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Abstract

Dynamic networks are a general language for describing time-evolving complex systems, and 

discrete time network models provide an emerging statistical technique for various applications. It 

is a fundamental research question to detect a set of nodes sharing similar connectivity patterns in 

time-evolving networks. Our work is primarily motivated by detecting groups based on interesting 

features of the time-evolving networks (e.g., stability). In this work, we propose a model-based 

clustering framework for time-evolving networks based on discrete time exponential-family 

random graph models, which simultaneously allows both modeling and detecting group structure. 

To choose the number of groups, we use the conditional likelihood to construct an effective model 

selection criterion. Furthermore, we propose an efficient variational expectation-maximization 

(EM) algorithm to find approximate maximum likelihood estimates of network parameters and 

mixing proportions. The power of our method is demonstrated in simulation studies and empirical 

applications to international trade networks and the collaboration networks of a large research 

university.
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1. Introduction

Dynamic networks are a general language for describing time-evolving complex systems, 

and discrete time network models provide an emerging statistical technique to study 

biological, business, economic, information, and social systems. For example, time-evolving 

networks shed light on understanding critical processes such as the study of biological 

functions using protein-protein interaction networks [14, 40], and also contribute to 
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assessing infectious disease epidemiology and time-evolving structures of social networks 

[6, 25, 32].

A group can be defined as a set of nodes sharing similar connectivity patterns. In computer 

science and statistical physics, many node clustering algorithms have been developed. 

Girvan and Newman [13] propose an algorithm to identify groups based on edge 

“betweenness”. They construct groups by progressively removing the edges that connect 

groups most from the original network. Newman and Girvan [34] proposed three different 

measures of “betweenness” and compared the results based on modularity, which measures 

the quality of a particular division of a network. On the other hand, in statistics, analyzing 

and clustering networks are often based on statistical mixture models. One idea of model-

based clustering in networks comes from Handcock et al. [15], who propose a latent position 

cluster model that extends the latent space model of Hoff et al. [18] to take account of 

clustering, using the model-based clustering ideas of Fraley and Raftery [12]. In the current 

literature, there are two very popular statistical modeling frameworks. One is the stochastic 

blockmodel (SBM), and the other is the exponential-family random graph model (ERGM).

Stochastic blockmodels were first introduced by Holland et al. [19], and they focused on the 

case of a priori specified blocks, where the memberships are known or assumed, and the 

goal is to estimate a matrix of edge probabilities. A statistical approach to a posteriori block 

modeling for networks was introduced by Snijders and Nowicki [38] and Nowicki and 

Snijders [35], where the objective is to estimate the matrix of edge probabilities and the 

memberships simultaneously. Airoldi et al. [2] relax the assumption of a single latent role 

for nodes and develop a mixed membership stochastic blockmodel. Karrer and Newman [22] 

relax the assumption that a stochastic blockmodel treats all nodes within a group as 

stochastically equivalent and proposes a degree-corrected stochastic blockmodel. Moreover, 

in recent years, asymptotic theory of these models has been advanced by Bickel and Chen 

[8], Choi et al. [9], Amini et al. [5], and others. A group, or community, in a stochastic 

blockmodel is defined as a set of nodes with more edges amongst its nodes than between its 

nodes. The communities are interpreted meaningfully in many research fields. For example, 

in citation and collaboration networks, such communities can be interpreted as scientific 

disciplines [21, 33]. Communities in food web networks can be interpreted as ecological 

subsystems [13].

As dynamic network analysis has become an emergent scientific field, there has been a 

growing number of dynamic network models in the stochastic blockmodel framework. Yang 

et al. [49] propose a model that captures the evolution of communities with fixed 

connectivity parameters. Xu and Hero [47] and Matias and Miele [31] propose methods that 

allow both community memberships and connectivity parameters to vary over time. Xing et 

al. [46] and Ho et al. [17] propose dynamic extensions of the mixed membership stochastic 

blockmodel using a state space model. More details about recent statistical methods for 

dynamic networks with latent variables can be found in a recent survey [23].

