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Alzheimer’s disease (AD) is characterized by the progressive disturbance in cognition and affects approximately 36 million people,
worldwide. However, the drugs used to treat this disease are only moderately effective and do not alter the course of the
neurodegenerative process. This is because the pathogenesis of AD is mainly associated with oxidative stress, and current drugs
only target two enzymes involved in neurotransmission. Therefore, the present study sought to identify potential multitarget
compounds for enzymes that are directly or indirectly involved in the oxidative pathway, with minimal side effects, for AD
treatment. A set of 159 lignans were submitted to studies of QSAR and molecular docking. A combined analysis was performed,
based on ligand and structure, followed by the prediction of absorption, distribution, metabolism, excretion, and toxicity
(ADMET) properties. The results showed that the combined analysis was able to select 139 potentially active and multitarget
lignans targeting two or more enzymes, among them are c-Jun N-terminal kinase 3 (JNK-3), protein tyrosine phosphatase 1B
(PTP1B), nicotinamide adenine dinucleotide phosphate oxidase 1 (NOX1), NADPH quinone oxidoreductase 1 (NQO1),
phosphodiesterase 5 (PDE5), nuclear factor erythroid 2-related factor 2 (Nrf2), cycloxygenase 2 (COX-2), and inducible nitric
oxide synthase (iNOS). The authors conclude that compounds (06) austrobailignan 6, (11) anolignan c, (19) 7-epi-virolin, (64)
6-[(2R,3R,4R,5R)-3,4-dimethyl-5-(3,4,5-trimethoxyphenyl)oxolan-2-yl]-4-methoxy-1,3-benzodioxole, (116) ococymosin, and
(135) mappiodoinin b have probabilities that confer neuroprotection and antioxidant activity and represent potential alternative
AD treatment drugs or prototypes for the development of new drugs with anti-AD properties.

1. Introduction

Although Alzheimer’s disease is a multifactorial disease [1,
2], it is characterized by the increased generation and/or
accumulation of amyloidogenic peptides (particularly Aβ),
which are derived from the proteolysis of APP [3]. The pres-
ence of senile plaques in the cerebral cortex is thought to
result in the activation of inflammatory and neurotoxic pro-
cesses, culminating in the production of NO, cytokines, and
ROS [3–9]. This process contributes to neurodegeneration
and the loss of neuronal cells in AD [10, 11].

ROS can have beneficial and negative effects on cellular
functions, depending on their concentrations. Low concen-

trations of ROS can regulate cellular functions, through
redox-dependent signaling and redox-dependent transcrip-
tion factors [8, 9]. However, high concentrations of ROS
can impair vital cell processes, causing damage to proteins,
lipids, and DNA [10]. Therefore, a balance between the pro-
duction and removal of ROS is essential for normal cellular
functions. Homeostasis imbalances can result in oxidative
stress and the subsequent development of pathological con-
ditions [11]. Stress precedes Aβ deposition, tau hyperpho-
sphorylation, and impaired cognitive function. Endogenous
antioxidant systems decrease with aging, favoring the
appearance of AD. Therefore, oxidative stress is at the heart
of AD pathogenesis [12, 13].
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Currently, drugs for the treatment of AD include donepe-
zil, galantamine, and rivastigmine, which are inhibitors of the
enzyme acetylcholinesterase, while memantine is a noncom-
petitive inhibitor drug against N-methyl-D-aspartate
(NMDA) [14–16]. These inhibitors act on cholinergic recep-
tors and glutamate, respectively. This is because the oxidative
glutamate toxicity [13] which is an excitatory neurotransmit-
ter in the central nervous system (CNS) is associated with AD
[16]. The excess of glutamate causes the suppression of cyste-
ine uptake by the xc

─ system, which subsequently causes the
inhibition of glutathione synthesis (GSH), triggering the
accumulation of ROS [17, 18]. In addition to this mechanism,
the neurochemical impairment of cholinergic neurons in the
central nervous system (CNS) can contribute to the pathol-
ogy of AD [17]. Although these drugs represent the best
pharmacological treatments available at the time of AD, they
have a relatively small average overall effect and do not alter
the course of the underlying neurodegenerative process [19]
probably because AD is multifactorial and is related to sev-
eral deregulated mechanisms, due to the activation or inacti-
vation of several enzymes important for homeostasis.

Knowing that oxidative stress is the center of the patho-
genesis of AD, oxidative defense mechanisms appear to be
important targets for the development of new and promising
AD drugs. The Kelch-like ECH-associated protein 1
(Keap1)/Nrf2/ARE pathway is one of the most potent defen-
sive systems against oxidative stress [20]. In addition,
cyclooxygenase-2 (COX-2), inducible nitric oxide synthase
(iNOS), NADPH oxidase (NOX), lipoxygenase (LOX), c-
Jun N-terminal kinase 3 (JNK-3), protein tyrosine phospha-
tase 1B (PTP1B), phosphodiesterase type 5 (PDE5), NADPH
oxidase, sodium-glucose cotransporter (SGLT)1, SGLT2, and
DJ-1 have been associated with the expression of anti-
inflammatory mediators, neuroprotection, and ROS regula-
tion and therefore represent promising AD targets [21–29].

Natural products are important alternatives for AD treat-
ment because they contain widely known and reported clas-
ses of molecules associated with antioxidant activities,
especially polyphenol compounds [23]. Lignans are a class
of polyphenol compounds, which, according to Barbosa
Filho in Simões (1999) [24], are chemically characterized as
dimers formed by the oxidative homocoupling of cinnamic
alcohols or the coupling with cinnamic acids.

Drug design is an important strategy in the field of
medicinal chemistry, which increasingly requires the use of
modern tools to ensure the increased practicality and speed
of obtaining results. For example, we often utilize in silico
studies that seek to understand the properties between a
ligand and its respective receptor [25].

1.1. c-Jun N-Terminal Kinases (JNKs). JNKs represent a fam-
ily of serine-threonine protein kinases that are encoded by 3
genes (JNK1, JNK2, and JNK3) [26]. JNK1 and JNK2 are
ubiquitously expressed, whereas JNK3 is primarily expressed
in the brain. JNKs are activated by phosphorylation (pJNK),
through the activation of mitogen-activated protein (MAP)
kinase kinase (MAPK2), by extracellular stimuli, such as
ultraviolet light, cytokines, and Aβ peptides [27]. In addition,
studies have indicated that JNK can be activated by stress and

triggered by harmful external stimuli, via the kinase cascade
and oxidative stress, in patients with AD [21]. JNKs are asso-
ciated with several important functions in the cell, such as
inflammation, the regulation of gene expression, cell prolifer-
ation, and apoptosis. JNK3 has been implicated in the patho-
genesis of AD because JNK3 phosphorylates amyloid
precursor protein (APP), which increases the production of
Aβ [27]. Due to its fundamental role in neurodegeneration,
JNK pathway signaling has been a target for the design of
pharmacological and potential therapeutic agents [28].

