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Immunoinformatic identification 
of B cell and T cell epitopes 
in the SARS‑CoV‑2 proteome
Stephen N. Crooke, Inna G. Ovsyannikova, Richard B. Kennedy & Gregory A. Poland*

A novel coronavirus (SARS-CoV-2) emerged from China in late 2019 and rapidly spread across the 
globe, infecting millions of people and generating societal disruption on a level not seen since the 
1918 influenza pandemic. A safe and effective vaccine is desperately needed to prevent the continued 
spread of SARS-CoV-2; yet, rational vaccine design efforts are currently hampered by the lack of 
knowledge regarding viral epitopes targeted during an immune response, and the need for more 
in-depth knowledge on betacoronavirus immunology. To that end, we developed a computational 
workflow using a series of open-source algorithms and webtools to analyze the proteome of SARS-
CoV-2 and identify putative T cell and B cell epitopes. Utilizing a set of stringent selection criteria 
to filter peptide epitopes, we identified 41 T cell epitopes (5 HLA class I, 36 HLA class II) and 6 B cell 
epitopes that could serve as promising targets for peptide-based vaccine development against this 
emerging global pathogen. To our knowledge, this is the first study to comprehensively analyze all 10 
(structural, non-structural and accessory) proteins from SARS-CoV-2 using predictive algorithms to 
identify potential targets for vaccine development.

In December 2019, public health officials in Wuhan, China, reported the first case of severe respiratory disease 
attributed to infection with the novel coronavirus SARS-CoV-21. Since its emergence, SARS-CoV-2 has spread 
rapidly via human-to-human transmission2, threatening to overwhelm healthcare systems around the world and 
resulting in the declaration of a pandemic by the World Health Organization3. The disease caused by the virus 
(COVID-19) is characterized by fever, pneumonia, and other respiratory and inflammatory symptoms that can 
result in severe inflammation of lung tissue and ultimately death—particularly among older adults or individu-
als with underlying comorbidities4–6. As of this writing, the SARS-CoV-2 pandemic has resulted in 4 million 
confirmed cases of COVID-19 and over 280,000 deaths worldwide7.

SARS-CoV-2 is the third pathogenic coronavirus to cross the species barrier into humans in the past two 
decades, preceded by severe acute respiratory syndrome coronavirus (SARS-CoV)8,9 and Middle-East respira-
tory syndrome coronavirus (MERS-CoV)10. All three of these viruses belong to the β-coronavirus genus and 
have either been confirmed (SARS-CoV) or suggested (MERS-CoV, SARS-CoV-2) to originate in bats, with 
transmission to humans occurring through intermediary animal hosts11–14. While previous zoonotic spillovers 
of coronaviruses have been marked by high case fatality rates (~ 10% for SARS-CoV; ~ 34% for MERS-CoV), 
widespread transmission of disease has been relatively limited (8,098 cases of SARS; 2,494 cases of MERS)15. In 
contrast, SARS-CoV-2 is estimated to have a lower case fatality rate (~ 2 to 4%) but is far more infectious and 
has achieved world-wide spread in a matter of months16.

As the number of COVID-19 cases continues to grow, there is an urgent need for a safe and effective vaccine 
to combat the spread of SARS-CoV-2 and reduce the burden on hospitals and healthcare systems. No licensed 
vaccine or therapeutic is currently available for SARS-CoV-2, although there are over 100 vaccine candidates 
reportedly in development worldwide. Seven vaccine candidates have rapidly progressed into Phase I/II clini-
cal trials: adenoviral vector-based vaccines (CanSino Biologics, ChiCTR2000030906; University of Oxford, 
NCT04324606), nucleic-acid based vaccines encoding for the viral spike (S) protein (Moderna, NCT04283461; 
Inovio Pharmaceuticals, NCT04336410; BioNTech/Pfizer, 2020-001038-36), and inactivated virus formulations 
(Sinopharm, ChiCTR2000031809; Sinovac (NCT04352608)17. While the advancement of these vaccine candidates 
into clinical testing is promising, it is imperative they meet stringent endpoints for safety18. Preclinical stud-
ies of multiple experimental SARS-CoV vaccines have reported a Th2-type immunopathology in the lungs of 
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vaccinated mice following viral challenge, suggesting hypersensitization of the immune response against certain 
viral proteins19–22. Similarly, a modified vaccinia virus Ankara vector expressing the SARS-CoV S protein induced 
significant hepatitis in immunized ferrets23. These data suggest that candidate coronavirus vaccines that limit 
the inclusion of whole viral proteins may have more beneficial safety profiles.

The SARS-CoV-2 genome encodes for 10 unique protein products: 4 structural proteins (surface glycoprotein 
(S), envelope (E), membrane (M), nucleocapsid (N)); 5 non-structural proteins (open reading frame (ORF)3a, 
ORF6, ORF7a, ORF8, ORF10); and 1 non-structural polyprotein (ORF1ab) (Fig. 1A,B)24. There is currently very 
little known regarding which epitopes in the SARS-CoV-2 proteome are recognized by the human immune sys-
tem, although a limited number of studies have recently reported a broad spectrum of cellular immune responses 
against the structural and non-structural proteins from SARS-CoV-2 among convalescent subjects25–27. Studies 
of SARS-CoV immune responses suggest that both cellular and humoral responses against structural proteins 
mediate protection against disease19,22,28–30, and it is likely that cellular immune responses against non-structural 
viral proteins also play a key role in orchestrating protective antiviral immunity31–33. In lieu of biological data, 
immunoinformatic algorithms can be employed to predict peptide epitopes based on amino acid properties 
and known human leukocyte antigen (HLA) binding profiles34–36. These computational approaches represent a 
validated methodology for rapidly identifying potential T cell and B cell epitopes for exploratory peptide-based 
vaccine development and have been recently used to identify target epitopes for MERS-CoV37 and SARS-CoV-2, 
although many of these reports focus solely on structural proteins38–41.

