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Abstract
Purpose of Review Omics-based technologies were suggested to provide an advanced understanding of obesity etiology and its
metabolic consequences. This review highlights the recent developments in “omics”-based research aimed to identify obesity-
related biomarkers.
Recent Findings Recent advances in obesity and metabolism research increasingly rely on new technologies to identify mech-
anisms in the development of obesity using various “omics” platforms. Genetic and epigenetic biomarkers that translate into
changes in transcriptome, proteome, and metabolome could serve as targets for obesity prevention. Despite a number of
promising candidate biomarkers, there is an increased demand for larger prospective cohort studies to validate findings and
determine biomarker reproducibility before they can find applications in primary care and public health.
Summary “Omics” biomarkers have advanced our knowledge on the etiology of obesity and its links with chronic diseases. They
bring substantial promise in identifying effective public health strategies that pave the way towards patient stratification and
precision prevention.
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Introduction

The obesity pandemic has emerged as a leading global public
health threat of the twenty-first century increasingly spreading
across both developed and developing countries with the most
vulnerable and socially disadvantaged population groups be-
ing most affected [1, 2]. Despite the growing recognition of

the problem, obesity prevalence has nearly tripled since 1975
affecting billions of people around the world. According to
estimates of the World Health Organization (WHO), in 2016,
1.9 billion people (40% of the world population) were over-
weight, and of these, over 650 million (13% of the world
population) were obese [3]. There is a worrying tendency of
climbing rates of morbid obesity, especially among children
[4].

Long considered a merely intermediate chronic disease “risk
factor” or socially unacceptable behavior reflecting a lack of
willpower, obesity was recently recognized as a systemic chronic
disease related to excessive and abnormal accumulation of body
fat leading to adverse health effects. Obesity was defined as a
multi-causal chronic disease recognized across the life span
resulting from long-term positive energy balance with the devel-
opment of excess adiposity that over time leads to structural
abnormalities, physiological derangements, and functional im-
pairments [5]. Obesity increases the risk of developing numerous
comorbidities (e.g., type 2 diabetes, non-alcoholic fatty liver dis-
ease, cardiovascular disease, and certain types of cancer) and
increased premature mortality [6]. Despite its rapidly increasing
prevalence across the globe, obesity as a public health threat has
not yet received the same urgent attention as it has rapidly
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spreading infectious diseases. Until today, public health initia-
tives have not been able to reverse the accumulating burden of
obesity in any population [7]. So far, there is little evidence of
successful population-level intervention strategies that reduce the
high prevalence of obesity in populations across the globe effec-
tively. With most recently published statistics on the alarming
magnitude of the pandemic, the urgency of better strategies for
preventing and management of obesity has never been more
obvious. The pathogenesis of obesity is far more complex than
just an imbalance between energy intake and expenditure leading
to passive accumulation of excess weight. Recent research has
highlighted the importance of the gene-environment interactions
(epigenetic modifications), and complex and persistent hormon-
al, metabolic, neurochemical, and immune-inflammatory distur-
bances involved in obesity development [8]. To date, the specific
regulatory alterations and metabolic consequences of excess and
prolonged accumulation of body fat are not clearly understood.

Technology advancements during the last decades and the
paralleled “omics” revolution have brought forward an acceler-
ated research incentive and a new promise for an improved
understanding of the mechanisms explaining the complex biol-
ogy behind obesity [9]. The identification of novel “omics” bio-
markers could bring forward the knowledge on the etiology of
obesity and its pathophysiological links with chronic diseases
[10]. Furthermore, “omics” biomarkers could aid in getting a
refined characterization of obesity phenotypes and serve as tar-
gets for precision prevention and therapy [9, 11]. Intensified
efforts in “omics” research have been invested in the identifica-
tion of genes (genomics), messenger RNA (mRNA) and
microRNAs (miRNAs) (transcriptomics), proteins (proteomics),
and metabolites (metabolomics) [12]. Other “omics” platforms
that provide insights into the regulation of biological pathways
include epigenetic markers—mostly DNA methylation—of
gene expression and phenotype (epigenomics) and gut microbi-
ota (microbiomics). Different analytical platforms and bioinfor-
matic tools have been developed to explore the abundance of
generated data such as individual omics-based approaches, path-
ways, and/or network analyses. Newer trends include integrative
approaches such as multi-omics and trans-omics analyses [13]
(Fig. 1. “Omics” platforms in obesity research).

