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Abstract
Respiratory rate is a well-known to be a clinically important parameter with numerous clinical uses including the assessment 
of disease state and the prediction of deterioration. It is frequently monitored using simple spot checks where reporting is 
intermittent and often prone to error. We report here on an algorithm to determine respiratory rate continuously and robustly 
using a non-contact method based on depth sensing camera technology. The respiratory rate of 14 healthy volunteers was 
studied during an acute hypoxic challenge where blood oxygen saturation was reduced in steps to a target 70% oxygen satura-
tion and which elicited a wide range of respiratory rates. Depth sensing data streams were acquired and processed to generate 
a respiratory rate (RRdepth). This was compared to a reference respiratory rate determined from a capnograph (RRcap). The 
bias and root mean squared difference (RMSD) accuracy between RRdepth and the reference RRcap was found to be 0.04 bpm 
and 0.66 bpm respectively. The least squares fit regression equation was determined to be: RRdepth = 0.99 × RRcap + 0.13 and 
the resulting Pearson correlation coefficient, R, was 0.99 (p < 0.001). These results were achieved with a 100% reporting 
uptime. In conclusion, excellent agreement was found between RRdepth and RRcap. Further work should include a larger 
cohort combined with a protocol to further test algorithmic performance in the face of motion and interference typical of 
that experienced in the clinical setting.
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1  Introduction

The clinical importance of respiratory rate (RR) is well 
known as it provides important information regarding many 
aspects of a patient’s respiratory status. Changes in RR are 
often one of the earliest and more important indicators that 
precedes major clinical manifestations of serious complica-
tions such as respiratory tract infections, respiratory depres-
sion associated with opioid consumption, anaesthesia and/or 
sedation, as well as respiratory failure [1–3]. A wide range 
of methods have been proposed for the determination of res-
piratory rate using non-contact means including RGB video 
camera systems [4, 5], infrared camera systems [6], laser 
vibrometry [7], piezoelectric bed sensors [8], doppler radar 

[9], thermal imaging [10] and acoustic sensors [11]. The 
determination of respiratory information from depth data has 
received relatively less attention than RGB video methods, 
although such systems are well suited to this task.

The inflation and deflation of the lung during a respira-
tory cycle is a phenomenon measurable with a depth camera. 
Many studies have compared tidal volume, as measured by 
a reference system (e.g. a spirometer), with the tidal volume 
extracted by a depth camera system based on morphologi-
cal changes in the chest wall. One of the earliest tidal vol-
ume measurements extracted in this way was carried out 
by Yu et al. [12]. They assessed a Kinect V1 based system 
against a spirometer and achieved a correlation coefficient, 
R = 0.97 (p < 0.001), based on 12 healthy subjects under-
taking a range or respiratory activities including shallow, 
middle and deep breathing as well as isovolume maneuvers. 
Aoki et al. [13] performed a similar study using a Kinect V1 
system comparing the tidal volumes to that measured using 
a gas analyser. Four healthy subjects were monitored over a 
180 s acquisition period and they obtained an R = 0.99 cor-
relation coefficient. A more recent study by Seppänen et al. 
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[14] evaluated depth camera extracted tidal volume over a 
range of respiratory rates. Part of the data was used to train 
a bank of FIR filters from which the depth data volume was 
extracted. Various filter configurations were tested. Their 
best model produced R2 = 0.932 (R = 0.965) and a tidal vol-
ume accuracy error of 9.4%. In another study, Soleimani 
et al. [15] obtained volume and flow signals by processing 
Kinect V2 depth data to produce parameters typically asso-
ciated with a pulmonary function testing. They evaluated 
their system on 40 COPD patients. Using a spirometer as 
a reference, they demonstrated that the forced vital capac-
ity and slow vital capacity test both produced correlation 
coefficients of 0.999, (although they included a rescaling 
based upon the spirometry measurements to achieve this). 
Harte et al. [16] used four Kinect V1 cameras arranged in a 
cross configuration pointing towards the subject located in 
the centre. Their study included thirteen healthy subjects 
and nine cystic fibrosis patients. Based upon a one-way 
ANOVA test (F[1,51] = 7.5783; p = 0.0082), they concluded 
there was a significant difference in the sample means of the 
two groups. Transue et al. [17] evaluated a Kinect V2 based 
system against a spirometer for tidal volume accuracy. Their 
system performed a general volume estimation of the chest 
and then required per-subject training against a spirometer 
as reference to offer more accurate individual results. The 
dataset consisted of multiple trials of 20 s duration with 
participants in a standing position. They obtained accura-
cies ranging from 92.2 to 94.2% (corresponding to absolute 
errors in tidal volume from 0.055 to 0.079 l) when assessing 
four healthy subjects against a spirometer.

