noise from the images 
(Figure 1C and D). The algorithm then saves the original selected 
images, along with the segmented ones and the respective 
extracted features; a more detailed description of this algorithm 
can be found in Fernandes et  al. (2019). Since the amount of 
time each pig stayed under the 3D camera was not the same 
and the images were selected automatically, multiple images 
were selected for each animal resulting in multiple image 
measurements, while only one direct measurement of BW, MD, 
and BF was acquired for each animal.

In the current study, the features extracted from the images 
were: 1) body measurements from the pigs, including apparent 
volume (V), surface area (A), length (L), heights (H), and widths 
(W) collected at 11 equidistant points along the animal’s back, 
and eccentricity (E); 2)  360 equidistant measurements from 
the polar shape contour of the top view image; and 3)  the 
corresponding 360 Fourier descriptor features from the same 
polar shape contour. The body measurements were extracted 

Figure 1. Representative fluxogram of the image acquisition and processing pipeline: (A) setup of the 3D camera; (B) unprocessed depth image; (C) thresholded depth 

image, selected pig area highlighted; (D) identification of pig shoulder and rump, and removal of head and tail; (E) the PSD of the pig contour; and (F) processed pig 

body for measurements extraction. 

Table 1. Descriptive statistics for BF, MD, and live BW of the 618 finishing pigs evaluated 

Trait Mean Median Standard deviation Min Max Interquartile interval Coefficient of variation 

BF, mm 6.03 5.60 1.47 3.00 10.90 1.60 0.24
MD, mm 65.07 65.00 6.19 48.20 89.40 8.00 0.10
BW, kg 119.97 119.50 12.43 83.00 156.50 16.62 0.10
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from the 3D images (which is a map of the pixel distance to 
the camera) and were converted to the values on the metric 
scale by using the intrinsic focal length (f) from the Kinect 
depth camera used. The f was used for estimation of the image 
magnification factor (m) in each pixel as m = f/d, where d is 
the distance in mm from the point to the camera plane. From 
m, the pixel area (ap) in mm was calculated as ap = 1�m, and 
the total area of the pig calculated as the sum of ap. Similarly, 
the volume of a pixel is then vp = ap × hp, where hp is the pig 
height at the pixel p on the back of the pig. The pig volume was 
calculated as the sum of pixels’ volumes. The pig eccentricity 
was estimated as the ratio between the foci and the major 
axis of the ellipsis that has the same major and minor axis as 
the pig area. The polar shape descriptors (PSD) were measured 
as the distance from the centroid (xc, yc) of the pig to points on 

its boundary contour as PSDt =
»

(xc − xt)
2
+ (yc − yt)

2, where 

the point (xt, yt) is the coordinate of the pig boundary at the 

degree t (Figure 1 E). The polar Fourier descriptors (PFD) were 
the real values from the Fourier transform of the pig contour 
PSD (Ostermeier et al., 2001; Zhang and Lu, 2002). 

Statistical analysis

Alternative approaches for the prediction of BW, MD, and BF 
were evaluated. The predictive performance of each approach 
was assessed using a 5-fold cross-validation (CV) technique. 
Thus, the processes described below were repeated five times, 
in which the dataset was split into training (80% of the pigs) and 
validation (20% of the pigs) sets in each run of the CV.

The criteria used to compare these models were the mean 
absolute error (MAE), mean absolute scaled error (MASE), root 
mean square error (RMSE), and the R2. The models evaluated 
can be divided into two groups: 1) models that used as predictor 
variables the metrics extracted from the image processing step 
(ML regression, PLS, EN regression, and ANN) and 2) DL image 
encoder models, which used the raw 3D images as model input. 
A  description of each of these modeling approaches and the 
specific predictive techniques considered is provided below.

Approaches using metrics from images as predictor 
variables

A total of 746 metrics were extracted from the images, including 
26 biometrics, such as volume (V), area (A), length (L), eccentricity 
(E), 11 heights (H), and 11 widths (W), in addition to 360 PSD and 
360 PFD image descriptors. These features, with and without 
information on pig sex and genetic line, were tested as predictor 
variables on the models that follow, in order to evaluate the 
importance of including sex and line information along with 
the image features. Since each pig had several images acquired 
but only one value of BW, MD, and BF, the truncated median at 
the third quartile of each predictor variable was calculated, as 
described in Fernandes et al. (2019). Thus, the final dataset used 
in this section had just one value (the truncated median) per 
pig for each of the features extracted from the available images.