Herein, we employed a comprehensive immunoinformatics approach to identify putative T cell and B cell 
epitopes across the entire SARS-CoV-2 proteome (Fig. 1C). We independently identified peptides from each 
viral protein that were restricted to either HLA class I or HLA class II molecules across a subset of the most 
common HLA alleles in the global population. By filtering this list of peptides on the basis of predicted bind-
ing affinity, antigenicity, and promiscuity, we produced 5 HLA class I-restricted and 36 HLA class II-restricted 
peptides as leading candidates for further study. We also evaluated linear and structural B cell epitopes in the 
SARS-CoV-2 spike protein, with six antigenic regions identified as potential sites for antibody binding. These 
selected peptides may serve as initial candidates in the rational and accelerated design of a peptide-based vac-
cine against SARS-CoV-2.

Methods
Comparison of genome sequences from SARS‑CoV‑2 isolates.  Genomic sequences for reported 
SARS-CoV-2 isolates were identified and retrieved from the Virus Pathogen Resource (ViPR) database on Feb-
ruary 27, 2020 (https​://www.viprb​rc.org/brc/home.spg?decor​ator=coron​a_ncov). Sequences that did not cover 
the complete viral genome (~ 29,900 nucleotides) were excluded from further analysis. Remaining sequences 
were aligned using the Clustal Omega program (version 1.2.4) from the European Bioinformatics Institute 42 and 
compared against the first reported genome sequence for SARS-CoV-2 (Wuhan-Hu-1; taxonomy ID: 2697049)1. 

Figure 1.   (A) Diagram of SARS-CoV-2 virion structure with the major structural proteins (S, M, N, and 
E) highlighted. (B) Cartoon representation of the SARS-CoV-2 genome with the 10 major protein-coding 
regions annotated. The box diagrams are proportional to the protein size. (C) Diagram of peptide identification 
workflow illustrating the algorithms used36,44–47,49–51,58,60 and filtering criterion applied to refine peptide selection. 
(D) Cladogram illustrating the genetic relationship of SARS-CoV-2 isolates. The original viral isolate and 
consensus sequence (Wuhan-Hu-1) is highlighted in red.

https://www.viprbrc.org/brc/home.spg?decorator=corona_ncov
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Sequences from Wuhan-Hu-1 viral proteins were determined to be representative of those from all viral isolates 
and were subsequently used for epitope prediction analyses.

Prediction of SARS‑CoV‑2 T cell epitopes.  Prediction of HLA class I and class II peptide epitopes 
was carried out with the 10 protein sequences reported for the Wuhan-Hu-1 isolate: E (GenBank accession: 
QHD43418); M (QHD43419); N (QHD43423);S (QHD43416); ORF3a (QHD43417); ORF6 (QHD43420); 
ORF7a (QHD43421); ORF8 (QHD43422); ORF10 (QHI42199); ORF1ab (QHD43415). We used standard meth-
ods similar to those previously applied to the analysis of SARS-CoV-2 protein sequences38,43.

For CD8+ T cell epitope prediction, NetCTL 1.2 (Immune Epitope Database) was initially used to evaluate 
the binding of nonameric peptides derived from each viral protein to the most common HLA class I supertypes 
present among the human population44,45. HLA class I molecules preferentially bind 9-mer peptides, and most 
algorithm training datasets have been based on peptides of this length. The weight placed on C-terminal cleavage 
and antigen transport efficiency was 0.15 and 0.05, respectively. The antigenic score threshold was 0.75. Peptides 
with scores above this threshold were subsequently analyzed on the NetMHCpan 4.0 server (Technical University 
of Denmark) to predict binding affinity and percentile rank across representative alleles of each major HLA class 
I supertype (HLA-A*01:01, HLA-A*02:01, HLA-A*03:01, HLA-A*24:02, HLA-B*07:02, HLA-B*08:01, HLA-
B*27:05, HLA-B*40:01, HLA-B*58:01, HLA-B*15:01), which collectively cover the majority of class I alleles 
present in the human population46–48. Thresholds for defining binding strength were set at 0.5% and 2.0% for 
strong and weak binders, respectively.

For CD4+ T cell epitope prediction, NetMHCIIpan 3.2 server (Technical University of Denmark) was used 
for predicting the binding affinity and percentile rank of 15-mer peptides derived from each viral protein across 
a reference panel of 27 HLA class II molecules36,49. Thresholds for defining binding strength were set at 2% and 
10% for strong and weak binders, respectively.

HLA class I and class II peptides with high predicted binding affinities (≤ 500 nM), high percentile ranks 
(≤ 0.5% for class I; ≤ 2% for class II), and broad HLA coverage (≥ 3 alleles) were independently analyzed on the 
VaxiJen 2.0 server (Edward Jenner Institute)50,51 using a conservative score threshold (0.7) to predict antigenic-
ity. Global population HLA allele coverage for this peptide subset was separately calculated for class I and class 
II molecules using the Population Coverage tool from IEDB52 and the predicted HLA alleles identified in our 
analyses. The potential toxicity and allergenicity of each peptide were calculated using the ToxinPred53 and 
AllerCatPro54 web tools, respectively. Default parameters were used for all sequence inputs.

Molecular docking of HLA class I peptides.  Docking simulations of 5 HLA class I-restricted SARS-
CoV-2 peptides with high antigenicity scores and a commonly shared predicted HLA molecule (HLA-
DRB1*15:01) were performed using the GalaxyPepDock server (Seoul National University Laboratory of 
Computational Biology)55. The structure of HLA-DRB1*15:01 was accessed from the Protein Data Bank as a co-
crystallized structure of the HLA molecule with a nonameric SARS-CoV peptide (PDB ID: 3C9N)56. The bound 
nonamer peptide was removed from the structure using Chimera 1.14 (University of California-San Francisco)57 
prior to running simulations. Ten models of each peptide-HLA complex were generated on the basis of mini-
mized energy scores, and the top model for each complex was selected for comparative analysis.