This narrative review presents an overview of the develop-
ment and recent highlights in published research on “omics”
biomarkers in obesity from human epidemiological studies in
understanding the etiology and pathophysiology of obesity
and its phenotypic characterization.

Search Strategy and Selection Criteria

References were identified by searches of PubMed with the
terms “obesity,” “adiposity,” “central obesity,” “body mass
index,” “waist circumference,” “waist-to-hip ratio,” “BMI,”
“WHR,” “body fat,” “fat mass” in combination with the terms

“omics,” “biomarkers,” “genome,” “genomics,” “genome
wide association study,” “GWAS,” “epigenome,”
“epigenomics,” “transcriptome,” “transcriptomics,”
“miRNA,” “metabolomics,” “proteomics,” “lipidomics,”
“g l y c ome , ” “g l y c om i c s , ” “mic r o b i ome , ” a nd
“microbiomics.” Bibliography lists of the identified publica-
tions were also screened to identify additional articles. The
search mainly focused on papers published from January 1,
2015 to March 31, 2020; however, previous review articles
and key publications that shaped the field were also included.

Genomics

Evidence on genetic origins of obesity emerged in the 1970s
with twin and adoption studies, providing first clues on genet-
ic heritability of obesity that has been estimated to be 40 to
70% [14]. In the 1990s, the discovery of leptin and leptin
receptor genes and the leptin-driven melanocortin 4 signaling
pathways prompted a sequence of genetic studies that uncov-
ered raremutations in single genes regulating appetite leading
to early-onset extreme obesity [15]. This rare monogenic form
of obesity is largely caused by high-risk genetic variations
involved in the control of appetite and energy maintenance
along the leptin-melanocortin pathway [15]. A number of var-
iants involved in monogenic obesity have been described in
the literature [15, 16]. However, for the majority of the popu-
lation, obesity is multifactorial and genetic susceptibility is
determined by the influence of multiple genetic variants [16,
17]. Genomic research has rapidly developed in the last two
decades due to the development of DNA-microarrays-based
techniques and next-generation sequencing (NGS) that allow
mapping of the generated sequences and analyses of
population-specific genetic traits [18]. With the emergence
of genome-wide association studies (GWASs), hundreds of
genetic variants involved in different biological pathways
(e.g., central nervous system control of food intake and energy
expenditure, food sensing and digestion, adipocyte differenti-
ation, and insulin signaling) have been associated with poly-
genic obesity [19–21]. A recent GWAS based on 700,000
individuals identified 941 near-independent single-nucleotide
polymorphisms (SNPs) associated with BMI [22]. Among
specific genes explored in the different GWASs, the FTO
and MC4R genes have emerged as major contributors to all
polygenic obesity phenotypes [17, 23]. Notably, the genes at
different loci seem to work in interaction with each other con-
verging on certain pathways and networks differentially
reflecting biological processes associated with fat accumula-
tion and fat distribution [24]. Despite the enormous number of
discovered loci, these collectively explained less than 3% of
the variance of BMI observed [22]. Part of the gap between
the explained genetic variance of BMI and the estimated her-
itability (40–70%) could be accounted for by the inability of
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GWASs to detect loci that are associated with traits whose
effect sizes are too small to reach genome-wide statistical
significance. To address this aspect, a number of studies
attempted to develop effective multi-locus profiles of genetic
risk for obesity, known as genetic risk scores (GRS).
However, these scores only showed a relatively low correla-
tion with measured BMI ranging from 0.01 to 0.12 [17].
Obtaining meaningful predictive power of a polygenic score
is dependent on the information from multiple common vari-
ants. As compared to scores that were based on a restricted
number of loci, a new GRS has been generated to predict BMI
based on 2.1 million common genetic variants measured in
306,135 individuals [25]. This GRS outperformed previous
scores from the GWAS that reached genome-wide statistical
significance in predicting obesity and weight gain [25]. For
instance, the 2.1 million-variant score showed a stronger cor-
relation with BMI (correlation coefficient 0.29) as compared
with the 141-variant score (correlation coefficient 0.13) [25].
Larger discovery GWASs and computational algorithms
would likely lead to an increased ability of future GRS to
identify high-risk individuals and could facilitate targeted
strategies for obesity prevention that can start already in early
childhood. Furthermore, since individuals at elevated genetic
risk are also most susceptible to risk posed by obesogenic
environments, GRS could be helpful in guiding lifestyle inter-
ventions targeted at high-risk individuals [26].