Multiple linear regression
The ML regression models were implemented in R (R Core Team, 
2017) using the MASS package (Venables and Ripley, 2002). To 
avoid overfitting a stepwise approach was used for variable 
selection using the stepAIC function from the MASS package, 
with the Bayesian information criteria for model selection. For 
each fold of the CV, the ML models were fitted on the training 

set and had their predictive performance evaluated on the 
validation set.

Partial least squares
The PLS models were implemented using the pls package in R 
(Mevik and Wehrens, 2007). For this analysis, a 10-fold CV on the 
training data was performed for selection of the most significant 
latent variables; therefore, it was performed five times, once for 
each training set of the original 5-fold CV. The selection of the best 
set of latent variables was performed using the randomization 
strategy (a.k.a. the van der Voet test) with a 5% significance level. 
This strategy removes latent variables from the model that reached 
the absolute optimum at the CV until there is no significant 
performance deterioration at the specified significance level.

Elastic network regression
The EN were implemented using the glmnet package in R (Friedman 
et  al., 2010). In the current work, the EN evaluated were ML 
regressions with a mixture of the L1 (lasso) and L2 (ridge) penalties, 
in which the mixture of the two regularizations is controlled by the 
hyperparameter α, which ranges from 0 (a full ridge penalty) to 1 
(lasso penalty). A grid of six equidistant values of α from 0 to 1 was 
tested. Apart from α, the EN has an additional parameter λ that 
controls the shrinkage magnitude of the regression coefficients. 
Thus, similarly to what was performed for the PLS analysis, for 
each value of α, a 10-fold CV was performed on the training set to 
obtain the value of λ that minimized the CV mean squared error 
(λ min). The search for λ min was done according to Friedman et al. 
(2010), using a pathwise coordinate descent with a warm start to 
generate a set of 100 values of lambda to be evaluated.

Artificial neural networks
ANN were implemented using the H2O platform for machine 
learning available as an R package (LeDell et al., 2019). ANN, also 
known as a multilayer perceptron, is a class of machine learning 
algorithms with an arbitrary number of features that have the 
purpose of learning nonlinear combinations of the input variables 
in order to predict a given output (Murphy, 2012). In ANN models, 
there are many possible parameters to be controlled and tuned, 
such as the number of layers and nodes in each layer, activation 
function, loss function, regularization parameters (such as L1 and 
L2 penalizations), and dropout rate. Therefore, one of the biggest 
challenges in fitting an ANN is to define its architecture. In the 
present study, the ANN models evaluated differed in: 1) the number 
of hidden layers and nodes, from a single-layer perceptron to at 
most three hidden layers with the number of nodes in each layer 
ranging from 5 to 100; 2) the activation function, which could be a 
rectified linear unit (ReLU) or max-out (Goodfellow et al., 2013), both 
with a constraint on the squared sum of the incoming weights that 
could be from 5 to 100 and a dropout rate of the input and hidden 
layer nodes from 20% to 80% of the nodes in each layer; 3)  the 
loss functions evaluated were either a Gaussian loss (in this case, 
the mean squared error) or the Huber loss as a robust alternative 
(Hastie et al., 2009); 4) the inclusion of the L1 and L2 regularizations 
with their specific shrinkage parameters; and 5) the learning rate 
and time decay of the AdaDelta adaptive learning algorithm.

The search on the model space for possible architectures 
was conducted using a random discrete search on 500 candidate 
models, from which the 10 best candidate models were later 
fine-tuned. All the models were fitted on the training set and 
subsequently had their predictive performance evaluated on the 
validation set.
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Deep learning image encoder

The DL image encoder models were implemented in Python 
(version 3.7) using the TensorFlow machine learning library 
(Abadi et  al., 2015). The basic architecture of the image 
encoder models was a feed-forward multilayer perceptron. 
This architecture is similar to the encoder block of state of the 
art segmentation convolution neural networks (Poudel et  al., 
2019), which has been shown to be fast and has good predictive 
performance for image segmentation tasks.