Prediction and structural modeling of SARS‑CoV‑2 B cell epitopes.  Linear B cell epitope predic-
tions were performed on the three exposed SARS-CoV-2 structural proteins: S (GenBank accession: QHD43416), 
M (QHD43419), and E (QHD43418) using the BepiPred 1.0 algorithm58. Epitope probability scores were cal-
culated for each amino acid residue using a threshold of 0.35 (corresponding to > 0.75 specificity and sensitivity 
below 0.5), and only epitopes ≥ 5 amino acid residues in length were further analyzed. The structure of the SARS-
CoV-2 S protein was accessed from the Protein Data Bank (PDB ID: 6VSB)59. Discontinuous (i.e., structural) B 
cell epitope predictions for the S protein structure were carried out using DiscoTope 1.160 with a score threshold 
greater than − 7.7 (corresponding to > 0.75 specificity and sensitivity below 0.5). The main protein structure 
was modeled in PyMOL (Schrödinger, LLC), with predicted B cell epitopes identified by both BepiPred 1.0 and 
DiscoTope 1.1 highlighted as spheres.

All data presented and analyzed were retrieved from ViPR, IEDB, and PDB as described. The tables, figures 
and supplementary files include all data generated and/or analyzed as a part of this study. Files of peptides and 
protein sequences compiled from ViPR and IEDB are available upon request.

Results
Genetic similarity of SARS‑CoV‑2 isolates.  The primary goal of our study was to identify peptide 
epitopes that would be broadly applicable in vaccine development efforts against SARS-CoV-2. We identified 
72 point mutations and 5 deletions across the genomes of 44 clinical isolates, with the majority of mutations 
(n = 46) and deletions (n = 4) occurring in the ORF1ab polyprotein (Supp. Figure S1, Supp. Table S1). Single-
point mutations were also found in the S protein (n = 5), N protein (n = 5), ORF8 protein (n = 3), ORF3a protein 
(n = 2), E protein (n = 1), and M protein (n = 1). The remaining mutations (n = 10) and 1 deletion were mapped 
to the untranslated regions (UTRs) of the SARS-CoV-2 genome. Despite the genetic diversity introduced by 
these events (Fig. 1D), matrix analysis determined that > 99% sequence identity was maintained across all viral 
genomes. Based on these findings and for study feasibility, the genome from the original virus isolate (Wuhan-
Hu-1; GenBank: MN908947) was selected as the consensus sequence for all further analyses.

Prediction of CD8+ T cell epitopes in the SARS‑CoV‑2 proteome.  We next identified potential 
CD8+ T cell epitopes from all proteins in the SARS-CoV-2 proteome. Using the NetCTL 1.2 predictive algo-
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rithm, we analyzed the complete amino acid sequence of each viral protein to generate sets of 9-mer peptides 
predicted to be recognized across at least one of the major HLA class I supertypes (Fig. 2A, Supp. Figure S2). 
This approach yielded a significant number of potential epitopes from each viral protein (ORF10: 9, ORF6: 17, 
ORF8: 23, E: 25, ORF7: 39, N: 80, M: 87, ORF3a: 87, S: 321, ORF1ab: 2814), with the number directly related to 
the size of the parent protein. We used the NetMHCpan 4.0 server to further refine the list of potential CD8+ T 
cell epitopes by predicting binding affinity across representative HLA class I alleles (see Methods) and assigning 
percentile scores to quantify binding propensity. Peptides with percentile rank scores ≤ 0.5% (i.e., strong bind-
ers) were filtered using a 500 nM threshold for binding affinity to further delineate 740 candidate HLA class I 
epitopes from the viral proteome61. For feasibility reasons, we refined our selection to 83 candidate epitopes 
by excluding peptides predicted to bind only one HLA molecule (Supp. Table S1). The resultant peptides were 
enriched for predicted binders to HLA-B molecules (HLA-B*15:01 = 50; HLA-B*58:01 = 32; HLA-B*08:01 = 31) 
(Fig. 2B). A final round of selection on the basis of HLA promiscuity (i.e., predicted binding to ≥ 3 HLA mol-
ecules) and predicted antigenicity scoring using the VaxiJen 2.0 server produced a subset of five candidate pep-
tides (four ORF1ab, one S protein) as potential targets for vaccine development (Table 1) with the hypothesis 
that increased HLA binding promiscuity meant broader population base coverage by those peptides. These pep-

Figure 2.   Immunogenicity scoring of peptides in the SARS-CoV-2 proteome with predicted HLA class I and 
II coverage and binding affinities. (A) Plots illustrating the NetCTL score for each sequential peptide across 
the entire amino acid sequence for each SARS-CoV-2 protein. Scores presented are the highest score identified 
across all HLA class I supertypes for each peptide. (B) Total number of predicted peptide epitopes distributed 
across HLA class I alleles. (C) Average predicted binding affinities by HLA allele for the top candidate class I 
peptides listed in Table 1. (D) Total number of predicted peptide epitopes distributed across HLA class II alleles. 
(E) Average predicted binding affinities by HLA allele for the top candidate class II peptides listed in Table 1.



5

Vol.:(0123456789)

Scientific Reports |        (2020) 10:14179  | https://doi.org/10.1038/s41598-020-70864-8

www.nature.com/scientificreports/

tides were predicted to provide 74% global population coverage and had higher predicted binding affinities for 
HLA-B molecules (B*08:01 = 42.6 nM; B*15:01 = 67.7 nM; B*58:01 = 110.3 nM) compared to HLA-A molecules 
(A*01:01 = 238.6 nM; A*24:02 = 142.9 nM), with the exception of one ORF1ab-derived peptide (MMISAGFSL) 
that was predicted to bind HLA-A*02:01 with high affinity (IC50 = 6.9 nM) (Fig. 2C, Figure S3). 