Epigenomics

Recent years witnessed an unprecedented boost of research on
understanding the role of the human epigenome in health and
disease. Epigenetic regulation can involve DNA modifica-
tions (e.g., DNA methylation), histone modifications, and
non-coding RNAs (e.g., miRNAs), and may affect all DNA-
based processes without altering the DNA sequence [27].
Epigenomic biomarkers, mostly defined based on DNAmeth-
ylation of cytosines in cytosine-guanine dinucleotides (CpG),
are prone to changes in response to environmental factors and
could reflect different developmental windows over the hu-
man life span. Such biomarkers can be determined based on
whole-genome bisulfite sequencing and epigenomic array-
based technologies [28]. The importance of epigenetic chang-
es has been first acknowledged by human epidemiological
studies that provided evidence that prenatal and early postna-
tal environmental factors influence behavioral disorders and
exert increased chronic disease risk later in life [29, 30]. In
particular, early-life exposures to stress, under- or overnutri-
tion during gestation or lactation, are associated with over-
weight or obesity in later adulthood [31]. Epigenetic dysreg-
ulation through DNA methylation of genes involved in
growth, inflammation, lipid metabolism, glycolysis, or adipo-
genesis may explain these associations [32, 33]. Data from the
Dutch Hunger Winter Families study suggested significant

Fig. 1 “Omics” platforms in obesity research
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differences in DNA methylation patterns associated with
periconceptional famine exposure [34, 35]. Recently,
epigenome-wide association studies (EWASs) provided new
lines of evidence on the association between genome-wide
(array-based) DNA methylation and obesity or related pheno-
types [36–39]. For example, a recent EWAS using whole-
blood samples from 5387 individuals from the EPICOR,
KORA, and LOLIPOP cohorts identified changes in DNA
methylation of 187 genetic loci associated with BMI. Gene
set enrichment analysis revealed that altered patterns were
observed in genes involved in lipid and lipoprotein metabo-
lism, substrate transport, and inflammatory pathways [36]. In
another EWAS study based on a sample of 641 participants in
the REGICOR study and a validation sample of 2515 partic-
ipants in the Framingham Offspring cohort, 70 CpG regions
were associated with BMI and 33 CpG regions [37]. These
markers explained ~ 26% and ~ 29% of the variability of BMI
and waist circumference, respectively [37]. Of note, very few
methylation pattern variations of the CpG regions were con-
sistently associated with obesity across published studies,
which may indicate a large number of false-positive findings
in EWAS studies [40]. Due to methodological challenges,
human studies on histone modifications in obesity have been
sparse. Especially, omics-based studies have been lacking. So
far, one study used the chromatin immunoprecipitation (ChIP)
method to analyze histone methylations in adipose tissue of a
cohort of 39 patients with different metabolic profiles [41].
The results suggested that H3K4me3 enrichment in the pro-
moter of several factors involved in adipogenesis, lipid me-
tabolism, and inflammation in visceral adipose tissue, i.e.,
LEP, PPARG, IL6, and TNF, were directly associated with
higher BMI and metabolic deterioration [41]. Observations
like these support the role of epigenetics in obesity risk.
Further epigenomic analyses using novel “omics” techniques,
such as CHIP sequencing, would be warranted to evaluate
histone modification biomarkers in human obesity research.