The developed network architectures were composed of 
an input layer, encoder blocks, fully connected layers, and an 
output layer. The input layer was an array containing the 3D 
image of a pig and the focal length of the camera that generated 
the image (no information on pig sex and line was included). 
Each encoder block was composed of a convolutional block, 
followed by a max-pooling layer with a 2 by 2 window and a 
strider of the same size. Each convolutional block comprised of a 
convolutional layer with a 3 by 3 window, a batch normalization 
layer, and a ReLU activation function layer. The fully connected 
layers had L1 and L2 regularization (λ of 0.01), a dropout rate of 
50%, and leaky ReLU activation function (α = 0.1).

The DL architectures tested diverged mainly on the size of the 
input image (ranging from 0.1 to 0.5 of the original image size), the 
number of encoder blocks (ranging from 1 to 5), and the number 
of nodes on the fully connected layers (ranging from 4 to 64).

Results

Descriptive statistics of image features

Figure  2 shows the correlations between biometric 
measurements and the three traits of interest (BW, BF, and MD). 
Overall, BW was found to be highly correlated with volume and 
area and positively correlated with BF and MD and most of the 

biometric measurements, except for eccentricity, with which it 
showed a low negative correlation. MD presented a low positive 
correlation with most of the other traits, with the highest 
values being with BW, V, and A. BF also presented low positive 
correlations with most of the other traits, with the highest value 
being with BW. In addition, the biometric measurements were 
mostly positively correlated with each other; notably, there was 
a higher correlation within widths, and within heights. The 
exception was for eccentricity, which presented mostly negative 
correlations with the other measurements and traits, except 
with MD and length.

The correlations between BW, BF, MD, and the PSD are 
presented in Figure  3A. PSD presented, in general, higher 
correlations with BW than with MD or BF. Also, the correlation 
between PSD and BW or MD followed the same pattern, with 
higher correlations with PSD 1 to 25, 160 to 200, and 335 to 360. 
However, for the correlations between PSD and BF, this pattern 
was shifted. Overall, there was a high correlation between 
neighboring PSD with two big blocks of high correlated PSD, 
one from 30 to 160 degrees, and another from 210 to 335, and 
two small blocks of high positively correlated PSD, one from 165 
to 209 degrees and another from 345 going back to 20 degrees. 
Regarding the correlations between the PFD and BW, MD, and 
BF (Figure 3B), there was a more complex pattern with shorter 
wavelength if compared with PSD, with some PFD having a high 
positive correlation with the traits of interest. Also, there was a 
similar trend for the correlations between PFD and both MD and 
BW, and this trend was inverted for BF.

Model performance for prediction of BW, MD, and BF

Table  2 presents the results of MAE, RMSE, and R2 for the 
prediction of BW, MD, and BF for the various modeling strategies 
evaluated. For BW, DL presented better predictive performance 
with an MAE of 3.26 kg, which is on average 30% smaller than 

Figure 2. Correlations between BW, BF, MD, and the extracted biometric traits, such as volume (V), area (A), widths (W), heights (H), length (L), and eccentricity (E).
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the MAE achieved with the other modeling strategies, and an 
R2 of 0.86, the second largest being 0.75 for EN. The best DL 
architecture had an input image with 0.3 of the original size, 5 
encoder blocks, 64 nodes on the first fully connected layer, and 
32 on the second. For MD, the DL approach again achieved the 
best performance, with a median R2 of 0.51 and MAE of 3.33 mm, 
which was on average 28% smaller than the MAE achieved by 
the other models. The best DL architecture had an input image 
with 0.2 of the original size, 5 encoder blocks, 64 nodes on the 
first fully connected layer, and 32 on the second. Regarding BF, 
DL achieved the best predictive performance with a median R2 
of 0.45 and an MAE of 0.88 mm. Moreover, for BF, all the other 
approaches did perform very poorly when compared with 
DL. The best DL architecture had an input image with 0.2 of 

the original size, 5 encoder blocks, and 32 nodes on both fully 
connected layers.