Prediction of CD4+ T cell epitopes in the SARS‑CoV‑2 proteome.  We also sought to identify poten-
tial HLA class II peptides from SARS-CoV-2, as the stimulation of CD4+ T-helper cells is critical for robust vac-
cine-induced adaptive immune responses. Using the NetMHCIIpan 3.2 server, we identified 801 candidate HLA 
class II peptides from the viral proteome predicted to have high binding affinity (≤ 500 nM) and percentile rank 
scores ≤ 2% across a reference panel of HLA molecules covering > 97% of the population36,49. Similar to HLA 
class I epitope predictions, the number of class II epitopes identified for each viral protein (ORF10: 4, E protein: 
7, ORF7: 8, ORF8: 10, ORF6: 14, N: 15, M: 29, ORF3a: 31, S: 96, ORF1ab: 587) was largely proportional to pro-
tein size. After excluding peptides predicted to bind to only a single HLA molecule in our panel, we refined our 
selection to 211 peptides (Supp. Table S3), which were enriched for binding to HLA-DRB1 molecules (n = 142) 
(Fig. 2D). Filtering on HLA promiscuity and predicted antigenicity scores yielded a subset of 36 peptides (24 
ORF1ab, 5 S protein, 2 M protein, 2 ORF7, 1 ORF3a, 1 ORF6, 1 ORF8) as CD4+ T cell epitopes for further 
study (Table 1). These peptides were predicted to collectively provide 99% population coverage and have signifi-
cantly higher average binding affinities for HLA-DR alleles (DRB1 = 56.4 nM; DRB3 = 50.9 nM; DRB4 = 70.1 nM; 
DRB5 = 18 nM) compared to HLA-DP (155.9 nM) or HLA-DQ (238.6 nM) molecules (Fig. 2E, Figure S3). None 
of the peptides identified in our study (class I or class II) were predicted to be toxic or allergenic (Table S4).

Characterization of HLA class I peptide docking with HLA‑B*15:01.  The five candidate HLA class 
I peptides identified by our computational approach were predicted to provide coverage across six HLA alleles 
(A*01:01, A*02:01, A*24:02, B*08:01, B*15:01, B*58:01). The peptide FAMQMAYRF was the only candidate 
predicted to bind to A*24:02 molecules, whereas MMISAGFSL was predicted to uniquely bind A*02:01 and 
B*08:01 molecules. Four of the five peptides were predicted to bind A*01:01 and B*58:01 molecules, but all were 
predicted to bind with relatively high affinity (average IC50 = 67.7 nM) to HLA-B*15:01. Therefore, we performed 
molecular docking studies of each peptide with the molecular structure of HLA-B*15:01 (PDB: 3C9N).

All peptides were predicted to bind within the peptide binding groove, forming hydrogen bond contacts with 
numerous amino acid side chains (Fig. 3A). The binding motif for HLA-B*15:01 is highly selective for residues 
at the P2 and P9 anchor positions, with a preference for bulky hydrophobic amino acids at the C-terminus 
(Fig. 3B)62. All candidate peptides possessed terminal residues (Phe, Tyr, Leu) that fit into the hydrophobic bind-
ing pocket of the HLA groove, further supporting that these peptides should be strong binders of HLA-B*15:01 
and promising candidates for vaccine development studies.

Prediction of B cell epitopes in SARS‑CoV‑2 proteins.  An effective vaccine should stimulate both 
cellular and humoral immune responses against the target pathogen; therefore, we also sought to identify poten-
tial B cell epitopes from SARS-CoV-2 proteins. We limited our analysis to the primary structural proteins of 
the virus (S, N, M, and E), as these are the most accessible antigens for engaging B cell receptors. Using the 
Bepipred 1.0 algorithm, we identified 26 potential linear B cell epitopes in the S protein, 14 potential epitopes 
in the N protein, and 3 potential epitopes in the M protein (Table S5). No epitopes were identified in the E 
protein. Studies have previously shown the S protein to be the predominant target of neutralizing antibodies 
against coronaviruses63,64, and, as our findings indicate this to likely be the case for SARS-CoV-2, we focused 
all subsequent analyses on the S protein. While the N protein is also a major target of the antibody response65, 
it is unlikely these antibodies have any neutralizing activity based on the confinement of the N protein to the 
interior of intact virions. As epitope conformation can significantly influence recognition by antibodies, we also 
employed DiscoTope 1.1 to identify discontinuous B cell epitopes in the protein structure. Our analysis identi-
fied 16 potential structural epitopes in the S protein (9 in the S1 domain, 7 in the S2 domain), with six regions 
having significant overlap with our predicted linear epitopes (Table 2, Table S5). Antigenic regions identified in 
both analyses were modeled using the recently published structure of the SARS-CoV-2 S protein59 to examine 
their accessibility for antibody binding. Epitopes in the S2 domain (P792-D796; Y1138-D1146) were clustered 
near the base of the spike protein, whereas regions in the S1 domain (D405-D428; N440-N450; G496-P507; 
D568-T573) were exposed on the protein surface (Fig. 4).

Discussion
In the face of the COVID-19 pandemic, it is imperative that safe and effective vaccines be rapidly developed in 
order to induce widespread herd immunity in the population and prevent the continued spread of SARS-CoV-2. 
Our study identified probable peptide targets of both cellular and humoral immune responses against SARS-
CoV-2 using computational methodologies to investigate the entire viral proteome a priori. Studies such as these 
are paramount during the early stages of pandemic vaccine development given the relative scarcity of biological 
data available on the viral immune response, and we employed an approach that allowed us to systematically 
refine our predictions using increasingly stringent criteria to select a subset of the most promising epitopes for 
further study. The data we have curated could inform the design of a candidate peptide-based vaccine or diag-
nostic against SARS-CoV-2.