Different from the stochastic blockmodel framework, exponential-family random graph 

models allow researchers to incorporate interesting features of the network into models. 

Researchers can specify a model capturing those features and cluster nodes based on the 
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specified model. Indeed, the stochastic blockmodel is a special case of a mixture of 

exponential-family random graph models. Some estimation algorithms for exponential-

family random graph models do not scale well computationally to large networks. Vu et al. 

[42] propose ERGM-based clustering for large-scale cross-sectional networks that solves the 

scalability issue by assuming dyadic independence conditional on the group memberships of 

nodes. Agarwal and Xue [1] propose ERGM-based clustering to study large-scale weighted 

networks. In recent years, several authors also have proposed discrete time network models 

based on ERGM. Hanneke et al. [16] propose a temporal ERGM (TERGM) to fit the model 

to a network series and Krivitsky and Handcock [26] propose a separable temporal ERGM 

(STERGM) that gives more flexibility in modeling time-evolving networks.

Our work is primarily motivated by detecting groups based on interesting features of time-

evolving networks, and our results advance existing literature by introducing a promising 

framework that incorporates model-based clustering while remaining computationally 

scalable for time-evolving networks. This framework is based on discrete time exponential-

family random graph models and inherits the philosophy of finite mixture models, which 

simultaneously allows both modeling and detecting groups in time-evolving networks. The 

groups can be defined differently based on how researchers and practitioners incorporate 

interesting features of the time-evolving networks into the models. For example, in 

sociology, researchers are interested in whether, say, same-gender friendships are more 

stable than other friendships or whether there are differences among ethnic categories in 

forming lasting sexual partnerships over time [24, 28]. In this case, stability parameters can 

be incorporated into the model, resulting in different groups of nodes with different degrees 

of stability. We also propose an efficient variational expectation-maximization (EM) 

algorithm that exhibits computational scalability for time-evolving networks by exploiting 

variational methods and minorization-maximization (MM) techniques. Moreover, we 

propose a conditional likelihood Bayesian information criterion to solve the model selection 

problem of determining an appropriate number of groups.

The rest of this paper is organized as follows. In Section 2, we present our model-based 

clustering method for time-evolving networks based on a finite mixture of discrete time 

exponential-family random graph models. Section 3 designs an efficient variational 

expectation-maximization algorithm to find approximate maximum likelihood estimates of 

network parameters and mixing proportions. Given these estimates, we can infer 

membership labels and solve the problem of detecting groups for time-evolving networks. In 

Section 4, we use conditional likelihood to construct an effective model selection criterion. 

The power of our method is demonstrated by simulation studies in Section 5 and real-world 

applications to international trade networks and collaboration networks in Section 6. Section 

7 includes a few concluding remarks. Proofs and technical details are provided in appendix 

and the supplementary file.

2. Methodology

2.1. Model-based clustering of time-evolving networks

We present the model-based clustering for time-evolving networks based on a finite mixture 

of discrete time exponential-family random graph models. First, we introduce the necessary 
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notation. Let n nodes be fixed over time and indexed by 1, …, n. Let 

Yt = Y t, ij 1 ≤ i, j ≤ n ∈ Y represent a random binary network at time t ∈ {0, …, T} and 

denote by yt = {yt,i j}1≤i, j≤n the corresponding observed network, where Y is the set of all 

possible networks. Let θ ∈ ℝp be a vector of p network parameters of interest. Under the kth-

order Markov assumption, discrete time exponential-family random graph models are of the 

form

Pr Yt = yt yt − 1, …, y0 = exp θ⊤g yt, …, yt − k − ψ θ, yt − 1, …, yt − k ,

where ψ θ, yt − 1, …, yt − k = ln∑y* ∈ Yexp θ⊤g y*, yt − 1, …, yt − k  ensuring that Pr(Yt = yt | 

yt−1, …, y0) sums to 1. Here, g(yt, …, yt−k) is a p-dimensional vector of sufficient statistics 

on networks yt, …, yt−k.