Overall, epigenetic changes are plastic and dynamic, and
finding out if they are a cause or a consequence of disease has
been challenging. Methylation patterns and histone modifica-
tions vary across different cell types and over time [42] and
can be influenced by multiple extrinsic and intrinsic factors,
making epidemiological data difficult to interpret [43].

Transcriptomics

Transcriptomics may bridge the gap between GWAS and
physiological studies by deciphering information residing in
genes [44]. Transcriptomic biomarkers include protein-coding
RNAs (mRNAs) and non-coding RNAs (ncRNAs) that can be
measured using RNA sequencing and array-based gene ex-
pression methods [45]. Tissue-specific analyses of the
mRNA transcriptome of adipocytes from visceral and

subcutaneous fat cells revealed more than a thousand genes
whose expression was altered in obese as compared to lean
individuals [46, 47]. Due to the rare availability of tissue sam-
ples in large epidemiological studies, alteration in the periph-
eral blood transcriptome was used as a valid alternative in the
identification of transcriptomic biomarkers in obesity [47].
Whole-blood mRNA levels determined by array-based tran-
scriptional profiling were correlated with BMI in two large
independent population-based cohort studies (KORA F4 and
SHIP-TREND) comprising a total of 1977 individuals [46].
The obesity-associated gene expression signatures pointed to
key metabolic pathways involved in protein synthesis, en-
hanced cell death from proinflammatory or lipotoxic stimuli,
enhanced insulin signaling, and reduced defense control
against reactive oxygen species [46]. Protein-coding genes
represent less than 2% of the total genomic sequence, whereas
about 98% of the DNAs are transcribed as ncRNAs [48]. The
development of high-throughput sequencing technologies
allowed the identification of ncRNAs, such as miRNAs and
long ncRNAs (lncRNAs) [48]. miRNAs elicit post-
transcriptional repression of gene expression and several stud-
ies suggested that specific miRNAs were differentially
expressed in adipose tissue of obese individuals as compared
to those with normal weight [49]. miRNAs have shown to
exert important regulatory roles in adipogenesis, adipocyte
differentiation, and insulin signaling [50, 51]. Although these
findings require invasive methods for sample collection (bi-
opsies of adipose tissue) and consequently are based on an
only a limited number of participants—often from clinical
studies—they provide valuable insights into the mechanistic
understanding of the ongoing progressive disbalances ob-
served during obesity progression [52, 53]. On the other hand,
circulating miRNAs (cmiRNAs) are released by tissues into
the bloodstream and, therefore, are regarded as promising
candidate biomarkers for further clinical application since
samples can be collected by minimally invasive methods
[44]. As cmiRNAs are released into the bloodstream, they
serve as key messengers between cells and tissues, participat-
ing in the metabolic organ crosstalk [54]. A recent systematic
review identified 33 cmiRNAs with dysregulated expression
in serum or plasma in people with obesity compared to lean
controls that have been replicated by two or more independent
research groups [55]. A majority of the genes identified via
obesity-related cmiRNAs is involved in fatty acid metabolism
and phosphoinositide 3-kinase (PI3K-Akt) pathways [55]. In
addition to the miRNAs, recently, lncRNAs also gained im-
portance in obesity research as key regulators of adipogenesis,
inflammation, and insulin sensitivity [56–60]. For example, a
functional lncRNA arising from the CEBPα locus involved in
adipogenesis was shown to prevent CEBPα genemethylation,
resulting in elevated expression of the CEBPα mRNA [61].
Overall, transcriptomic studies face innumerous challenges,
including the fact that the transcriptome varies by tissues
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and cell types as well as within these tissues and over time.
Although an exciting prospect, the isolation and profiling of
cmiRNAs from human samples remains challenging, mostly
due to their extremely low concentrations. Differences in sam-
ple extraction, cmiRNA isolation, quantification, or profiling
methods may yield inaccurate and/or non-reproducible results
[62]. More research on ncRNAs that integrates experimental
and bioinformatic tools is needed to gain a better knowledge
of whether they could be successfully applied in preventive
and clinical care.