As selective pressures are known to introduce viral mutations that promote fitness and can lead to evasion of 
immune responses66,67, we first sought to investigate the genetic similarity of all reported SARS-CoV-2 clinical 
isolates and identify a consensus sequence for use in our epitope prediction studies. The identification of amino 
acid mutations (and deletions) across the SARS-CoV-2 proteome was a critical step taken early in this study, as 
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Protein Peptide Residues Antigenicity score Predicted Alleles Binding affinity (nM)

Class I

S FAMQMAYRF# 898–906 1.0278

A*24:02 142.9

B*15:01 123.9

B*58:01 23.4

ORF1ab LSFKELLVY 4758–4767 0.7234

A*01:01 371.8

B*15:01 42.6

B*58:01 35.7

ORF1ab MMISAGFSL# 6425–6434 1.0248

A*02:01 6.9

B*08:01 367.6

B*15:01 16.2

ORF1ab MSNLGMPSY* 2254–2262 0.9272

A*01:01 184.2

B*15:01 74.1

B*58:01 87.6

ORF1ab STNVTIATY​# 2273–2281 0.7143

A*01:01 241.1

B*15:01 81.9

B*58:01 294.5

Class II

M ASFRLFARTRSMWSF* 98–112 0.7304

DRB1*01:01 19.2

DRB1*07:01 30.9

DRB1*08:02 53.5

DRB1*09:01 49.9

DRB1*11:01 12.2

DRB5*01:01 16.3

DPA1*02:01/DPB1*05:01 256.2

DPA1*02:01 DPB1*14:01 387.3

M LLQFAYANRNRFLYI* 34–48 0.7387

DRB1*03:01 179.8

DRB1*07:01 58.2

DRB1*08:02 225.6

DRB1*11:01 36.2

DRB1*13:02 27.8

DRB3*02:02 46.6

DRB5*01:01 26.3

S AAEIRASANLAATKM* 1015–1029 0.7125

DRB1*08:02 101.3

DRB1*13:02 23.0

DRB3*02:02 52.7

DQA1*01:02/DQB1*06:02 141.5

DPA1*02:01/DPB1*14:01 327.4

S ALQIPFAMQMAYRFN* 893–907 1.0112

DRB1*09:01 52.9

DRB1*12:01 159.5

DRB1*15:01 50.3

S PYRVVVLSFELLHAP* 507–521 0.8161

DPA1*02:01/DPB1*01:01 79.6

DPA1*01:03/DPB1*02:01 53.3

DPA1*01:03/DPB1*04:01 77.1

DPA1*03:01/DPB1*04:02 92.9

S QPYRVVVLSFELLHA# 506–520 0.9109

DPA1*02:01/DPB1*01:01 73.2

DPA1*01:03/DPB1*02:01 50.2

DPA1*01:03/DPB1*04:01 71.4

DPA1*03:01/DPB1*04:02 90.1

DPA1*02:01/DPB1*05:01 211.1

S YQPYRVVVLSFELLH* 505–519 0.9711

DPA1*02:01/DPB1*01:01 102.2

DPA1*01:03/DPB1*04:01 93.0

DPA1*03:01/DPB1*04:02 127.5

DPA1*02:01/DPB1*05:01 299.3

ORF1ab ANYIFWRNTNPIQLS# 7024–7038 1.0311

DRB1*04:05 89.9

DRB1*07:01 35.2

DRB1*13:02 13.5

Continued
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Protein Peptide Residues Antigenicity score Predicted Alleles Binding affinity (nM)