Discussion
In the current work, we developed an automated CVS for the 
prediction of body composition (MD and BF) together with 
the improvement of the predictions of BW of pigs on barn 
conditions from past studies (Pezzuolo et al., 2018; Fernandes 
et al., 2019). Previous experimental results on the use of image 
features from 3D images of growing pigs for predicting BW 
have already shown the potential of CVS applications (Kongsro, 
2014; Condotta et al., 2018). There are many advantages of using 
3D images over 2D for the measurement of pig traits in barn 
conditions, such as easier image processing and removal of 
background, with less interference of background noise and 
light conditions (Kashiha et  al., 2014; Kongsro, 2014), and the 
possibility for measurement of traits, such as body volume, 
shape, and gait analysis (Stavrakakis et  al., 2014; Fernandes 
et  al., 2019). However, most of those previous applications 
required some level of human processing of the images or 
manual measurement of the image features of interest. To the 
best of the authors’ knowledge, only Kashiha et al. (2014) and 
Fernandes et al. (2019) applied fully automated approaches for 
the prediction of BW in pigs. Also, most of the previous studies 
presented predictions for growing animals from different ages, 
with BW ranging from 15 to 50 kg (Kashiha et al., 2014) and 20 
to 120 kg (Kongsro, 2014; Condotta et al., 2018); only Fernandes 
et  al. (2019) presented results for finishing pigs (BW of 120  ± 
12.4  kg). The predictive performance reported in previous 
studies ranged from 2% to 4% of the animals’ BW, while in 
the current study, it was of 2.7%, which is similar to what was 
observed in previous studies with the advantage that DL does 
not require any image preprocessing.

Table 2. Estimated CV MAE, MASE, RMSE, and R2 for BW, MD, and BF 
for the best multiple LM, PLS, EN, ANN, and DL image encoder

Trait Model MAE MASE RMSE R2

BW, kg LM 4.81 4.00 6.61 0.73
PLS 4.62 3.85 6.48 0.74
EN 4.55 3.79 6.39 0.75
ANN 5.00 4.16 6.83 0.70
DL 3.26 2.69 4.56 0.86

MD, mm LM 4.10 6.30 5.16 0.35
PLS 4.36 6.67 5.37 0.30
EN 4.12 6.32 5.12 0.31
ANN 4.61 7.07 5.77 0.21
DL 3.28 5.02 4.34 0.50

BF, mm LM 1.15 18.83 1.43 0.12
PLS 1.13 18.95 1.40 0.10
EN 1.08 18.00 1.35 0.16
ANN 1.20 19.69 1.52 0.10
DL 0.80 13.56 1.11 0.45

Figure 3. Correlations between BW, BF, MD, and the PSD extracted as the distances of the pig contour to the centroid at each degree (A). Correlations between BW, BF, 

MD, and the PFD transform of the PSD (B).
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DL approaches have been successfully applied in many 
computer vision tasks in recent years, surpassing many 
traditional image analysis techniques (Goodfellow et al., 2016). 
A  recent example was the use of DL for separation of fish 
body from fins and background from images acquired under 
challenging light conditions (Fernandes et al., 2020), achieving 
scores of intersection over union of 99, 90, and 64 for background, 
fish body, and fish fins, respectively. The main advantage of DL 
over the other techniques evaluated here is that there is no 
need for splitting the prediction into many steps, such as image 
processing, feature extraction, and finally prediction. Therefore, 
the model automatically searches for the best encoder features 
and weights that reduce the model loss (e.g., the mean squared 
error for Gaussian models). Moreover, it is important to notice 
that the input for the DL approach was only the images, while for 
the other approaches the input included not only the features 
extracted from the images but also sex and line information. 
Nevertheless, there was no significant improvement in the 
predictions for BW when considering these extra variables. To 
evaluate even further the impact of having animals from all 
three lines in the training, the selected DL architecture was 
retrained using only the data from two lines as a training set 
and validating the model in the remaining line (repeating this 
process three times). Moreover, for a fair comparison with a 
constant training set size, the DL approach was retrained also 
using a 3-fold CV with all three lines together (Table  3). This 
new set of analyses showed that, for BW, there was a decrease 
in model performance when training the model on two lines 
and validating it in another one. This result reinforces the 
hypothesis that the DL is accounting for differences across lines 

when animals from the three different lines are included in the 
training set.