A number of research groups have focused specifically 
on determining a respiratory rate using depth sensing cam-
era equipment. Bernacchia et al. [18] assessed ten healthy 
young adult subjects and found good agreement between the 
breath periods derived from a Kinect depth sensing system 
and a spirometer reference. They achieved a 9.7% RMSD 
for the breath periods between the two devices. During the 
tests, which lasted only 40 s per acquisition, the subjects 
were asked to maintain ‘regular respiratory activity’. In a 
study of young children (between 1 and 5 years) Al-Naji 
et al. [19] found excellent agreement between depth-sens-
ing RR and a piezo-belt reference with correlation coef-
ficients ranging from 0.97 to 0.99 depending on whether 
bed sheets were used and the background lighting levels. 
The study was, however, limited to five healthy volunteers 
in relatively benign conditions. Rezaei et al. [20] studied 
the respiratory rate of restrained rodents when subjected 
to fear-inducing predatory odours. They found they could 
measure respiratory rate with an accuracy of 94.8% using 
a reference RR from visual observation. Martinez and Stie-
felhagen [21] utilised a depth camera to extract respiratory 
rate data from 94 sleep analysis sessions from 67 patients in 
a sleep clinic. They found their system to be 85.9% accurate 

when compared to a reference thermistor placed at the nose. 
However, their depth system achieved similar results to that 
of a contact chest band sensor. Monitoring the respiratory 
rates of three preterm infants was the focus of a study by 
Cenci et al. [22] where each infant was assessed in five 30 s 
intervals. They found an overall correlation coefficient of 
R = 0.95 between their system output and the respiratory rate 
derived from ECG impedance pneumography.

Much of the early work involving depth sensing cameras 
focused on the determination of tidal volume. More recent 
studies which have considered respiratory rate are, in gen-
eral, limited to relatively benign conditions, short periods 
of time, limited numbers of subjects/patients and/or poor 
reference measures. The work reported here extends current 
research in this area by studying a cohort of healthy volun-
teers exhibiting a wide range of respiratory rates resulting 
from being subjected to a rigorous, protocolized hypoxic 
challenge.

2 � Methods

2.1 � Clinical study

The data was collected opportunistically during a non-
related hypoxia (‘breathe-down’) study to evaluate a pulse-
oximeter sensor. This parallel study protocol includes a 
desaturation event comprising a series of step-changes in 
oxygen saturation. Approval was given for the use of depth 
camera data acquisition and no other alteration to the exist-
ing protocol was made.

Fourteen subjects participated in the study. Subjects pro-
vided an institutional review board (IRB) approved informed 
consent covering the essential information stated in the pro-
tocol, as required elements according to 21 CFR 812.150 
for a non-significant risk medical device investigation. The 
subjects were fitted with a face mask in order to adjust the 
FiO2 using a mixture of nitrogen and oxygen and induce 
desaturation. Each subject underwent a discrete episode of 
hypoxia. The sequence of targeted oxygen saturation levels 
is shown schematically in Fig. 1. In addition to the pulse 
oximetry data, capnography data was recorded during the 
study using a Datex-Ohmeda S/5 Monitor (GE Healthcare, 
Chicago, IL, USA). The capnograph is the reference against 
which we assessed our non-contact respiratory rate algo-
rithm. Each session took approximately 35 min.