ORF1ab FKWDLTAFGLVAEWF* 2314–2328 0.8059

DQA1*05:01/DQB1*02:01 178.3

DQA1*03:01/DQB1*03:02 425.3

DQA1*04:01/DQB1*04:02 349.3

ORF1ab HIQWMVMFTPLVPFW* 3125–3139 0.7238

DQA1*01:01/DQB1*05:01 293.1

DPA1*02:01/DPB1*01:01 116.3

DPA1*01:03/DPB1*04:01 84.6

DPA1*03:01/DPB1*04:02 135.4

ORF1ab IINLVQMAPISAMVR* 4048–4062 0.7682

DRB1*01:01 12.8

DRB1*08:02 118.8

DRB4*01:01 54.7

ORF1ab INLVQMAPISAMVRM* 4049–4063 0.9037

DRB1*12:01 176.9

DRB4*01:01 57.1

DQA1*01:02/DQB1*06:02 116.5

DPA1*02:01/DPB1*14:01 398.6

ORF1ab IVFMCVEYCPIFFIT 3758–3772 1.0267

DPA1*02:01/DPB1*01:01 116.2

DPA1*01:03/DPB1*02:01 53.9

DPA1*01:03/DPB1*04:01 70.9

DPA1*03:01/DPB1*04:02 144.9

ORF1ab IVTALRANSAVKLQN* 4127–4141 0.7692

DRB1*08:02 115.9

DRB1*13:02 9.4

DRB3*02:02 19.5

DPA1*02:01/DPB1*14:01 408.7

ORF1ab KGRLIIRENNRVVIS* 7075–7089 0.7821

DRB1*12:01 170.9

DRB1*13:02 9.5

DRB1*15:01 48.2

DRB4*01:01 58.8

ORF1ab KSAFYILPSIISNEK* 1350–1364 0.7169

DRB1*01:01 9.3

DRB1*04:01 49.3

DRB1*04:05 47.5

DRB1*08:02 96.3

ORF1ab LIVTALRANSAVKLQ# 4126–4140 0.7473

DRB1*01:01 8.8

DRB1*07:01 39.2

DRB4*01:01 78.6

DQA1*01:02/DQB1*06:02 142.5

DPA1*02:01/DPB1*14:01 368.3

ORF1ab NLPFKLTCA​TTR​QVV 2737–2751 1.1632

DRB1*07:01 35.9

DRB1*09:01 58.6

DRB5*01:01 23.9

ORF1ab PASRELKVTFFPDLN 1950–1964 1.0155

DPA1*02:01/DPB1*01:01 76.9

DPA1*01:03/DPB1*02:01 48.9

DPA1*01:03/DPB1*04:01 64.3

DPA1*03:01/DPB1*04:02 149.5

ORF1ab PFAMGIIAMSAFAMM* 3613–3627 0.9834

DRB1*01:01 12.3

DRB1*09:01 57.6

DQA1*05:01/DQB1*03:01 45.6

ORF1ab QMNLKYAISAKNRAR​# 4933–4947 1.5044

DRB1*01:01 14.9

DRB1*04:01 56.9

DRB1*08:02 49.1

DRB1*09:01 45.2

DRB1*11:01 22.1

DRB3*02:02 84.9

DPA1*02:01/DPB1*14:01 158.3

ORF1ab QQKLALGGSVAIKIT 6956–6970 1.2533

DRB1*01:01 12.6

DRB1*07:01 23.4

DRB1*09:01 32.3

DQA1*05:01/DQB1*03:01 42.9

Continued
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Protein Peptide Residues Antigenicity score Predicted Alleles Binding affinity (nM)

ORF1ab RFKESPFELEDFIPM# 6709–6723 1.2101

DPA1*02:01/DPB1*01:01 74.0

DPA1*01:03/DPB1*02:01 65.9

DPA1*01:03/DPB1*04:01 81.9

DPA1*03:01/DPB1*04:02 130.6

ORF1ab SAFAMMFVKHKHAFL 3622–3636 0.7305

DRB1*08:02 110.4

DRB1*11:01 18.3

DRB1*15:01 50.9

DRB4*01:01 79.2

DRB5*01:01 15.1

ORF1ab SFLAHIQWMVMFTPL# 3121–3135 0.8215

DPA1*02:01/DPB1*01:01 103.9

DPA1*01:03/DPB1*02:01 47.8

DPA1*01:03/DPB1*04:01 70.7

DPA1*03:01/DPB1*04:02 140.6

ORF1ab SIGFDYVYNPFMIDV* 6155–6169 1.0823

DPA1*02:01/DPB1*01:01 108.9

DPA1*01:03/DPB1*02:01 47.1

DPA1*01:03/DPB1*04:01 81.9

DPA1*03:01/DPB1*04:02 137.6

ORF1ab TEETFKLSYGIATVR* 5465–5479 0.8859

DRB1*01:01 8.7

DRB1*07:01 21.8

DRB1*09:01 25.9

ORF1ab VLVQSTQWSLFFFLY* 3593–3607 0.7309

DPA1*02:01/DPB1*01:01 77.0

DPA1*01:03/DPB1*02:01 35.3

DPA1*01:03/DPB1*04:01 42.3

DPA1*03:01/DPB1*04:02 93.1

ORF1ab VQSTQWSLFFFLYEN* 3595–3609 0.7509

DPA1*02:01/DPB1*01:01 107.1

DPA1*01:03/DPB1*02:01 49.9

DPA1*03:01/DPB1*04:02 129.8

ORF1ab WLIINLVQMAPISAM# 2366–2380 0.9389

DRB1*12:01 130.6

DRB4*01:01 65.9

DQA1*01:02/DQB1*06:02 139.6

ORF1ab YFNMVYMPASWVMRI* 3649–3663 0.7244

DRB1*01:01 8.3

DRB1*04:05 80.2

DRB1*07:01 38.2

DRB1*09:01 37.4

DRB1*12:01 184.5

DRB1*15:01 30.1

ORF3 KKRWQLALSKGVHFV# 66–80 0.8172

DRB1*01:01 9.2

DRB1*07:01 11.6

DRB1*08:02 200.3

DRB1*09:01 17.9

DRB1*11:01 43.1

DRB1*12:01 119.6

DRB1*13:02 30.0

DRB1*15:01 34.2

DRB4*01:01 79.8

DRB5*01:01 18.4

ORF6 MFHLVDFQVTIAEIL# 1–15 1.0366

DQA1*05:01/DQB1*02:01 192.0

DQA1*01:01/DQB1*05:01 292.1

DPA1*02:01/DPB1*01:01 108.3

DPA1*01:03/DPB1*04:01 100.7

ORF7 VKHVYQLRARSVSPK# 71–85 1.0865

DRB1*01:01 14.3

DRB1*08:02 150.6

DRB1*11:01 38.3

DRB4*01:01 86.6

Continued



9

Vol.:(0123456789)

Scientific Reports |        (2020) 10:14179  | https://doi.org/10.1038/s41598-020-70864-8

www.nature.com/scientificreports/

we wanted to ensure the protein sequence analyzed with peptide epitope prediction algorithms was representative 
of the protein sequences in circulating viral variants. Mismatches between predicted peptides and viral proteins 
could compromise the efficacy and utility of such peptides as vaccine candidates or diagnostic agents. We iden-
tified 77 mutations/deletions across the 44 genomes of clinical isolates reported as of 27 February 2020 (Supp. 
Table S1). Despite these variations, the viral genomic identity was > 99% conserved across all isolates. Many of 
these were silent mutations that did not impact the amino acid sequence, while those mutations that induced 
coding changes were largely limited to single isolates. As the protein coding sequences were largely conserved, 
the genome of the original virus isolate (Wuhan-Hu-1) was deemed a representative consensus sequence for 
analysis of the SARS-CoV-2 proteome.