We now focus on the simplest case of discrete time exponential-family random graph 

models under the first-order Markov assumption and we write the one-step transition 

probability from Yt−1 to Yt as

Pr Yt = yt yt − 1 = exp θ⊤g yt, yt − 1 − ψ θ, yt − 1 , (1)

where ψ(θ, yt−1) and g(yt, yt−1) are defined as above.

Remark 1: Given covariates xt and a vector β ∈ ℝq of covariate coefficients, we can also 

write the transition probability from Yt−1 to Yt with covariates as

Pr Yt = yt yt − 1, xt = exp θ⊤g yt, yt − 1 + β⊤h yt, xt − ψ θ, β, yt − 1 ,

where h(yt, xt) is a q-dimensional vector of statistics and 

ψ θ, β, yt − 1 = ln∑y* ∈ Yexp θ⊤g y*, yt − 1 + β⊤h y*, xt .

In general, for some choices of g(yt, yt−1), the model in (1) is not tractable for modeling 

large networks, since the computing time to evaluate the likelihood function directly grows 

as 2
n
2  in the case of undirected edges. Here, we restrict our attention to scalable 

exponential-family models by only choosing statistics that preserve dyadic independence 

wherein the distribution of Yt given Yt−1 factors over the edge states Yt,ij given the previous 

time point edge states Yt−1,ij, i.e.,

Pr Yt = yt yt − 1 = ∏
i < j

n
Pr Y t, ij = yt, ij yt − 1, ij . (2)

For example, we may consider the following statistics that preserve dyadic independence 

and capture interesting time-evolving network features in both TERGM and STERGM:
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gd yt, yt − 1 = ∑
i < j

n
yt, ij, (3)

gs yt, yt − 1 = ∑
i < j

n
yt, ijyt − 1, ij + 1 − yt, ij 1 − yt − 1, ij , (4)

gf yt, yt − 1 = ∑
i < j

n
yt, ij − yt, ijyt − 1, ij , (5)

gp yt, yt − 1 = ∑
i < j

n
yt, ijyt − 1, ij . (6)

The subscripted i < j and superscripted n mean that summation should be taken over all pairs 

(i, j) with 1 ≤ i ≤ j ≤ n; the same is true for products as in equation (2). Corresponding to the 

first and second statistics above are TERGM parameters: θd relates to density, or the number 

of edges in the network at time t, while θs relates to stability, or the number of edges 

maintaining their status from time t − 1 to time t. Corresponding to the third and fourth 

statistics above are STERGM parameters: θf relates to formation, or the number of edges 

absent at time t − 1 but present at time t, while θp relates to persistence, or the number of 

edges existing at time t − 1 that survive to time t.

Remark 2: We can extend the proposed model to handle directed binary networks by 

considering statistics that preserve dyadic independence and capture directed features of the 

network. For example, we can consider the TERGM statistics gr yt, yt − 1 = ∑i, j
n yt, ijyt − 1, ji, 

which represent reciprocity. The subscripted i, j and superscripted n mean that summation 

should be taken over all pairs (i, j) with 1 ≤ i ≠ j ≤ n.

Here, as in Vu et al. [42], we assume that the joint probability mass function, given an initial 

network y0, has a K-component mixture form as follows:

Pr y1, …, yT y0 = ∑
z ∈ Z

Pr Z = z y0 ∏
t = 1

T
Pr Yt = yt yt − 1, z

= ∑
z ∈ Z

Pr Z = z y0 ∏
t = 1

T
∏
i < j

n
Pr Y t, ij = yt, ij yt − 1, ij, z ,

(7)

where Z = (Z1, …, Zn) denotes the membership indicators that follow the following 

multinomial distributions

Zi|π1, …, πK ∼i.i.d. Multinomial 1; π1, …, πK ,
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and Z denotes the support of the membership indicators Z. In the mixture form (7), the 

assumption of conditional dyadic independence given z strikes a balance between model 

complexity and parsimony because it allows for marginal dyadic dependence and it means 

nodes in the same group share the same model parameters. For now, the number of groups K 
is fixed and known. In Section 4, we will discuss how to choose an optimal number of 

groups K.