All 14 subjects successfully completed the hypoxic chal-
lenge. Due to technical reasons the primary study only 
captured 12 of the 14 desaturation profiles. Our secondary 
study however successfully captured depth information for 
all subjects, and since our study did not require the satura-
tion data, we could analyse all 14 subjects. The subjects had 
a mean age of 31.9 (standard deviation, SD 6.9) years and 
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mean body mass index (BMI) of 26.3 (SD 4.2). Individual 
demographic information is provided in Table 1. Exclusion 
criteria included subjects with known respiratory conditions 
and/or heart or cardiovascular conditions.

2.2 � Data acquisition and processing

The depth data was captured using a Kinect V2 camera 
(Microsoft Corporation, Redmond, WA, USA) connected 
to a laptop and at a frame rate of 30 fps. The camera was 
mounted on a tripod and placed in front of each subject. 
The data was collected over several days and the distance 
between the camera and subjects varied between 1.2 and 
2.0 m over the collection period and positioned vertically 

at approximately chest height. The subjects were seated in 
a slightly reclined position. The room was illuminated with 
standard ceiling mounted fluorescent lights. Other than start-
ing and stopping the recording process no other intervention 
or calibration was required over the study period.

Respiratory rate (RR) is extracted algorithmically from 
the acquired depth data as illustrated in Fig. 2. A region-
of-interest (ROI) is defined on the torso area of the subject 
(Fig. 3a). An estimate of the volume change across the ROI 
over time is obtained by calculating the depth changes of 
each frame and integrating spatially across the ROI. The 
resulting volume signal offers a clear indication of the 
breathing pattern as shown in Fig. 3b where the peaks and 
troughs of the individual breaths are marked. Note that 
Fig. 3b shows a whole trace from one of the subjects in 
the trial. Three large breaths are obvious in the main plot 

Fig. 1   Desaturation

Table 1   Participant demographic information

Subject ID Gender Weight (kg) Height (m) BMI (%) Age

001 Female 57 1.55 23.4 29
002 Male 84 1.80 25.8 33
003 Male 91 1.78 28.7 31
004 Male 100 1.80 30.8 48
005 Female 92 1.63 34.7 26
006 Male 95 1.88 27 36
007 Female 88 1.78 28 27
008 Male 68 1.75 22.1 26
009 Female 68 1.55 28.3 31
010 Male 71 1.78 22.4 38
011 Female 62 1.52 26.6 29
012 Female 61 1.63 23.2 25
013 Male 91 1.78 28.7 26
014 Female 54 1.73 17.9 42

Mean 77.3 1.71 26.3 31.9
SD 15.8 0.11 4.2 6.9

Fig. 2   Algorithm flow diagram
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(marked by the arrow) at the end of the trial where the 
subject is instructed to take large breaths at the end of the 
hypoxic challenge. The zoomed-in portion of the signal 
shows the respiratory modulations in more detail.

The next steps in the algorithm (outlined in Fig. 2) 
extract a robust value of respiratory rate (RR) from the 
volume signal. The respiratory volume signal is first fil-
tered by a low pass filter (Butterworth, 5th order, cut-off 
0.67 Hz). The peaks of this signal are then identified and 
the respiratory periods (RPs) calculated as the time differ-
ence between successive peaks to produce a “per breath” 
RP signal. This RP signal is low-pass filtered (Butter-
worth, 5th order, cut-off 0.67 Hz) to smooth the peri-
ods. The RR signal is then calculated by multiplying the 
reciprocal of the RP signal by 60. The final step removes 
the effect of outliers in the RR signal by averaging over a 
60 s sliding window only those points that are within the 

25th and 75th percentiles of the values. (We have found 
that these outliers may arise if non-prominent peaks are 
not successfully eliminated during the initial stages of the 
algorithm and this outlier removal step successfully deals 
with these.) This processing produces the output RRdepth 
signal, an example of which is shown in Fig. 3c.

The capnograph provides a reference respiratory rate on 
a per-second basis. This output reporting time step dura-
tion is relatively typical for medical monitoring devices for 
screen updating. We therefore resampled the output of the 
depth sensing RR to match this. The two respiratory rate 
signals, RRdepth and RRcap, required synchronization prior 
to statistical analysis as the depth camera and capnograph 
signals were collected independently on separate acquisi-
tion systems. This was carried out using cross-correlation 
of the two signals.