Pig carcass composition is of great importance for farmers 
since packing plants tend to reward them according to lean 
muscle percentage (Engel et  al., 2012). Moreover, information 
on individual pig growth and muscle and fat deposition can 
be used by farmers to improve feeding strategies, as feed costs 
account for approximately 60% to 70% of total pig production. 
Additionally, there is an increasing concern on fattening pigs 
emissions of phosphorus and nitrogen (Cadéro et  al., 2018), 
and a well-balanced feed can reduce such costs and emissions. 
Therefore, the constant monitoring of pigs’ growth and body 
composition can be of utmost importance in the precision 
feeding of pigs, improving group homogeneity, reducing costs, 
as well as emissions of greenhouse gases, phosphorus, and 
protein intake and excretion (Pomar and Remus, 2019).

Imaging techniques such as visual image analysis, 
ultrasound, DXA, and computed tomography have been 
traditionally used in the evaluation of pig carcass composition 
within research conditions, with DXA and computed 
tomography presenting an overall higher accuracy than 
other techniques (Carabús et  al., 2016). Previous studies 
evaluating ultrasound, computed tomography, and slaughter 
measurements of MD and BF showed that ultrasound 
measurements have correlations of 0.6 and 0.56 with the 
carcass measurements of MD and BF, respectively, while 
computed tomography has correlations of 0.48 to 0.67 for 
fat and 0.91 to 0.94 for lean meat (Font-i-Furnols et al., 2015; 
Lucas et al., 2017). However, there is little information in the 
literature regarding the use of CVS for the evaluation of live 

Table 3. Predictive MAE, MASE, RMSE, and R2 for the DL architecture for BW, MD, and BF for the three genetic lines evaluated on different 
validation schemes

Trait Validation Schemes1 Line MAE MASE RMSE R2

BW, kg Line 1 4.86 4.22 6.34 0.68
Line 2 4.27 3.57 6.05 0.67
Line 3 4.33 3.38 5.40 0.71

3F-CV 1 4.26 3.70 5.43 0.78
3F-CV 2 3.99 3.35 5.70 0.68
3F-CV 3 3.58 2.80 4.44 0.81
5F-CV 1 3.46 3.02 4.74 0.81
5F-CV 2 3.29 2.77 4.95 0.78
5F-CV 3 2.78 2.17 3.58 0.87

MD, mm Line 1 4.17 6.84 5.22 0.13
Line 2 5.20 7.63 6.43 0.05
Line 3 4.04 6.17 4.95 0.10

3F-CV 1 4.45 7.08 5.40 0.10
3F-CV 2 5.15 7.75 6.44 0.04
3F-CV 3 4.04 6.17 5.00 0.08
5F-CV 1 3.39 5.50 4.38 0.36
5F-CV 2 3.57 5.27 4.83 0.39
5F-CV 3 3.04 4.62 4.00 0.41

BF, mm Line 1 0.97 15.15 1.22 0.20
Line 2 1.22 20.47 1.55 0.03
Line 3 1.20 19.80 1.47 0.06

3F-CV 1 1.00 16.43 1.22 0.22
3F-CV 2 1.12 18.69 1.41 0.19
3F-CV 3 1.11 18.03 1.39 0.17
5F-CV 1 0.81 13.16 1.05 0.41
5F-CV 2 0.85 14.19 1.15 0.47
5F-CV 3 0.89 14.39 1.21 0.36