Proteomics

Proteomics has emerged as a powerful tool in the identifi-
cation and biochemical characterization of proteins that are
associated with obesity and its comorbidities. It has the
advantage of being capable of detecting protein post-
translational modifications and protein interactions that
cannot be detected by genomics and transcriptomics. The
most common bioanalytical platforms for proteomic anal-
ysis include matrix-assisted laser desorption/ionization-
coupled with time-of-flight mass spectrometry (MALDI-
TOF-MS), l iquid chromatography coupled wi th
electrospray ionization mass spectrometry (LC-ESI-MS),
surface-enhanced laser desorption/ionization mass spec-
trometry (SELDI-TOF-MS), and protein microarray [63].
Secreted proteins constitute an important class of mole-
cules expressed by approximately 10% of the human ge-
nome [64]; therefore, serum/plasma proteome provides a
useful resource for monitoring molecular events of patho-
physiological changes that occur in obesity [63]. Most
population-based proteomic studies in obesity have been
based on small samples and had limited analytical and
outcome reproducibility [65–69]. A recent study character-
ized and compared the plasma proteomes of two large in-
dependent cohorts of obese patients in Canada and Europe
including 1002 obese and overweight individuals using
shotgun MS-based proteomic measurements. Statistically
significant associations with BMI could be seen for the
following biomarkers: complement factor B (CFAB), com-
plement factor H (CFAH), complement factor I (CFAI), C-
reactive protein (CRP), proline-rich acidic protein 1
(PRAP1), and the calprotectin complex formed by proteins
S100-A8 and S100-A9 [70]. Among these proteins, CRP
showed the strongest association with BMI and it was also
associated with all identified biomarkers. Altogether, these
findings suggest that chronic inflammation in obese per-
sons could represent the underlying reason for the associ-
ations of these biomarkers with obesity [70]. Further well-
designed epidemiological studies based on proteomic anal-
yses are warranted to determine signature proteins that can
serve as biomarkers for obesity and related diseases.

Metabolomics

Metabolomics pursues to measure the totality of metabolites in
a given biological system [71]. Metabolites represent a diverse
group of low-molecular-weight structures among them lipids,
amino acids, peptides, organic acids, and carbohydrates. Most
recently, lipidomics emerged as an important branch of meta-
bolomics with special relevance to obesity research [72]. There
are two analytical approaches, untargeted and targeted metabo-
lomics which can be based on nuclear magnetic resonance
(NMR) spectroscopy or MS technologies. On the one hand,
untargeted metabolomics uses an exploratory design and simul-
taneously measures up to several thousand metabolites, but
many of them may remain unidentified. On the other hand,
targeted metabolomics is limited to a predefined set of metab-
olites but provides metabolite identity and often quantitative
data. Both strategies found distinct metabolic alterations in
obese compared to lean subjects across different study popula-
tions, including higher plasma levels of branched-chain amino
acids (BCAA) and aromatic amino acids and lower plasma
levels of glycine, as well as higher plasma levels of
acylcarnitines, fatty acids, and certain phospholipids [73–76].
Higher concentrations of BCAA and aromatic amino acids and
lower concentrations of glycine have also been linked to insulin
resistance [77] and a higher risk of type 2 diabetes [78, 79].
Increased levels of BCAA were also suggested to enhance ac-
tivation of the mammalian target of rapamycin (mTOR) signal-
ing, oxidative stress, mitochondrial dysfunction, and apoptosis
[80]. Via these pathways, BCAA may be involved in the path-
ophysiology of obesity and associated diseases and may there-
fore serve as a promising target biomarker. Further mechanistic
and epidemiological studies are needed to understand the role
of BCAA in these chronic diseases and might lead to the rec-
ommendation to limit BCAA intake (e.g., to those at higher risk
of developing these chronic diseases) , and the establishment of
therapeutic intervention that might ameliorate BCAA-driven
dysregulation in cellular signaling and consequent maladaptive
phenotypes [80]. Overall, metabolomics has a high potential to
improve precision medicine of serious metabolic diseases such
as obesity through amore precise patient stratification andmon-
itoring and might lead to the development of intervention strat-
egies, including drug discovery and testing [81].