Fig. 3   a Depth image with ROI. b Respiratory volume signal. Zoom shows respiratory modulations with peaks and troughs indicated. c RRdepth
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2.3 � Data analysis

Bias and accuracy statistics were calculated to compare the 
depth data derived RR with that of the reference (capnograph) 
system. These are, respectively, the mean difference and the 
root mean squared difference (RMSD) between the test and 
reference values. That is

and

The latter expression is a root mean square deviation 
(RMSD) and represents a combination of the systematic and 
random components of the differences between the corre-
sponding readings from the two devices.

Least-squares linear regression was performed to obtain 
the line of best fit between the video and reference param-
eters from which the gradient, intercept, Pearson correlation 
coefficient, R, and associated p values were computed. In 
this work p < 0.05 was considered statistically significant. A 
Bland–Altman analysis of the data was also performed using 
the method of Bland and Altman [23] which compensates for 
within-subject longitudinal correlation in the data. SD of the 
bias and corresponding limits of agreement were calculated 
using this methodology.

A reliability measure in the form of an uptime was com-
puted. This is a measure of the percentage of time that RRdepth 
can be computed for each subject. A high uptime is usually a 
fundamental technical requirement for the development of a 
medical device. To be acceptable for use in clinical practice, 
both accuracy and uptime must be sufficiently high. Note that 
accuracy may be improved at the expense of uptime by avoid-
ing posting results when the signal quality is poor (e.g., due 
to noise). We define uptime, here as the duration, Tvalid, that 
a valid respiratory rate can be calculated and reported by the 
algorithm as a percentage of the total acquisition time, Tacq, i.e.

Matlab (R2018b) was used to process the data and perform 
the statistical analysis. An in-house developed C++ applica-
tion was used to capture the depth data.

(1)Bias =

∑N

i=1

�

RRdepth(i) − RRcap(i)
�

N

(2)RMSDaccuracy =

�

∑N

i=1

�

RRdepth(i) − RRcap(i)
�2

N

(3)Uptime =
Tvalid

Tacq
× 100

3 � Results

Figure 4 contains the comparative RR signals for all four-
teen subjects. The primary protocol did not state any spe-
cific breathing paradigm other than to breathe normally 
and to take deep breaths while the air supply was returned 
to room air at the end of the session.

Figure 5a contains the scatterplot of RRdepth against 
RRcap aggregated over all subjects. Here each point in the 
plot represents a respiratory rate calculated from an indi-
vidual breath of one of the subjects. The bias and accuracy 
(RMSD) for all subjects pooled together was 0.04 bpm 
and 0.66 bmp respectively and with a Pearson’s correla-
tion coefficient of 0.99 (p < 0.001) The corresponding 
Bland–Altman plot is shown in Fig. 5b for comparison 
and shows that 95% of calculated RRdepth values occur 
within 1.32 bpm of the reference system. The distributions 
of the individual respiratory rates across all subjects for 
the depth sensing and reference capnograph devices are 
shown in Fig. 5c. We can see that both distributions look 
very similar.

The data was also analysed on a per-subject basis. The 
box plots of Fig. 6a, b show the spread of the individual 
mean biases, which range from − 0.30 to 0.22 bpm, and the 
RMSD accuracies, which varies from 0.45 to 0.94 bmp. 
The spread of the individual Pearson correlation coeffi-
cients is shown in Fig. 6c which ranged from 0.91 to 0.98.

Uptime was calculated to be 100% for every case.