The activation of the JNK pathway depends on the
coordinated interaction among the scaffold proteins that
belong to the JNK activation complex, which is capable
of mediating signal amplification, ensuring substrate spec-
ificity, and coordinating a signaling cascade [29]. Different
stimuli can trigger JNK activation, including JNK interac-
tion protein 1a (JIP1a) and JIP1b (also called IB1), JIP2,
JIP3 (initially called JSAP1) JNK-associated leucine zipper
protein (JLP), and various SRC homology 3 (SH3)
domain-containing proteins. Substrates are activated by
JNK phosphorylation, mediated by c-Jun, which in turn
interact with JunB, JunD, c-Fos, and activating transcrip-
tion factor (ATF), which constitute the transcription factor
activator protein 1 (AP-1), which regulates the maturation
of the cellular response to stress and modulates the signals
that ultimately lead to the activation of caspases and pro-
teins associated with apoptosis [30, 31].

Studies have found elevated levels of JNK-3 in the brains
of living patients with AD compared to levels in controls and
that inhibitors kinases, including JNK-3, are able to reduce
the effects of neuronal injury induced by Aβ [28, 32–34].

1.2. Phosphodiesterases (PDEs). PDEs represent a group of
enzymes, consisting of 11 subtypes (PDE1-PDE11), that con-
trol the cAMP and cGMP hydrolysis rates [31]. Variant PDEs
play specific roles in different physiological characteristics
and pathological processes. Although most PDE isoforms
are expressed in the brain (PDE1, PDE2, PDE3, PDE4,
PDE5A, PDE7A, PDE7B, PDE8B, PDE9A, PD10A, and
PDE11A), their levels of expression vary among regions
[33]. For example, PDE5 and PDE1 are located in the cer-
ebellum, but only in Purkinje neurons; PDE1B is located
in subsets of Purkinje cells; PDE6 is restricted to the retina
and pineal gland; PDE3B is expressed in proopiomelano-
cortin and neuropeptide neurons; PDE1 exhibits distribu-
tion patterns in the hippocampus, cerebral cortex,
thalamus, and striatum [34]; PDE2A is widely expressed
in the brain, with the strongest expression in the cortex,
striatum, and hippocampus; and PDE4 is widely expressed
in the CNS [22].

PDEs can affect neuronal cell survival, and when PDES
malfunction, they can play roles in neurodegenerative dis-
eases, such as AD [23]. PDE5 produces anti-inflammatory
and neuroprotective effects, increasing NOS expression and
cGMP accumulation and activating the protein kinase G
(PKG) signaling pathway, which plays an important role in
the development of several neurodegenerative diseases,
including AD, Parkinson’s disease (PD), and multiple sclero-
sis (MS) [24].
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During AD pathogenesis, PDE5 hydrolyzes cGMP, an
important intracellular messenger that activates PKG, trig-
gering a wide range of intracellular signals [25]. The cyclic
regulation of AMP/cGMP plays a determining role in several
memory-related processes because these molecules are criti-
cal secondary messengers in the brain that are specifically
associated with the memory recovery processes [34]. The
levels of these messengers are maintained by the balance
between production, catalysis, by adenylyl cyclase and gua-
nylyl cyclase, and degradation, which is mediated by PDEs
[35]. PDE5 specifically hydrolyzes cGMP [31]. Therefore,
PDE5 inhibitors act to increase the levels of cGMP in neu-
rons. Age-associated decreases in cGMP levels have been
related to increased PDE5 expression and activity and
the accumulation of Aβ peptide, which inhibits the activa-
tion of the NO/cGMP pathway [23]. Many studies have
shown that PDE5 inhibitors exhibit therapeutic effects on
AD by stimulating NO/cGMP signaling. PDE5 inhibitors
can trigger vasodilation in the brain, resulting in the
increased or sustained activation of signaling pathways
that impact neuroprotective processes [36]. Therefore, ele-
vating cGMP levels through PDE5 inhibition represents an
alternative strategy for improving the learning and mem-
ory functions of AD patients.

1.3. Protein Tyrosine Phosphatase 1B (PTP1B). PTP1B is a
member of the nontransmembrane phosphotyrosine phos-
phatase family [37] and is a regulator of several processes in
the CNS, many of which are therapeutically relevant to AD.
Increased PTPB1 activity is associated with insulin deficiency
and signaling pathways that are impaired in AD [38]. In
addition, increased PTP1B activity can be activated with
endoplasmic reticulum neuroinflammation and stress, which
are both associated with amyloidosis [36]. The neuroinflam-
matory response includes the activation of innate immune
cells in the brain (microglia), the infiltration of macrophages,
and the release of inflammatory mediators, such as NO, cyto-
kines, and chemokines, which are associated with the pro-
gression of neurodegenerative diseases [37]. Inflammatory
processes and amyloid aggregates have been implicated in
neuronal loss and cognitive decline. When activated, PTP1B
suppresses many signaling pathways that activate GSK3 and
are involved in neurodegeneration.

Trodusquemina is a highly selective PTP1B inhibitor
that has been used for the intervention of diabetes and
obesity in clinical trials and has been investigated for the
selective inhibition of PTP1B in neurons. The results
showed that trodusquemina was sufficient to improve spa-
tial learning and memory deficits in hAPP-J20 mice and to
prevent the loss of neurons in the hippocampus [39]. In
another study, PTP1B expression was found to be regu-
lated by inflammatory stimuli, and PTP1B promotes
microglial activation and functions as a critical positive
regulator of neuroinflammation [37]. Thus, the inhibition
of PTP1B provides a new therapeutic strategy for neuroin-
flammatory and neurodegenerative diseases.

1.4. Nicotinamide Adenine Dinucleotide Phosphate (NADPH)
Oxidase (NOX). NOX is the most studied ROS-generating

system [6]. NOX family members are transmembrane pro-
teins that utilize electrons from cytosolic NADPH to reduce
oxygen, generating a superoxide anion [16]. Seven known
isoforms, NOX1, NOX2, NOX3, NOX4, NOX5, DUOX1,
and DUOX2, combined with several subunits to form active
enzyme complexes [40, 41]. The only known function of
these membrane proteins is the catalysis superoxide anion
formation from hydrogen peroxide. Hydrogen peroxide eas-
ily permeates cell membranes and can directly damage cells
by oxidizing deoxyribonucleic acid (DNA), proteins, and
lipids [41].

NOX primarily functions to generate free radicals, and
some isoforms can be overregulated by a variety of neurode-
generative factors [41]. Studies have suggested that the
genetic and pharmacological inhibition of NOX enzymes
may reduce harmful aspects associated with brain injuries
and neurodegenerative disorders, resulting in a neuroprotec-
tive effect [41]. In particular, the observed lack of benefits
associated with various antioxidant strategies may be due to
the ineffectiveness of antioxidant molecules in vivo or the
concomitant attenuation of oxidant regulatory roles [40].
Shimohama et al. [42] reported the translocation of p47phox
and p67phox, which strongly suggested that NOX is acti-
vated in the AD brain.