Lipidomics

Lipidomics is a branch of metabolomics that is focused on mea-
suring lipid species in a given biological system [72]. Divided
into fatty acyls, glycerolipids, glycerophospholipids,
sphingolipids, sterols, and prenols [82], the large chemical di-
versity of these molecules and their dynamic change in response
to physiological and environmental factors represent challenges
for their analytical determination and quantification and for
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understanding their biological roles. A combination of different
bioanalytical techniques is necessary to achieve high sensitivity
and high specificity of complex untargeted and targeted
lipidomic experiments [83, 84]. For decades, simple lipid profile
analysis has been a fundamental tool in clinical practice to assess
dyslipidemia [85]. Technological advancements in MS allowed
understanding that numerous other plasma lipids are mediators
of metabolic dysfunction and disease progression in obesity and
obesity-related chronic diseases, transcending the clinical com-
monly used lipid panel [86]. Previous lipidomic studies identi-
fied higher concentrations of short- and medium-chain
acylcarnitines in obese compared to lean subjects which may
result from impaired fatty acid biosynthesis and oxidation [87].
In addition, plasma concentrations of free fatty acids, in partic-
ular, proinflammatory omega-6-fatty acids, were shown to be
increased in obesity as a result of stress to adipose tissue [75].
Using targeted metabolomics in the EPIC-Potsdam study, we
previously found that mostly phospholipids from the diacyl-
phosphatidylcholine subclass were positively correlated with
BMI and waist circumference, whereas acyl-alkyl-
phosphatidylcholines and some lysophosphatidylcholines were
negatively correlated with these obesity measures [74]. Other
studies confirmed distinct phospholipid profiles in obesity [73,
76]. Phosphatidylcholines are primarily synthesized hepatically
and secreted as part of blood lipoproteins [88]. We previously
showed in the EPIC-Potsdam study that diacyl-
phosphatidylcholines were positively correlated with triglycer-
ide concentrations, whereas acyl-alkyl-phosphatidylcholines
were positively correlated with high-density lipoprotein choles-
terol [79]. Thus, they may represent a more complex picture of
dyslipidemia in obesity. In addition, an intervention study sug-
gests that high-fiber diets may beneficially alter metabolic pro-
files of phospholipids in obese individuals [89]. This study pro-
vides one example of the application of lipidomics in the devel-
opment of obesity prevention strategies.

Glycomics

Glycans are ubiquitously present in all cells. They are essential
for cellular physiological processes and are linked to other bio-
molecules such as lipids (glycolipids) and proteins (glycopro-
teins and proteoglycans) through glycosidic linkages to form
glycoconjugates [90]. Around 70% of the proteins in the human
body are glycosylated. Protein-bound glycans can be N or O
linked and represent the two major types of glycans [91].
Around 700 proteins integrate the glycosylation machinery,
making glycan biosynthesis intensively more complex than pro-
tein synthesis [92]. Glycosylation is essential for a multitude of
biological functions [93] and alterations in glycosylation during
the transition from health to disease and disease progression
have boosted the scientific interest in studying the glycome
[92, 94]. In comparison to other “omics,” however, glycomic

databases are still underdeveloped, owning to the complexity of
glycan composition, heterogeneity, and the vast variation of
branching [95]. In glycomic LC-MALDI-MS, capillary electro-
phoresis (CE)-ESI-MS and LC-ESI-MS are the most common
applied bioanalytical techniques [91]. The glycome could pro-
vide a key in understanding the mechanistic links between obe-
sity andmetabolic diseases. Recent epidemiological studies sug-
gested that IgG N-glycosylation pattern variations, including
lower galactosylation, correlate with measures of obesity and
central adiposity [96–99]. IgG galactosylation strongly de-
creases its proinflammatory activity [96] and its decrease ob-
served in obese individuals could contribute to chronic inflam-
matory state featured in obesity. Further glycomic research
might lead to the discovery of novel inflammatory biomarkers
that contribute to obesity development, persistence, and
progression.