Protein Peptide Residues Antigenicity score Predicted Alleles Binding affinity (nM)

ORF7 NKFALTCFSTQFAFA* 52–66 1.1728

DPA1*02:01/DPB1*01:01 50.9

DPA1*01:03/DPB1*02:01 29.1

DPA1*01:03/DPB1*04:01 35.9

DPA1*03:01/DPB1*04:02 80.2

DPA1*02:01/DPB1*05:01 273.4

ORF8 SKWYIRVGARKSAPL* 43–57 0.8829

DRB1*01:01 13.7

DRB1*08:02 87.8

DRB1*09:01 50.7

DRB1*11:01 15.3

DRB5*01:01 8.8

Table 1.   Top predicted HLA class I and class II T cell epitopes. *Significant sequence overlap with peptides 
reported in38,43. # Exact peptide replicated from analyses reported in38,43.

Figure 3.   Docking of top predicted HLA class I peptides with a shared HLA molecule. (A) Structural docking 
model for each indicated peptide with the molecular structure of HLA-B*15:01 (PDB: 3C9N). Individual panels 
represent top-down views of the peptide binding groove. (B) Binding motif for HLA-B*15:01. (C) Template 
Modeling and Interaction Similarity scores for the selected peptide docking models shown in panel A81,82.
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CD4+ and CD8+ T cell responses will likely be directed against both structural and non-structural proteins 
during antiviral immune responses, as all viral proteins are accessible for processing and presentation on the 
HLA molecules of infected cells. Therefore, we sought to identify T cell epitopes across the entire viral proteome. 
Our analysis identified 83 potential CD8+ T cell epitopes (Supp. Table S2) and 211 potential CD4+ T cell epitopes 
(Supp. Table S3), with stringent filtering for more promiscuous peptides with high predicted antigenicity yielding 
a subset of 5 CD8+ T cell epitopes and 36 CD4+ T cell epitopes (Table 1) as potential targets for vaccine develop-
ment. A study by Grifoni and colleagues has recently reported the computational identification of 241 CD4+ T cell 
epitopes from SARS-CoV-238, and Srivastava et al. also recently reported the prediction of class II peptides from 
the SARS-CoV-2 proteome43. Twenty-one peptides from our analysis shared sequence homology or were nested 
within peptides identified in these studies. Moreover, ten peptides from these initial reports were replicated 
in our final subset of HLA class II epitopes, supporting that these peptides may be promising vaccine targets.

An increasing number of studies have employed predictive algorithms to identify potential HLA class I 
epitopes for SARS-CoV-2, although relatively few have comprehensively analyzed the entire viral proteome. A 
report from Feng et al. recently outlined the identification of 499 potential class I epitopes in the main structural 
proteins from SARS-CoV-2 but did not consider any non-structural proteins41. Grifoni and colleagues conducted 
a more rigorous analysis, identifying 628 unique CD8+ T cell epitopes across all SARS-CoV-2 proteins but focus-
ing their analyses solely on peptides with sequence homology to known SARS-CoV epitopes38. Our approach 
initially identified ~ 3,500 potential CD8+ T cell epitopes across all viral proteins, which we refined to a subset of 
5 peptides (Table 1). Three of these peptides (i.e., FAMQMAYRF, STNVTIATY, MMISAGFSL) were replicated 
from previous studies38,43. The MMISAGFSL peptide derived from ORF1ab was predicted to bind HLA-A*02:01 
with high affinity (IC50 = 6.9 nM) (Fig. 2C). Given the prevalence of this allele in the American and European 
populations (25–60% frequency)68, MMISAGFSL may represent a promising epitope capable of providing broad 
vaccine population coverage.

We also observed a notable enrichment of epitopes predicted to bind HLA-B molecules—particularly HLA-
B*15:01—as we imposed more stringent selection criteria (Fig. 2B). All five peptides identified by our approach 
were predicted to be relatively strong binders for this allele (IC50 = 67.7 nM), with molecular docking simula-
tions illustrating strong contacts with amino acid residues in the peptide binding groove (Fig. 3A,B). A recent 
computational study identified another HLA-B allele (B*15:03) as having a high capacity for presenting epitopes 
from SARS-CoV-2 that were conserved among other pathogenic coronaviruses69. These data collectively suggest 
the HLA-B locus may be significantly associated with the immune response to SARS-CoV-2 (and potentially 
other coronaviruses), with further biological studies warranted to determine the true role of host genetics in 
SARS-CoV-2 immunology.

Lastly, we analyzed the primary structural proteins of SARS-CoV-2 (S, N, M, E proteins) for potential B cell 
epitopes, as an ideal vaccine would be designed to stimulate both cellular and humoral immunity. Our analysis 
identified potential linear B cell epitopes in all proteins except for the E protein (Table 2). The greatest number 
of epitopes were predicted in the surface-exposed S protein (n = 26), but a significant number of epitopes were 
also predicted for the N protein (n = 14). This is not surprising, as previous reports identified the N protein 
as a significant target of the humoral response to SARS-CoV70,71. As the S protein is the predominant surface 
protein and has been the primary target of neutralizing antibody responses against other coronaviruses63,64, we 
elected to focus our subsequent analyses solely on antigenic regions in the S protein. We identified 16 potential 
structural epitopes in the S protein structure and referenced against our linear epitope predictions to identify 
six regions that were independently identified by both analyses (Table 2, Fig. 4). Feng et al. recently reported the 
computational identification of 19 surface epitopes in the S protein using Bepipred and the Kolaskar method41, 
four of which had significant sequence overlap with the regions identified by our analyses.