Studies with NOX inhibitors exert neuroprotective effects
against AD, due to anti-inflammatory properties, through
the oligomeric Aβ- (oAβ-) induced microglial proliferation
and the production of proinflammatory factors, including
ROS, NO, tumor necrosis factor (TNF)-α, and interleukin
(IL)-1β [42–45].

1.5. NADPH Quinone Oxidoreductase 1 (NQO1). NADPH
quinone oxidoreductase 1 (NQO1) is a flavin adenine
dinucleotide- (FAD-) dependent cytoplasmic flavoprotein
that catalyzes the reduction of two electrons from qui-
nones, quinonimines, and nitroaromatic naphthoquinones
and substituted by glutathione, dichlorophenolindophenol
(DCPIP) dyes, and an NADPH as an electron donor
[12]. Therefore, NQO1, plays a central role in monitoring
cellular redox status, protecting against oxidative stress
induced by a variety of metabolic situations [44], including
the metabolism of quinones and other xenobiotics,
through the following mechanisms: (i) functioning as a
two-electron donor, to provide a derivation that competes
with the formation of ROS; (ii) maintaining reduced coen-
zyme Q; and (iii) regulating the stress-activated kinase
pathway [45].

According to Chhetri et al. [12], the inactivation of
the detoxifying enzyme NQO1 has been linked to the
progression of AD. Factors that alter NQO1 activity can
include genetic predispositions, such as the C690T
NQO1 polymorphism, advanced age, cigarette smoking,
and various medications [12]. The early expression of
NQO1 in astrocytes may reflect a partially protective neu-
ronal cell antioxidant protection system that activates at
the beginning of the disease process, whereas the late
expression of NQO1 may indicate the delayed activation
of this system, as a final attempt to prevent neuronal cell
death [46].
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The antioxidant activity of NQO1 is essential; however,
further studies are necessary to determine whether it should
be targeted in the treatment of AD.

1.6. Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2). Nrf2
is a transcription factor that facilitates adaptation and
survival under stress by regulating the gene expression of
different networks of cytoprotective proteins, including
anti-inflammatory and antioxidant proteins and proteins
that repair or remove damaged macromolecules [47]. Nrf2
plays a crucial role in maintaining cellular redox homeostasis
and regulating the production of ROS by mitochondria. Nrf2
affects changes in the mitochondrial membrane potential
(Δψm), ATP synthesis, and lipid peroxidation, and Nrf2 acti-
vation under stress conditions or by growth factors can neu-
tralize increases in ROS production by the mitochondria,
contributing to neuroprotection [48, 49].

Nrf2 is a key regulator of the body’s antioxidant response
and is responsible for inducing the expression of genes that
encode antioxidant proteins and enzymes, in addition to
metabolism detoxification phase II enzymes, which is a criti-
cal mechanism associated with cell protection and survival.
Nrf2 targets include HO-1, superoxide dismutase (SOD), cat-
alase (CAT), NADPH, NQO1, GSH S transferase (GST),
GSH reductase (GR), GSH peroxidase (GPx), thioredoxin
(Trx), and glutamate-cysteine ligase (GCL) [50, 51].

In addition to mediating antioxidant and detoxification
mechanisms, Nrf2 is responsible for modulating the
expression of 200 genes associated with other cellular pro-
cesses, including the inflammatory response, metabolic
regulation, cell proliferation, senescence, and mitochon-
drial function [52, 53].

Recent studies have investigated the participation of
Nrf2, in the mechanisms of apoptosis and neuroprotec-
tion associated with Alzheimer’s disease and traumatic
brain injury, as well as the reduction of the expression
of EROs [54].

1.7. Sodium-Glucose Transport Protein (SGLT). Glucose
transporters can be divided into two primary families: facili-
tative glucose transporters (GLUTs) and sodium-dependent
glucose cotransporters (SGLTs) [54]. Five primary SGLT iso-
forms have been identified, SGLT1, SGLT2, SGLT3, SGLT4,
and SGLT5; however, SGLT1 and SGLT2, in particular, are
associated with the pathways involved in the cellular mecha-
nisms of AD [55].

The SGLT1 isoform is encoded by the SLC5A1 gene and
performs glucose transport through a secondary active trans-
port mechanism that uses the Na+ gradient established by
the Na+/K+ ATPase pump. This receptor is primarily
expressed in the intestine, trachea, heart, testicles, prostate,
brain, and kidneys. SGLT1 is characterized as a metabotropic
receptor, coupled to transmembrane G proteins, with a sec-
ondary structure consisting of 664 amino acid residues,
arranged in 14 transmembrane helices with both the NH2
and COOH terminals facing the extracellular side of the
plasma membrane. The receptor contains only one N-
glycosylation site, at Asn248 [56–58].

The SGLT2 isoform is encoded by the SLC5A2 gene and
is found in the kidneys, brain, liver, thyroid, muscle, and
heart. The SGLT2 structure is highly similar to that for the
SGLT1 receptor and appears to be involved in diabetes and
kidney disease mechanisms [54].

Studies have demonstrated the involvement of the factor
SGLT1 in Alzheimer’s disease, as it is related to cellular medi-
ators of vascular injury [58]. Its activation is associated with a
reduction in the levels of epidermal growth factor (EGFR),
and its expression can be linked to food and control of insulin
release by inhibiting the enzymes α-amylase and α-glucosi-
dase [59–61].

1.8. Factor DJ-1. DJ-1 protein acts as an oxidative stress sen-
sor and eliminates peroxide by self-oxidation [61]. This
receptor is also related to cancer pathogenesis and may
act as a potential tumor marker [62, 63]. DJ-1 participates
in several signaling pathways, including mitochondrial
quality control and the reaction to oxidative stress. Cells
with high levels of DJ-1 have been shown to be resistant
to oxidative stress and neurotoxins, such as 6-OHDA,
whereas lower levels of DJ-1 make cells vulnerable to oxi-
dative stress [64, 65].

The DJ-1 receptor was reported to have anti-Parkinson’s
disease activity, by Dolgacheva and collaborators [66]. The
mechanisms addressed included the protection of dopami-
nergic neurons against neurodegeneration in Parkinson’s
disease. The authors stated that the wild-type DJ-1 receptor
can act as an oxidative stress sensor and as an antioxidant.
DJ-1 regulates transcription and protects mitochondria from
oxidative stress, in addition to increasing uncoupling protein
(UCP)4 and UCP5 levels, which are responsible for mito-
chondrial decoupling and the consequent decrease in mito-
chondrial membrane potential. DJ-1 also suppresses the
production of EROS and acts on redox factors, such as NF-
κB, which acts on anti-inflammatory factors [67].

1.9. Cycloxygenase (COX). Prostaglandins (PGs) are pro-
duced by prostaglandin-endoperoxide via synthase/cycloox-
ygenase (COX), which plays important roles in the etiology
and inflammation of autoimmune diseases. COX has 2 iso-
forms: COX-1, which is permanently expressed in most tis-
sues and organs, and COX-2, which is an inflammation-
inducible enzyme that is essential during the inflammation
process and in autoimmune disease [68–72]. In addition,
COX-2 plays a significant role in aging and skin cancer.
PGE2 is a fundamental product of the COX synthesis path-
way [70].