Microbiomics

The human microbiome comprises the sum of all human-
associated microorganisms (microbiota) living within a well-
defined habitat within the human body [100]. Dysbiosis was
coined as a term more than 100 years ago to denote the im-
balance in the composition and metabolic capacity of the mi-
crobiota [101, 102]. Microbiomic studies focus on the better
characterization of the microbial structure, function, and com-
position [100]. Several approaches and analytical techniques
have been applied in microbiomics such as sequencing data of
the gene that encodes the RNA component of the small ribo-
somal subunit (16S rRNA) for profiling taxonomic abundance
of microorganisms, NGS technologies for metagenomic stud-
ies comprising gene identification [100, 103], and microarray-
based technologies for meta-transcriptomic analysis [104].
Metabolomic and multi-omics approaches have been also re-
cently applied to study the microbiome function and compo-
sition and assess the consequences of host-microbiome inter-
actions [104–106]. Altered gut microbiota composition as
measured by a relative increase in the Firmicutes/
Bacteroidetes ratio has been commonly reported in obese in-
dividuals [107–109]. However, the effect sizes of observed
associations of taxonomic composition and obesity in epide-
miological studies were generally weak [110] and inconsistent
[111]. Beyond taxonomic composition revealed by genomic
studies, metagenomic studies reveal information on the genet-
ic functional diversity of the gut microbiota. A recent meta-
analysis has shown that gut microbiome metagenomic func-
tional diversity traits and patterns correlate with obesity (e.g.,
N-glycosylation by oligosaccharyltransferase is depleted in
obese individuals), highlighting the importance of the
microbiome function over its composition [112]. A recent
systematic review comparing concentrations of short-chain
fatty acids (SCFA) between obese and lean individuals
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concluded that obese individuals had higher concentrations of
acetate in blood and feces, propionate and valerate in feces,
and butyrate in feces produced by fermentation of dietary fiber
in the gut. These SCFAs were suggested to play roles in met-
abolic modulation, appetite regulation, and immune function
[113, 114]. Diverse epidemiological studies have shown that
exposure to antibiotics in the first year of life is associatedwith
an increased risk of obesity during childhood and adolescence
[115–118]. Antibiotic-induced dysbiosis in early life was sug-
gested to lead to obesity development by diverse mechanisms
including a decrease of metabolic protective species, by af-
fecting the amount of calories absorbed from the diet, alter-
ation of hepatic function, and hormone secretion, and im-
paired metabolic signaling [115]. A recent meta-analysis re-
ported a significant dose-response relationship between anti-
biotic exposure in very early life and childhood adiposity,
showing elevated risk with repeated doses [117].
Microbiomic studies also allowed the assessment of
probiotics, synbiotics, and prebiotics in the management of
obesity. For example, supplementation with synbiotics con-
taining specific strains (e.g., Lactobacillus gasseri strains)
exerted anti-inflammatory properties and led to efficient
weight loss in obese patients [119]. Although research has
not succeeded in fully defining the parameters for a health
advantageous gut microbiome, studies that emphasize func-
tion over composition will be a trend future microbiomic re-
search [120]. Improvement of the knowledge in the interac-
tions between the microbiome and the host health might aid in
understanding its etiological role in obesity and in the identi-
fication of new targets for precision prevention and therapy.