4 � Discussion

Excellent agreement was found between the computed 
depth sensed respiratory rates and the reference capno-
graph values, with an overall RMSD of 0.66 bpm. This 
was achieved with a near zero bias and with 100% uptime. 
(Even on a per-subject basis, individual RMSDs were all 
less than 1 bpm.) In addition, the results were achieved 
over a considerable range or respiratory rates exhibited 
by the volunteers, (from 6 to 27 breaths per minute). This 
wide range is indicative of the physiological stress asso-
ciated with an acute hypoxic challenge and provides a 
valuable test of the technology. In fact, marked cyclical 
variations in the respiratory volume signal were observed 
for some subjects. Figure 7 provides an example this phe-
nomenon. This breathing pattern is a result of hypoxia and 
the pattern can change as the hypoxia increases. One of 
the challenges with hypoxia studies is hyperventilation in 
response to hypoxic gas mixture as the body attempts to 
maintain as high a PO2 as possible in the lungs by reduc-
ing CO2. The chemoreceptors in the brain detects the 
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decrease in PaCO2 and signals to slow down breathing 
and/or reduce tidal volume, however, the hypoxic drive 
overrides this signal and make the subject breath deeper. 
This results in this pattern which is similar in form to 
Cheyne–Stokes breathing.

A relatively small data set (N = 14) was used in develop-
ing the algorithm with no data withheld for separate blind 
testing. Over-training is a therefore possibility, and the 
results must be viewed in this context. However, the res-
piratory signal was manifestly obvious across all patients 
and a relatively simple algorithm was sufficient to identify 
individual breaths and produce a respiratory rate. In addi-
tion, off-the-shelf depth sensing technology was employed 
and the equipment is simple to set up with minimal instruc-
tion provided to the clinical research staff for its use. (They 
were asked to set up the camera at chest height within 1 to 
2 m of the subject, ensure that the subject was in the frame 
and turn the acquisition on; with no other intervention or 
calibration required.)

Motion was relatively restricted as the subjects were 
seated, attached to a face mask and also had pulse oxime-
ter probes attached to each hand. The participants therefore 
remained relatively immobile during the acquisition. In clin-
ical practice, however, an algorithm would have to cope with 
more significant patient motion, including change of posture 
or position in bed, hand and limb movements, (including 
hand movements within the line of sight) and interactions 
with clinical staff. Recently, our group proposed a novel 
motion protocol for RGB video monitoring including yaw, 
pitch and roll maneuvers of the head [24]. Although this is at 
a very early stage and specific to idealized maneuvers for the 
subject’s head it could perhaps be extended to whole body 
maneuvers for testing depth-based respiratory technology. 
However, it is in general very difficult to synthesize the wide 
variety of complex activities observed in clinical practice 
and exposing the algorithm to large amounts of patient data 
acquired from across the spectrum of patient care is ulti-
mately the best way to develop a robust technology.

Fig. 4   Time series of depth sensing and capnograph respiratory rates for each subject (RRdepth = solid, RRcap = dotted)
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It is an open question whether depth sensing monitor-
ing could replace other modalities for monitoring respira-
tory rate in the clinical environment. The technology may 
be adopted more rapidly in its current state for specific use 
cases including post-anesthesia respiratory depression indi-
cations, neonatal monitoring (where there is a need to avoid 
excessive contact with the neonatal skin), sleep monitoring 
and home monitoring of, for example, elderly, post-surgical 
and/or respiratory patients. The technology also has the 
advantage of having additional physiological and patient 

contextual information available from the same modality. 
These include tidal volume trending, apnea detection, patient 
activity monitoring, fall detection and bed posture monitor-
ing. A final positive attribute of the technology which should 
be commented on is its ease of use. Ultimately, the technol-
ogy should require nothing more than to be aimed at the 
subject and turned on and it works through patient clothing 
and bed sheets and with the lights turned off (both of which 
RGB methods cannot do).

Fig. 5   a Scatterplot of respiratory rates: depth sensing camera rates 
against capnography reference rates. b Bland–Altman plot of respira-
tory rates showing the mean bias and limits of agreement. c Respira-

tory rate distribution plots for the depth sensing camera and capnog-
raphy reference
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5 � Conclusion

The results strongly indicate the potential for a robust res-
piratory rate monitoring technology based on depth sensing 
camera equipment. Future work should attempt to fully test 
this technology in a more rigorous fashion through a range 
of confounders typically exhibited in the clinical setting 
including motion and interference.
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