COX-2, also known as prostaglandin H synthase 2
(PGHS-2), catalyzes the conversion from arachidonic acid
and O2 to PGs, which are important lipid mediators involved
in numerous physiological aspects and pathophysiological
processes. Under normal physiological conditions, COX-2
most often has a low level of expression, but this gene is
highly induced in response to inflammation [71–73]. COX-
1 is a constitutive enzyme, responsible for maintaining a
basic level of PGs, to maintain physiological homeostasis,
such as gastrointestinal integrity [73, 74]. COX-1 and COX-
2 catalyze the biosynthesis of prostaglandins, prostacyclins,
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and thromboxanes [68]. COX-1 and COX-2 share a very
high degree of sequence identity and very similar active site
topologies [75].

Neurodegenerative diseases, such as AD, are some-
times treated with nonsteroidal anti-inflammatory drugs
(NSAIDs), which target COX-1 and COX-2 [76].

1.10. Nitric Oxide Synthase (NOS). NOS is formed by a group
of three enzymes (eNOS, nNOS, and iNOS), which are
responsible for the generation of nitric oxide (NO) from the
amino acid L-arginine [77, 78]. NO is a free radical gas and
is associated with several biological functions, playing key
roles in the regulation of blood flow, blood pressure, and oxy-
gen delivery [79–81].

NOS includes endothelial NOS (eNOS or NOS1) [81, 82],
inducible NOS (iNOS or NOS2), and neuronal NOS (nNOS
or NOS3) [83]. eNOS and nNOS are characteristically
expressed, whereas iNOS expression is induced exclusively
by appropriate stimuli, such as cytokines, TNF-α, infections,
chronic inflammation, tumors, interferon γ, or hypoxia [83].
During iNOS induction, the production of large amounts of
NO occurs, in contrast with the other two isoforms [79, 84].

The generalized expression of iNOS in the CNS is patho-
logical and is often observed during neurological diseases,
such as multiple sclerosis, stroke, and Parkinson’s disease
[85]. In patients with AD, studies have shown that the num-
ber of iNOS-positive neurons significantly increases in the
brain and is associated with neuronal damage [86].

eNOS acts directly on the NO formation rate and acts as a
limiting enzyme for this process, based on its expression
levels and biological activity [78, 87]. eNOS activity also
influences the maintenance of vascular and endothelial
homeostasis [88–90], in addition to the structure and func-
tion of the vascular endothelium [90].

nNOS produces NO in both the CNS and the peripheral
nervous system, where it acts as a neurotransmitter [91, 92].
Although nNOS is the enzyme responsible for NO synthesis
in neurons, not all neurons express nNOS [93]. However, the
excessive activation of nNOS can result in neuronal death
due to the harmful production of NO [94].

1.11. Lipoxygenases (LOXs). LOXs are a group of dioxygenase
enzymes that contain iron and catalyze the stereoselective
addition of oxygen to arachidonic acid (AA), docosahexae-
noic acid (DHA), and other polyunsaturated fatty acids
(PUFAs) [95]. The basic nomenclature of LOXs (except
LOX-3) is based on the position of oxygen insertion in a
substrate [95, 96]. Five types of LOXs have been identified
in mammals, referred to as 5-, 8-, 12-, and 15-LOX and
LOX-3 [97, 98].

Although 5-LOX is known primarily as a modulator of
oxidation and inflammation [99], according to Chu et al.
[100], this pathway can directly influence the pathogenesis
of AD. The 5-LOX-γ-secretase pathway acts on the forma-
tion of Aβ peptides and other molecular diseases, including
neuroinflammation, synaptic integrity, and cognitive func-
tion, which can contribute to new treatments for AD and
associated neurodegenerative problems. High levels of 5-

LOX in the nuclear envelope are associated with the release
of leukotrienes to attract inflammatory cells [101].

5-LOX is widely distributed in the CNS and has been
shown to be positively regulated in the postmortem brain
of patients with AD, playing a functional role in the patho-
genesis [102], as well as its activation influencing synapses
and memory impairment [103]. According to Di Meco
et al. [104], 5-LOX is a key enzyme for AD because it is
involved in inflammatory responses and is expressed at
higher levels in the hippocampi of AD patients compared
with healthy adults [105].

Observing that several enzymes are directly and indi-
rectly involved through oxidative stress mechanisms and that
their activation and inactivation can contribute to neuropro-
tection or disease progression, the objective of the research
was to explore new targets through virtual screening of lig-
nans to identify molecules with potential anti-AD [106, 107].

2. Materials and Methods

2.1. Data Collection and Curation. Several enzymes with
available biological activity and 3D structure data were
selected and investigated in this study. Chemical compounds
were selected with known activity against the following
enzymes: JNK-3 (CHEMBL2637), PTP1B (CHEMBL335),
NFR2 (CHEMBL1075094), NOX1 (CHEMBL1287628),
PDE5 (CHEMBL1827), COX-2 (CHEMBL230), and iNOS
(CHEMBL4EM1). These compounds were used in the bank
of images used to construct predictive models (https://www
.ebi.ac.uk/chembl/) [108]. The details of the banks can be
found in Table 1. The compounds were classified based on
the pIC50 ð−log IC50 ðmol/lÞÞ. The IC50 value represents the
concentration required for 50% inhibition. However, for the
enzyme Nrf2, activation data was used because the activa-
tion of this protein would obtain the desired effect. In
addition, 159 CHEMBL lignans (Table S1) were assessed
by virtual screening to identify molecules with potential
activity against enzymes involved in AD progression,
according to the workflows presented by Fourches et al.
[109]. Three-dimensional structures were generated by
ChemaxonStandardiser v.18.17.0, (http://www.chemaxon.org).

2.2. Quantitative Structure-Activity Relationship (QSAR)
Modeling. The Knime 3.5.3 software (KNIME 3.5.3, Kon-
stanz Information Miner Copyright, 2018, https://www
.knime.org) was used to perform the analyses and to generate

Table 1: Set of molecules from the ChEMBL databases for each
enzyme selected in the study.

Database Active molecules Inactive molecules Total

JNK-3 580 (pIC50 ≥ 6:0) 642 (pIC50 < 6:0) 1.222

PTP1B 1.446 (pIC50 ≥ 5:0) 1.354 (pIC50 < 5:0) 2.800

NFR2 163 (activity) 85 (no activity) 248

NOX1 85 (pIC50 ≥ 4:75) 60 (pIC50 < 4:75) 145

PDE5 873 (pIC50 ≥ 7:0) 869 (pIC50 < 7:0) 1742

COX2 2.018 (pIC50 ≥ 5:50) 1.702 (pIC50 < 5:50) 3.720

iNOS 396 (pIC50 ≥ 5:50) 367 (pIC50 < 5:50) 763
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the in silicomodels. Given the success of our previous studies
[110, 111], we opted to perform a 3D QSAR analysis for each
bank of enzymes. All studied compounds with a solved
chemical structure were saved in special data file (SDF) for-
mat and imported into the Dragon 7.0 software [112], to gen-
erate descriptors.