1Retaining one line for validation (Line), a 3-fold (3F-CV), and a 5-fold (5F-CV) CV.
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pig lean muscle and fat composition. The only other study 
found that evaluated the use of features from image analysis 
for the prediction of pig muscle and body fat composition 
(Doeschl-Wilson et al., 2005) reported predicted R2 of 0.31 and 
0.19 for fat and 0.04 and 0.18 for prediction of lean on the 
foreloin and hindloin regions, respectively. In the same study, 
higher predictive accuracy was observed when including other 
sources of information, such as sex, BW, and BF. In the current 
study, it was not observed an improvement in the predictions 
when considering sex or line information. Moreover, the DL 
approach (which takes as input only the 3D image) presented 
MAE, MASE, and R2 for MD of 3.28  mm, 5.02%, and 0.50, 
respectively. Also, the median MAE, MASE, and R2 of the same 
method for BF were, respectively, of 0.84 mm, 13.62%, and 0.45. 
These results represent an interesting improvement in the 
application of CVS to the prediction of body composition in 
live finishing pigs. When comparing the effect of training size, 
the results show a decrease in performance for both MD and 
BF that followed the decrease in training dataset size from the 
5-fold CV to the 3-fold CV scheme (Table 3). Also, the decrease 
was steeper for MD, for which the R2 went from around 0.39 to 
0.07, while for BF, it went from 0.41 to 0.19. This result showing 
the importance of training size for DL is in accordance 
with what has been seen in other studies. As an example, 
Passafaro et  al. (2020) evaluated the performance of DL and 
other methods on the genome-enabled prediction of BW in 
broilers and observed an increasing model performance as 
the training set size increased. The results from this and the 
previous work suggest that an increase in performance of the 
DL may be achieved with a bigger and richer dataset. Moving 
from the 3-fold CV (with all three lines) to the validation on 
line, a further decrease in performance was observed for BF, 
but for MD, the results of the validation on the lines were very 
similar to the 3-fold CV setting.

The BF and MD from the ultrasound measurements were 
virtually uncorrelated between themselves on this dataset. 
Nonetheless, both were positively correlated with BW. Therefore, 
one could question if the predictive approaches developed in 
this study could be better than using only BW for the prediction 
of MD or BF. By fitting a linear regression of MD on BW, we found 
predictive MAE of 4.84 mm, RMSE of 6.04, and R2 of 0.17, which 
is worse than the predictive accuracy of all the approaches 
evaluated. Similarly, for BF, we found higher values of MAE 
(1.29 mm) and RMSE (1.53 mm), and lower R2 (0.14) than what 
was observed for most of the approaches evaluated. Thus, even 
though BW is positively correlated with MD and BF, the DL is 
ultimately accounting for more information than only using BW 
as a predictor variable.

Regarding the correlations between BF or MD with the 
measurements extracted from the images, it is interesting to 
notice that they were generally mostly opposite. This trend 
was observed for length, widths, and the PSD. BF showed a 
higher correlation with the central PSDs measured around 
225 to 300 degrees, while BW and MD had higher correlations 
with PSDs 1 to 25 and 335 to 360  degrees. Interestingly, the 
correlations observed are in accordance with the results from 
Peñagaricano et al. (2015), who investigated phenotypic/genetic 
causal networks of muscle and fat deposition in pigs. In their 
study, an antagonistic relationship existed between fat and 
muscle deposition, with BF having a negative causal effect on 
loin depth.

In the current study, single-trait models were developed 
for each trait of interest. Obviously, any field application of the 
current models would need to deploy at least three different 

predictive models, one for each trait. However, since there are 
patterns of association among the three traits, a future research 
direction would be to evaluate the predictive performance 
of models developed for the joint prediction of these traits. 
Another possible development would be using other methods 
for measurement of muscle and fat composition as ground 
truth (i.e., prediction targets) instead of ultrasound. Such 
measurements could be from DXA and computed tomography, 
which has been proven to provide more accurate measurements 
of muscle and fat composition, or even from direct carcass 
measurements.

In conclusion, a DL model using the raw 3D images as input 
provided higher prediction accuracy for BW, MD, and BF compared 
with the other methods evaluated. It was demonstrated that it 
is possible to predict MD and BF via CVS in a fully automated 
setting using 3D images from farm conditions, without the need 
for preprocessing images in steps such as image segmentation 
and feature extraction. Such finding is a key factor for optimizing 
data analysis workflows in CVS, where computational resources 
need to be efficiently used. Nevertheless, there is still room 
for improvement regarding the predictions of MD and BF, and 
additional research in this area is warranted.
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