To further evaluate the potential of these six antigenic regions as targets for antibody binding, we modeled 
their surface accessibility on the crystal structure of the SARS-Cov-2 spike protein59. Four regions in the S1 
domain (D405-D428; N440-N450; G496-P507; D568-T573) were solvent exposed (Fig. 4A,B), with minimal 
steric hindrance for antibody accessibility. The S1 domain contains the residues (N331-V524) important for 
virus binding to angiotensin converting enzyme 2 (ACE2) on the cell surface72, and studies have shown that 
antibodies with potent neutralizing activity against SARS-CoV target this domain73–75. Indeed, three of the four 
S1 epitopes identified in our analyses are located in the ACE2-binding region, supporting their potential utility 
in vaccine development against SARS-CoV-2. Two regions were identified in the S2 “stalk” domain of the S pro-
tein (Fig. 4A,C). While V1137-F1148 is located at the base of the S protein and likely inaccessible to antibodies, 
P792-D796 is on the outer face of the protein and has been previously identified as part of a larger B cell epitope 

Table 2.   Top predicted B cell epitopes for the S protein. a Reported scores represent the average calculated 
across all amino acids for the combined epitope sequence.

Peptide Residues Bepipred scorea DiscoTope scorea

DEVRQIAPGQTGKIADYNYKLPDD 405–428 0.715 − 5.71

NLDSKVGGNYN 440–450 0.577 − 5.77

GFQPTNGVGYQP 496–507 1.01 − 5.73

DIADTT 568–573 0.853 − 5.55

PPIKD 792–796 0.936 − 3.28

VYDPLQPELDSF 1137–1148 0.747 − 4.12
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that is conserved with SARS-CoV38. As SARS-CoV S2-specific antibodies have previously been shown to possess 
antiviral activity73, it is interesting to speculate whether a strategy similar to targeting the influenza hemagglutinin 
protein stalk could be employed for developing a broadly reactive coronavirus vaccine.

Our study possessed several strengths and limitations. Rather than restricting our analyses of HLA class I 
and class II epitopes to specific proteins based on prior studies of SARS-CoV immunology, we investigated the 
complete proteome of SARS-CoV-2 using an unbiased approach. Furthermore, we employed a multi-tiered 
strategy for identifying putative B cell and T cell epitopes from all viral proteins studied. Our initial analyses 

Figure 4.   Modeling of predicted B cell epitopes on the crystal structure of the S glycoprotein. Predicted 
structural epitopes in the S1 domain (A) and S2 domain (B) highlighted on the structure of the S glycoprotein 
monomer (PDB: 6VSB). (C) Top predicted B cell epitopes identified by both Bepipred and DiscoTope prediction 
algorithms highlighted on the trimeric structure of the S glycoprotein. Inset panels show the S1 domain (upper) 
and S2 domain (lower). Predicted epitopes are highlighted as colored atoms (green, blue, red) on the surface of 
the S protein (salmon).
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were performed with liberal thresholds for epitope identification, and at each additional step, we imposed more 
stringent selection criteria to filter these peptides to a subset of B cell and T cell epitopes for further study. Nev-
ertheless, the results of this study are derived purely from computational methods, and it should be noted that 
computational algorithms can fail to capture a significant number of antigenic peptides76. Experimental validation 
with biological samples will ultimately be needed.

During the early stages of a pandemic, access to sufficient biological samples may be extremely limited, so 
we must continue to utilize methodologies—such as computational predictive algorithms—that allow us to 
explore the epitope landscape for experimental vaccine development. Our approach in this study allowed us 
to identify and refine a manageable subset of T cell and B cell epitopes for further testing as components of a 
SARS-CoV-2 vaccine. Based on our results, our proposed SARS-CoV-2 vaccine formulation could contain the 
following: (1) one or more B cell peptide epitopes from the S protein to generate protective neutralizing anti-
bodies; and (2) multiple HLA class I and class II-derived peptides from other viral proteins to stimulate robust 
CD8+ and CD4+ T cell responses. Based on global allele frequencies, these class I and class II peptides would be 
expected to collectively provide 74% and 99% population coverage, respectively. While such a vaccine could be 
readily formulated as a synthetic polypeptide or an adjuvanted peptide mixture, these strategies may not retain 
the epitope structural features necessary to induce a robust antibody response. Recombinant nanoparticles and 
assembly into VLPs represent promising alternative vaccine platforms, as they have been extensively used for 
the controlled display and delivery of peptide-based vaccine components77–80. By omitting whole viral proteins 
from the vaccine formulation, a peptide-based SARS-CoV-2 vaccine containing both class I and class II peptides 
should have a well-tolerated safety profile and promote a balanced Th1/Th2 response that avoids the Th2-biased 
adverse events previously observed with experimental SARS-CoV vaccines19–22. However, it should be noted that 
computational algorithms cannot currently predict the overall nature of an immune response or the potential 
for immunopathologies to develop after vaccination, as these processes are influenced by several factors (e.g., 
antigen dose, adjuvant system, administration route, antigen-release kinetics). Extensive biological testing of 
these peptides in experimental vaccine formulations will be required to ascertain information in this regard.

In summary, we have identified 41 potential T cell epitopes (5 HLA class I, 36 HLA class II) and 6 potential B 
cell epitopes from across the SARS-CoV-2 proteome that are predicted to have broad population coverage and 
could serve as the basis for designing investigational peptide-based vaccines. Further study on the biological 
relevance, immunogenicity, and immune response profiles of these peptides is warranted in an effort to develop 
a safe and effective vaccine to combat the SARS-CoV-2 pandemic.

Data availability
All data presented and analyzed were retrieved from ViPR, IEDB, and PDB as described. The tables, figures and 
supplementary files include all data generated and/or analyzed as a part of this study. Files of peptides and protein 
sequences compiled from ViPR and IEDB are available upon request.
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