The banks of molecules and their calculated descriptors
were imported from the Dragon software, and the data were
divided into a “Partitioning” tool, using the “Stratified sam-
ple” option, which separated the data into Training and Test-
ing sets, which represented 80% and 20% of all compounds,
respectively. The sets were randomly selected, but the pro-
portions of active and inactive substances were maintained
in both databases.

The Random Forest (RF) algorithm, using WEKA nodes
[113], was used to build predictive models. The parameters
selected for RF for all models were as follows: the total num-
ber of forests was 250, and 1 seed was used for the generation
of random numbers. Cross-validation was performed to esti-
mate the predictive power of the developed models.

The external performances of the selected models were
analyzed for sensitivity (true-positive rate, or active rate),
specificity (true-negative rate, or inactive rate), and accuracy
(general predictability). In addition, the sensitivity and spec-
ificity of the receiver operating characters (ROC) curve were
used because these describe actual performance more clearly
than accuracy.

The models were also analyzed using the Matthews cor-
relation coefficient (MCC), which can evaluate the model
globally, based on the results obtained in the confusion
matrix. The MCC is a correlation coefficient between the
observed and predictive binary classifications, resulting in
values between -1 and +1, where a coefficient of +1 represents
a perfect prediction, 0 represents a random prediction, and -1
indicates the total disagreement between the prediction and
the observation [114].

MCC can be calculated using the following formula:

MCC = VP xVN − FP x FN
√ VP + FPð Þ VP + FNð Þ VN + FPð Þ VN + FNð Þ , ð1Þ

where VP represents true positives, VN represents true neg-
atives, FP represents false positives, and FN represents false
negatives.

The applicability domain (APD) was used to analyze the
compounds in the test sets, to evaluate whether the predic-
tions are reliable. The APD is a theoretical chemical space
that encompasses the model’s descriptors and the modeled
response, allowing the estimation of uncertainty when pre-
dicting the activity of a compound in the training set used
during the development of the model. This technique is
important for verifying the reliability of QSAR models by
comparing predicted values with observed values [115].
APD is calculated using the following formula:

APD = d + Zσ, ð2Þ

where d and σ are the Euclidean distances and the mean stan-
dard deviation, respectively, for the compounds in the train-

ing set. Z is an empirical cutoff value, which was set to 0.5 in
this study.

2.3. Molecular Docking. Molecular docking was performed
using the Molegro Virtual Docker v6.0.1 (MVD) software
[116], and six targets were selected for anchorage studies
(Table 2). The 3D structures of the enzymes used in this
study were obtained from Protein Data Bank (PDB) [117],
using the following codes: PDB ID 4Y46 for JNK-3; PDB
ID 4Y14 for PTPB1; PDB ID 6FY4 for NQO1; PDB ID
3B2R for PDE5; PDB ID 5KIR for COX-2; and PDB ID
4NOS for iNOS. We did not dock the enzymes Nrf2 and
NOX1 because 3D structures were not available in PDB for
the human species. Initially, all water molecules were
removed from the crystalline structure, and the root-mean-
square deviation (RMSD) was calculated from the poses,
which indicates the degree of reliability for the fit. The RMSD
provides for the connection mode close to the experimental
structure and is considered successful if the value is below
2.0Å. The MolDock score algorithm was used as a scoring
function, to predict the best interactions between the ligand
and the receptor. Then, the anchor assistant was generated,
in which the enzyme and ligands were inserted to analyze
the stability of the system based on the interactions identified
with the active site of the enzyme.

2.4. Prediction of ADMET Properties. ADME parameters
were calculated using the SwissADME open-access web tool
(http://www.swissadme.ch) [118], which offers a set of rapid
predictive models for the assessment of physicochemical,
pharmacokinetic, and pharmacological properties. The tox-
icity prediction was performed in OSIRIS Property Explorer
(https://www.organic-chemistry.org/prog/peo/) [119], based
on the following parameters: mutagenicity, tumorigenicity,
reproductive effects, and irritability. For absorption, factors
included membrane permeability, intestinal absorption, and
substrate or inhibitor of P glycoprotein. Thus, we investi-
gated compounds that did not exceed more than two viola-
tions of Lipinski’s rule and for which the log P consensus
was not greater than 4.15. In addition, compounds were not
substrates for the permeability glycoprotein enzyme (P-gp).
The distribution was assessed by factors that include the
blood-brain barrier (logBB) and the permeability of the
CNS. Metabolism was predicted based on the CYP substrate
or inhibition models (CYP1A2, CYP2C19, CYP2C9,
CYP2D6, and CYP3A4).

3. Results and Discussion

3.1. QSAR Modelling. The metrics mentioned are the most
commonly used metrics for chemoinformatics, although
others can be used to guarantee the high predictability of
the model, such as ROC curves [120]. The results of the
ROC curve and MCC analyses revealed excellent results.
The models achieved ROC curves greater than 0.78 during
cross-validation, and the MCC values were also greater than
0.52 during the cross-validation, revealing a model with
excellent classification, performance, and robustness
(Table 3, Figure S1). Only the model for the Nrf2 enzyme
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achieved an MCC below 0.5. Table 4 shows the ROC curve
values for each protein.

Using the models created, with excellent performance,
the lignan set was screened to select compounds that are
potentially active against the studied enzymes. Lignans with
a probability of biological activity above 0.5 and that passed
the applicability domain were considered active.

The results showed that no lignans were considered
active for the JNK-3, PDE5, and COX-2 targets. However,
22 compounds were potentially active against the PTPB1
enzyme with a probability ranging from 50 to 74%, 111
compounds active against Nfr2 with a probability ranging
from 50 to 64%, six compounds active against NOX1 with
a probability ranging between 63 and 78%, and 27

Table 2: Information regarding the selected enzymes, obtained from the PDB database and used for docking.

PDB ID Enzyme Class PDB ligand Resolution

4Y46 c-Jun N-terminal kinase Transferase

N

N N ON
H

H
N

H
N

O

H3C

CH3 2.04Å

4Y14 Tyrosine phosphatase 1B Hydrolase

F F

P OHO

OH

HN O
CH3

S
O

O

H3C

Br

N
H

1.89Å

6FY4 NAD(P)H:quinone oxidoreductase Oxidoreductase
NH

Br SO O

N

2.76Å

3B2R Phosphodiesterase-5 Hydrolase

N

N

H
N

N

H3C

H3C

O

CH3

S OO
N

N

H3C

O

2.07Å

5KIR Cyclooxygenase-2 Oxidoreductase

SO O

CH3

O
O

2.69Å

4NOS Inducible nitric oxide synthase Oxidoreductase N

H
N

N

N NH2

O
OH

HO

H3C

2.25Å
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compounds active against iNOS with probability varying
between 52 and 79%.

3.2. Docking Molecular. The molecular docking study was
performed for six enzymes that were targeted for the AD
treatment. The lignan set was analyzed to select molecules
with good probabilities for potential inactivation and activa-
tion activity against the enzymes targeted for AD treatment.
Docking was not performed for Nrf2 and NOX1, due to the
unavailability of human 3D protein structures.