Now, we observe a series of networks, y1, …, yT, given an initial network y0. The log-

likelihood of the observed network series is

ℓ(π, θ) = ln ∑
z ∈ Z

Pr Z = z y0 ∏
t = 1

T
Pr Yt = yt yt − 1, z .

Our aim is to estimate π and θ via maximizing the log-likelihood ℓ(π, θ), i.e.,

(π, θ) = arg max
(π, θ)

ℓ(π, θ) .

However, directly maximizing the log-likelihood function is computationally intractable 

since it is a sum over all possible latent block structures. Hence, in Section 3, we design a 

novel variational EM algorithm to efficiently find the approximate maximum likelihood 

estimates. We shall see that the parameter estimates obtained by this algorithm can provide 

group membership labels.

Before proceeding, we give specific examples of discrete time exponential-family random 

graph models with stability parameter(s) that control the rate of evolution of a network.

Example 1: The model in (7) takes the following form when g(yt, yt−1) consists only of the 

stability parameters (4) and when node i belongs to group k and node j belongs to group l:

Pr Y t, ij = yt, ij yt − 1, ij, z ∝ exp θk
s + θl

s yt, ijyt − 1, ij + 1 − yt, ij 1 − yt − 1, ij .

Example 2: The model in (7) takes the following form when g(yt, yt−1) consists of both 

formation parameters (5) and persistence parameters (6) and when node i belongs to group k 
and node j belongs to group l:

Pr Y t, ij = yt, ij yt − 1, ij, z ∝ exp{(θk
f + θl

f) yt, ij − yt, ijyt − 1, ij + θk
p + θl

p yt, ijyt − 1, ij} .

Remark 3: When K = 1, Example 1 reduces to TERGM with a stability parameter as in 

Hanneke et al. [16] and the model in Example 2 reduces to STERGM with formation and 

persistence parameters as in Krivitsky and Handcock [26].
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2.2. Parameter identifiability

Parameter identifiability is essential to avoid inconsistent parameter estimation results 

among different methods. The unique identifiability of the parameters in a broad class of 

random graph mixture models has been shown by Allman et al. [3, 4]. Here we prove 

generic identifiability for our proposed discrete time exponential-family random graph 

mixture model where the distribution of Yt given Yt−1 is factorized as in equation (2). 

Theorem 1, whose proof is given in appendix, extends the identifiability result of the 

stochastic blockmodel of Allman et al. [3, 4] to discrete time exponential-family random 

graph mixture models. In this context, “generically identifiable” means the set of all 

uniquely identifiable parameters has a complement of Lebesgue measure zero in the full 

parameter space.

Theorem 1. Suppose a time-evolving network on n nodes is first-order Markov and has the 
form given in equation (2). The parameters πk, 1 ≤ k ≤ K, and pkl = Pr(Yt,ij = 1 | yt-1,ij, Zik = 
Zjl = 1), 1 ≤ k ≤ l ≤ K, are generically identifiable from the joint distribution of Y1,..., YT, 

given an initial network y0, up to permutations of the subscripts 1,..., K, if

n ≥ 4, for K = 2;

n ≥ K − 1 + (K + 2)2
4 , for K even, K ≥ 4;

n ≥ K − 1 + (K + 1)(K + 3)
4 , for K odd .

Moreover, when the model also takes the exponential-family form (1), the network 

parameters θk ∈ ℝp, 1 ≤ k ≤ K are generically identifiable, up to permutations of the 

subscripts 1, …, K, if the corresponding network statistics are not linearly dependent and p ≤ 

⌊(K + 1)/2⌋ where ⌊·⌋ is a floor function that maps the given value to the largest integer less 
than or equal to it.