“Omics” Biomarkers as Targets for Bariatric
Surgery and Weight-Loss Interventions

“Omics” biomarkers have been increasingly explored to assess
the effects of weight-loss interventions on the epigenome, tran-
scriptome, metabolome, and microbiome. Bariatric surgery is
regarded as the most effective treatment strategy of severe obe-
sity alleviating the risk of obesity-related comorbidities (e.g.,
type 2 diabetes, cardiovascular diseases) [121]. Changes in
“omics” biomarkers could provide additional insight on the path-
ophysiological mechanisms mediating beneficial effects of
weight loss. In this vein, several studies demonstrated significant
changes in DNA methylation patterns following bariatric sur-
gery, highlighting the role of the epigenome in mediating bene-
ficial effect of weight loss intervention onmetabolic disturbances
in obesity [122–124]. Adipose tissue-specific and whole-blood
transcriptomic profiles have also shown to be altered after bar-
iatric surgery [121, 123, 125]. Bariatric surgery could especially
strongly influence human metabolism captured by metabolomic
changes in amino acid, lipids, carbohydrates, or gut microbiome
alterations [126]. For example, a small intervention study of 39

morbidly obese patients quantified acylcarnitines,
(lyso)phosphatidylcholines, sphingomyelins, amino acids, bio-
genic amines, and hexoses in serum samples before and 1, 3,
and 6 months after bariatric surgery [127]. The findings demon-
strated beneficial effects of bariatric surgery on metabolic health
by the restoration of the sphingolipid-phospholipid metabolism
through the improvement of the lipoprotein profile [127]. Due to
the small scale of most bariatric surgery intervention studies,
interpretation of complex and extensive data outputs from
“omics” data should be done with caution. Meta-analytical and
advanced bioinformatic modeling that combine results from
multiple intervention studies could provide additional insights
on obesity pathophysiology but also evaluate “omics” bio-
markers as treatment targets [124].

Integrative Multi-“omics” and Bioinformatics

The high amount and complexity of data generated by the dif-
ferent high-throughput analytical assays required the develop-
ment and application of a number of bioinformatic and biosta-
tistic tools to “make sense” of the generated “omics” data [18].
Novel machine learning algorithms, such as deep learning and
artificial neural networks, have been gaining popularity as pow-
erful approaches for analysis of heterogeneous and complex data
[9]. Advanced bioinformatic methods are especially advanta-
geous in analyzing combinations of “omics” datasets [128].
Integrated multi-“omics” approaches have further emerged as a
collective field aiming to obtain a better understanding of the
complexity and interactions of the biological systems including
those predisposing obesity [129]. Nevertheless, the application
of multi-omics approaches has faced a number of challenges
including multiple sources of bias arising from differences in
study designs, sample collection, measurement, and data analy-
sis methods [128]. Despite the increased availability of analytical
and programming options, available bioinformatic approaches
bear their own limitations and their application requires further
evaluation [130]. Strong epidemiological study design, high lab-
oratory precision and validation, and sound research hypotheses
remain fundamental in interpreting integrative “omics”-based
analyses along with the integration of multiple “omics” via com-
plex bioinformatic data analysis. Further work is needed to de-
velop analytical infrastructures able to generate, analyze, and
interpret multi-“omics” data as a basis for guiding precision pre-
vention strategies.

Conclusion

Recent technological advances allowed the identification of a
number of “omics” biomarkers that brought forward the etio-
logical insights into the mechanisms involved in obesity de-
velopment. Understanding the role of genetic and epigenetic
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factors and their influences in the transcriptome, proteome,
metabolome, and microbiome became the new frontier in obe-
sity and metabolism research. However, the transformation of
large and heterogeneous “omics” data into biological knowl-
edge has proven challenging especially when different
methods applied in the same population yield inconsistent
results. In this regard, cautious interpretation of findings and
further statistical or biological validation of results should rep-
resent an important focus of future research. There is an in-
creased demand for larger prospective cohort studies to vali-
date findings and determine biomarker reproducibility before
they can find applications in primary care and public health.
Despite the current challenges, obesity-related “omics” bio-
markers bring substantial promise in identifying new interven-
tion targets and effective public health strategies that pave the
way towards patient stratification and precision prevention.
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