In this study, the docking results were validated by the
redocking of the crystallographic ligand and by the RMSD
of the poses. Redocking consists of positioning and predict-
ing the binding affinity of the crystallographic ligand in the
region of the active site of the enzyme. The RMSD compares
and calculates the mean deviation of the square root of the
poses obtained by redocking and the structure of the ligand
obtained experimentally. For the fit to be reliable, the RMSD
value must be 2.0Å or less. The results showed that the tar-
gets JNK-3, PTP1B, NQO1, PDE5, COX-2, and iNOS
obtained RMSD values of 0.56, 0.25, 0.18, 0.47, 0.19, and
0.16Å, respectively.

TheMolegro software is capable of generating interaction
energies for lignans, by producing a MoldockScore for each
studied protein. Then, calculations were performed to iden-

tify the lignans with the best active potential probabilities
for each analyzed protein, using the following formula:

Prob =
ELig
EMLig

, se ELig < EInib, ð3Þ

where ELig is the energy of the analyzed lignan, EMLig is the
lowest energy obtained from the tested lignans, and EInib is
the energy of the inhibitor ligand, obtained from the crystal-
lography data for the tested protein. Only molecules that
obtained binding energies below the binding energy for the
crystallographic inhibitor ligand were considered to be
potentially active.

Table 5 shows the interaction energies of the inhibitor
ligand for each protein, and the top ten lignans with the best
energy values for each protein.

Among the 159 lignans analyzed by molecular docking,
21 were found to be potentially active against JNK-3, 1 was
identified for PTP1B, 157 were identified for NQO1, 34 were

Table 3: Performance summary corresponding with the results obtained for all Random Forest models.

Enzyme Validation Accuracy Sensitivity Specificity PPV NPV MCC

JNK-3
Test 0.89 0.91 0.87 0.86 0.91 0.78

Cross 0.83 0.85 0.82 0.81 0.85 0.67

PTP1B
Test 0.81 0.81 0.81 0.82 0.80 0.62

Cross 0.82 0.82 0.82 0.83 0.81 0.64

NFR2
Test 0.76 0.75 0.76 0.86 0.61 0.50

Cross 0.73 0.78 0.63 0.80 0.60 0.41

NOX1
Test 0.82 0.76 0.91 0.92 0.73 0.67

Cross 0.80 0.89 0.66 0.92 0.73 0.58

PDE5
Test 0.87 0.9 0.84 0.85 0.9 0.75

Cross 0.86 0.88 0.85 0.85 0.87 0.73

COX2
Test 0.78 0.83 0.71 0.77 0.78 0.55

Cross 0.76 0.81 0.7 0.76 0.76 0.52

iNOS
Test 0.81 0.87 0.74 0.78 0.84 0.62

Cross 0.8 0.85 0.74 0.78 0.82 0.60

Table 4: Values for the ROC curves, during the test and cross-
validation, for each RF model.

Enzyme
ROC curve

Test Cross

JNK-3 0.96 0.91

PTP1B 0.87 0.89

NFR2 0.82 0.81

NOX1 0.90 0.78

PDE5 0.95 0.94

COX2 0.84 0.84

iNOS 0.87 0.87

Table 5: MoldockScore scores for the top ten lignans with the best
energy values relative to the energy value of the crystallographic
ligand for each protein.

ID JNK-3 PTP1B NQO1 PDE5 COX2 iNOS

1 -183 -177 -137 -204 -203 -178

2 -175 -156 -137 -192 -193 -153

3 -164 -154 -136 -182 -191 -147

4 -159 -153 -124 -169 -190 -144

5 -155 -153 -120 -167 -187 -143

6 -148 -152 -116 -166 -176 -143

7 -148 -152 -116 -164 -175 -143

8 -146 -151 -114 -164 -174 -141

9 -146 -151 -112 -164 -172 -139

10 -144 -150 -108 -162 -170 -139

Ligand PDB -134 -156 -36 -139 -142 -59
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identified for PDE5, 53 were identified for COX-2, and 156
were identified for iNOS. These results indicated that lignans,
in general, are more likely to activate the NQO1 and iNOS
proteins and are not selective for the PTP1B enzyme.

3.3. Combined Analysis Based on Ligand and Structure. A
second consensus analysis was performed to identify poten-
tial multitarget lignans, which demonstrate active potential
probabilities for more than one protein, based on the RF
model and docking. In this case, we use all the results of pre-
diction of biological activity of the lignans and combine them
with the results of docking. For this analysis, the following
formula was used:

ProbComb =
ProbDc + 1 + ESPð Þ × PActivity
�

2 + ESP , Se ProbComb > 0:5,

ð4Þ

where ProbDc is the active potential probability from the
molecular coupling analysis, ESP is the average specific
value of the RF model, and PActivity is the active potential
probability value of the RF model. This combined proba-
bility was conditioned, as only molecules with values
greater than 0.5 were considered likely to be active. Com-
bined probability values were calculated for the lignans
identified for each target enzyme, and we analyzed which
molecules were multitarget.

After performing the combined analysis, based on the
ligand and structure, and using the formula to identify mul-
titarget molecules, we identified 139 molecules that were
potentially active for two or five target enzymes, out of the
entire lignan set analyzed. For Nrf2 and NOX1, we only used
the biological activity probability data, and for NQO1, we
only used the docking data not enough data was available
for these enzymes to construct the necessary models.

The combined probability (ProbComb), based on both
ligand and structure, can increase the predictive power of
the models and decrease the number of false positives. Com-
bined probability analyses could be performed for five
enzymes (JNK-3, PTP1B, PDE5, COX-2, and iNOS). For
enzymes without sufficient data to build both models, only
model was used. For molecules to be considered potentially
active, the probability values should be equal to or greater
than 0.5. However, for ProbDc, the probability value should
also be greater than that for the crystallographic ligand.

After the combined probability analysis, we selected the
multitarget compounds that passed the applicability domain
for all enzymes in this study. Using ProbComb, we were able to
select three compounds with probabilities of activity ranging
from 50% to 61% for JNK-3, 43 compounds with a 52-72%
probabilities for PTP1B, 57 compounds with 51%–72% prob-
abilities for PDE5, 27 compounds with probabilities between
50% and 61% for COX-2, and 27 compounds with probabil-
ities between 50% and 81% for iNOS (Table 6). The number
of compounds with excellent combined probabilities was
reduced when compared with the results of the docking
probabilities; however, the combined probabilities increased
the numbers of true positives.

Based on the biological activity probability data, 111
compounds, with probabilities ranging from 50% to 64%,
were identified for Nrf2, and nine compounds, with probabil-
ities ranging from 51% to 78%, were identified for NOX1.
Based on the docking probability data, 156 compounds were
selected, with probabilities ranging from 27% to 100%, for
NQO1. For this enzyme, compounds with probabilities
above 0.27 were considered, as these were greater than the
probability of the crystallographic ligand, which was 0.26.

We observed that although the results of QSAR do not
indicate active compounds for JNK-3, PDE5, and COX-2,
after the application of the formula that combines prediction
values of biological activity and docking (ProbComb), we were
able to identify active compounds for all targets of the study.

3.4. Prediction of ADMET Properties. The set of 139 poten-
tially active and multitarget lignans were submitted to several
predictive parameters to identify the compounds with the
best ADMET profiles. Using physical-chemical properties,
we attempted to verify compounds with good absorption,
considering the lipid rule as a parameter.

According to Shimohama et al. [42, 43], molecules with
molecular weights below 500Da, calculated log P (ClogP)
values less than five, less than five hydrogen bond donors,
no more than ten hydrogen bond acceptors, and ≤10 rotating
bonds have excellent absorption and bioavailability. Mole-
cules that violate two or more of these rules do not show good
absorption. We observed that 66% (92) of our lignans set
showed solubility values that varied between soluble and
moderately soluble.

Factors such as lipophilicity and solubility contribute to
drug distribution in vivo, which is a requirement for advanc-
ing to preclinical and clinical tests. The most common
descriptor for lipophilicity is the partition coefficient between
n-octanol: water (log P). Ideal log P values are below 5.0. The
results showed that 87% (121) of our lignan compounds had
ideal log P values.

Metabolism can affect drug activity by changing the half-
life, promoting the generation of toxic metabolites, or dis-
rupting therapeutic potential. Pharmacokinetics are essential
for understanding drug metabolism in the body. For a com-
pound to display the desired effect during AD treatment,
the drug must be able to cross the blood-brain barrier. Many
compounds that have been developed fail at the preclinical
and clinical testing stage due to metabolism effects and poor
absorption in the brain. Currently, the prediction and selec-
tion of compounds that act on nervous system tissues can
be performed through in silico tests. The results showed that
among lignans that target three or more enzymes, nine lig-
nans would likely cross the blood-brain barrier.

Toxicity was also evaluated, and among the compounds
that appeared likely to cross the blood-brain barrier, com-
pounds 6, 11, 19, 64, 116, and 135 had no predicted mutage-
nicity or tumorigenesis effects or negative effects on the
reproductive system and irritability. Therefore, these mole-
cules were considered to have the best ADMET properties
because they do not present any toxicity risks. Tables S2
and S3 show the ADMET profiles of compounds with
potential activity and multitargeting effects against four or
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more enzymes. In addition, Table S4 and Figure 1 show
the compounds that did not present toxicity for these
evaluated parameters.

Due to the antioxidant properties of lignans, the present
study sought to perform a virtual screening among diverse
structural lignans to identify potential molecules for the
treatment of AD. Lignans represent a huge class of phar-
macologically active compounds that exhibit various func-
tionalities, which are worth exploring by pharmaceutical
industries [121].

According to a review by Zálešák et al. [122], several
researchers have identified the antioxidant activity and neu-
roprotective properties of lignans. Lignans isolated from
Schisandra bicolor var. were assayed for their neuroprotective
effects against SH-SY5Y cell damage induced by Aβ25−35.
Among the active compounds, both new lignans (esquibitu-
bina B (L1-4), F (L1-7), H (L4-1), and I) and previously iso-
lated lignans (galgravine, (-)-nectandrin A, (-)-futocadsurine
A, (+)-9′-hydroxigalbelgin, austrobailignan-6, oleiferin-F,

(+)-dihydro-guaiaretic acid, and (-)- isootobafenol)
increased the cell viability in SH-SY5Y cells, following the
induction of cellular injury by 3.25 nM Aβ25-35 compared
with the negative control group. Furthermore, 25μM diben-
zocyclooctadiene lignans (L6-14 and NL5-10) from Schisan-
dra chinensis exhibited protective activity against Aβ1-42
neurotoxicity induced in PC12 cells, increasing cell viability
to 84:1% ± 5:4% and 82:1% ± 4:3%, respectively, compared
with the control (52:0% ± 3:2%) [122].

Lignans are a large group of naturally occurring phenols
widespread in the plant kingdom. In addition, notable
advances have been made in the isolation and identification
of lignans the last few years, which has already led to around
500 new congeners [121]. In addition, several studies have
reported the synthesis of different lignans successfully and
which have been tested for various biological activities.

3.5. Interaction Analysis. We analyzed the interactions of six
lignans through molecular docking that obtained the highest

Table 6: Potentially active lignans, multitarget for four or more enzymes, based on the RF and docking model. In bold are the active enzymes
that walk in the applicability domain.

ID
ProbComb ProbActivity ProbDc Multitarget

JNK-3 PTP1B PDE5 COX-2 iNOS NFR2 NOX1 NQO1

05 0.39 0.68 0.52 0.41 0.62 0.54 0.17 0.47 5

06 0.38 0.67 0.49 0.43 0.59 0.57 0.51 0.35 4

07 0.45 0.66 0.56 0.53 0.70 0.59 0.25 0.49 4

11 0.35 0.64 0.48 0.46 0.53 0.53 0.63 0.38 4

12 0.37 0.62 0.51 0.48 0.60 0.60 0.25 0.64 4

13 0.32 0.62 0.59 0.46 0.57 0.51 0.45 0.72 4

14 0.51 0.62 0.54 0.45 0.62 0.60 0.25 0.45 5

19 0.31 0.59 0.48 0.49 0.56 0.56 0.51 0.35 4

33 0.41 0.53 0.51 0.50 0.51 0.58 0.41 0.39 5

34 0.35 0.53 0.50 0.43 0.54 0.56 0.45 0.40 5

35 0.27 0.52 0.59 0.46 0.49 0.61 0.70 0.56 5

38 0.54 0.52 0.69 0.51 0.66 0.52 0.31 1.00 5

39 0.54 0.52 0.68 0.61 0.65 0.61 0.33 0.81 4

41 0.59 0.52 0.61 0.60 0.54 0.58 0.33 0.67 4

42 0.52 0.52 0.64 0.59 0.62 0.57 0.36 0.78 4

44 0.35 0.51 0.52 0.45 0.58 0.54 0.43 0.50 4

45 0.45 0.51 0.52 0.49 0.55 0.54 0.35 0.47 4

47 0.39 0.50 0.56 0.47 0.54 0.56 0.36 0.56 4

52 0.45 0.48 0.49 0.50 0.69 0.54 0.45 0.38 4

104 0.42 0.40 0.55 0.51 0.31 0.59 0.30 0.50 4

106 0.48 0.40 0.58 0.57 0.52 0.56 0.25 0.63 4

108 0.53 0.40 0.56 0.45 0.64 0.50 0.38 0.66 4

115 0.31 0.39 0.52 0.51 0.61 0.52 0.28 0.52 4

134 0.26 0.36 0.50 0.40 0.51 0.56 0.71 0.38 5

141 0.40 0.35 0.54 0.50 0.50 0.62 0.52 0.40 5

142 0.37 0.35 0.50 0.51 0.65 0.55 0.30 0.40 4

146 0.40 0.33 0.57 0.56 0.66 0.55 0.27 0.60 4

153 0.49 0.32 0.60 0.50 0.63 0.52 0.39 0.74 4
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probability of activity, multitarget, and with low toxicity. In
addition, we consider analyzing the targets on which these
compounds were most active.

The compounds austrobailignan 6 (06), anolignan c
(11), and 7-Epi-virolin (19) formed several interactions
with the PTP1B active site. Austrobailignan 6 formed
hydrophobic interactions with residues Ile219 and Arg221,
steric interactions with the amino acids Phe182, Cys215,
and Ala217, an electrostatic bond with Arg181, and a
hydrogen bond with Tyr46, stabilizing the bond. Analignan
c formed four hydrophobic interactions with the amino
acids Tyr26, Cys215, Ala217, and Arg221. In addition, it
formed an electrostatic and a steric interaction. 7-Epi-
viroline formed several hydrophobic interactions with
Tyr46, Phe182, Ala217, and Arg221. Three important
hydrogen bonds were also observed with the residues
Arg47, Arg45, and Glu262 (Figure 2).

According to the study carried out by Krishnan et al.
[123], the inhibitor CPT157633 managed to form electro-
static interactions with the PTP1B active site. In that study,
interactions with the amino acids Cys215, Arg221, and

Gln262 were reported. We observed that these amino acids
are also interacting with lignans, forming more stable bonds.

These same lignans were also investigated for their inter-
actions with the NQO1 target. We found that 6 - [(2R, 3R,
4R, 5R) -3,4-dimethyl-5- (3,4,5-trimethoxyphenyl) oxolan-
2-yl] -4-methoxy-1,3-benzodioxole (64) formed hydrogen
bonds with the amino acids Tyr129, Gly175, and Ile176,
and a hydrophobic interaction with the amino acid Tyr127.
Oocymosin (116) showed hydrophobic interactions with
Tyr127 and Phe179. In addition, it formed a hydrogen bond
with the Tyr129 residue. Mappiodionin b (135) formed
hydrogen bonds with Gly175 and Ile176 and a hydrophobic
interaction with Tyr127. All compounds formed interactions
with the same amino acids (Figure 3).

NQO1 must be activated to display antioxidant activity.
According to Strandback et al. [124], the addition of N-(2-
bromophenyl)pyrrolidine-1-sulfonamide (BPPSA) stabilized
the flexible C-terminal region of the protein, resulting in the
slower incorporation of deuterium. The amino acids
involved in the bond were Tyr127, Thr128, and the catalytic
residues Tyr156 and His162.
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Figure 1: Lignans considered to be potentially active according to the Random Forest model, with multitarget effects and no predicted
toxicity.
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Compounds 6-[(2R,3R,4R,5R)-3,4-dimethyl-5-(3,4,5-tri-
methoxyphenyl)oxolan-2-yl] -4-methoxy-1, 3-benzodioxole
(64) and Ococymosin (116) interacted well with PDE5. Com-
pound 64 was able to form three hydrogen bonds with
Met816, Tyr612, and Gln817 and four hydrophobic interac-

tions with the amino acids Cys677, Val782, Phe786, and
Phe820. It also formed a steric interaction with Ile680. Oco-
cymosin formed two hydrogen bonds with Tyr612 and
Cys677 and five hydrophobic interactions with Ile680,
Ala779, Val782, Phe786, and Phe820 (Figure 4).
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Figure 2: 3D and 2D interactions between lignans and PTP1B. Hydrogen bonds are highlighted in green, hydrophobic interactions are
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Experimental studies carried out by Wang et al. [125]
showed that the drug vardenafil is a potent PDE5 inhibitor,
binding to several amino acids in the active site. The amino acids

that interacted with vardenafil are Tyr612, Leu765, Ile768,
Ala767, Ile680, Cys677, Ty676, Ile813, Met816, Gln817, and
Phe820. Most of these amino acids also interacted with lignans.
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highlighted in pink.

13Oxidative Medicine and Cellular Longevity



4. Conclusions

AD is a complex and multifactorial disease, comprising a
variety of aberrant cellular and molecular processes in dif-
ferent cell types and brain regions. The activation and
inactivation of a variety of enzymes can contribute to neu-
roprotection or disease progression. Therefore, AD therapy
must be able to block or compensate for various abnormal
pathological events [38].

Few drugs are available for AD treatment. In addition,
AD pathophysiology is not well-understood, and the identifi-
cation of targets for disease treatment remains a major chal-

lenge for drug discovery. Therefore, in this study, we
investigated several potential targets that are directly and
indirectly involved in the development and progression of
AD, through oxidative stress mechanisms, aiming to explore
new targets and to design effective drugs, with minimal side
effects, for AD treatment. We examined a set of lignans and
used virtual screening to select compounds with potential
multitargeting effects for the treatment of AD.

The predictive models built in this study obtained excel-
lent performance results, with accuracies greater than 73%.
To increase the predictive power and decrease the number
of false positives generated by these models, a combined
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analysis was used, based on both ligand and structure. The
combined analysis was able to identify potentially active
molecules, based on the Random Forest and multitargeting
models.

Out of 159 total lignans, several potentially active com-
pounds were identified: three compounds with probabilities
of activity ranging from 50% to 61% for JNK-3, 43
compounds with a 52-72% probabilities for PTP1B, 57
compounds with 51%–72% probabilities for PDE5, 27
compounds with probabilities between 50% and 61% for
COX-2, and 27 compounds with probabilities between 50%
and 81% for iNOS; 111 compounds with probabilities rang-
ing from 50% to 64% were identified for Nrf2; nine com-
pounds with probabilities ranging from 51% to 78% were
identified for NOX1, and 156 compounds were selected, with
probabilities ranging from 27% to 100%, for NQO1. We also
identified 139 potentially active molecules for two to five tar-
get enzymes, from the entire lignan set analyzed.

Among the 139 lignans that were considered to be poten-
tially active and multitargeting, 92 showed good absorption,
bioavailability, and solubility, ranging from soluble to mod-
erately soluble. Among the compounds that were considered
to be multitargeting, we selected those likely to cross the
blood-brain barrier, through an in silico evaluation, resulting
in the identification of nine lignans, which were then evalu-
ated for toxicity. The compounds austrobailignan (06),
anolignan c (11), 7-epi-virolin (19), 6-[(2R,3R,4R,5R)-3,4-
dimethyl-5-(3, 4,5-trimethoxyphenyl)oxolan-2-yl]-4-meth-
oxy-1, 3-benzodioxole (64), ococymosin (116), and mappio-
doinin b (135) were considered to have no toxicity risks for
the evaluated parameters.

We suggest that lignans, especially austrobailignan (06),
anolignan c (11), 7-epi-virolin (19), 6-[(2R,3R,4R,5R)-3,4-
dimethyl-5-(3,4,5-trimethoxyphenyl)oxolan-2-yl]-4-meth-
oxy-1, 3-benzodioxole (64), ococymosin (116), and mappio-
doinin b (135), have high probability of activity against
several enzymes that may be involved in AD pathogenesis
and may confer neuroprotective effects, with low toxicity.
The proposed compounds are projected as possible solutions
that need to be validated experimentally.
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