3. Computation

We present a novel variational EM algorithm to solve model-based clustering for time-

evolving networks. Our algorithm is based on the algorithm presented by Vu et al. [42]. The 

algorithm combines the power of variational methods [43] and minorization-maximization 

techniques [20] to effectively handle both the computationally intractable log-likelihood 

function ℓ(π, θ) and the non-convex optimization problem of the lower bound of the log-

likelihood. We introduce an auxiliary distribution A(z) ≡ Pr(Z = z) to derive a tractable 

lower bound on the intractable log-likelihood function. Using Jensen’s inequality, the log-

likelihood function may be shown to be bounded from below as follows:

lnPr y1, …, yT y0 = ln ∑
z ∈ Z

Pr y1, …, yT , z y0
A(z) A(z)

≥ ∑
z ∈ Z

lnPr y1, …, yT , z y0
A(z) A(z) .

(8)
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We would obtain the best lower bound when A(z) is given by Pr(Z = z | yT,…, y0), where the 

inequality becomes equality. However, this form of A(z) is computationally intractable since 

it cannot be further factored over nodes. We therefore constrain A(z) to a subset of tractable 

choices and maximize the tractable lower bound to find approximate maximum likelihood 

estimates.

Here, we constrain A(z) to the mean-field variational family where the Zi are mutually 

independent, i.e., A(z) = ∏i = 1
n Pr Zi = zi . We further specif Pr(Zi = zi) to be Multinomial(1; 

γi1,…,γiK) for i ∈ {1,…, n}, where Γ = (γ1, …, γn) is the variational parameter. In the 

estimation phase, whenever it is necessary to assign each node to a particular group, the ith 

node is assigned to the group with the highest value among γ i1, …, γ iK.

If we denote the right side of (8) by LB(π, θ; Γ), we may write

LB(π, θ; Γ) = ∑
t = 1

T
∑
i < j

n
∑

k = 1

K
∑
l = 1

K
γikγjllnPr Y t, ij = yt, ij yt − 1, ij, Zik = Zjl = 1

+ ∑
i = 1

n
∑

k = 1

K
γik lnπk − lnγik .

(9)

Additional details on obtaining the lower bound are presented in the supplementary file. If 

π(τ), θ(τ), and Γ(τ) denote the parameter estimates at the τth iteration of our variational EM 

algorithm, the algorithm alternates between

• Idealized Variational M-step:

Let Γ(τ+1) = arg maxΓ LB(π(τ), θ(τ); Γ).

• Variational M-step:

Let(π(τ+1), θ(τ+1)) = arg max(π, θ)LB(π, θ; Γ(τ+1))

In the idealized variational E-step, it is difficult to directly maximize the nonconcave 

function LBLB(π(τ), θ(τ); Γ) with respect to Γ. To address this challenge, we use a 

minorization-maximization technique to construct a tractable minorizing function of 

LB(π(τ), θ(τ); Γ), then maximize this minorizer. Define

Q π(τ), θ(τ), Γ(τ); Γ = ∑
t = 1

T
∑
i < j

n
∑

k = 1

K
∑
l = 1

K
γik

2 γjl
(τ)

2γik
(τ) + γjl

2 γik
(τ)

2γjl
(τ) lnPr

Y t, ij = yt, ij yt − 1, ij, Zik = Zjl = 1

+ ∑
i = 1

n
∑

k = 1

K
γik lnπk

(τ) − lnγik
(τ) − γik

γik
(τ) + 1 ,

(10)

which satisfies the defining characteristics of a minorizing function, namely for all Γ,

Q π(τ), θ(τ), Γ(τ); Γ ≤ LB π(τ), θ(τ); Γ (11)

and
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Q π(τ), θ(τ), Γ(τ); Γ(τ) ≤ LB π(τ), θ(τ); Γ(τ) . (12)

Additional details on constructing this minorizing function are presented in the 

supplementary material. Since (10) is concave in Γ and separates into functions of the 

individual γik parameters, maximizing (10) is equivalent to solving a sequence of 

constrained quadratic programming subproblems with respect to γ1,…,γn respectively, 

under constraints γi1,…,γiK ≥ 0 and ∑k = 1
K γik = 1 for i ∈ {1,…, n}.

To maximize LB(π, θ; Γ(τ+1)) in the variational M-step, maximization with respect to π and 

θ may be accomplished separately. First, to derive the closed-form update for π, we 

introduce a Lagrange multiplier with the constraint ∑k = 1
K πk = 1, which yields

πk
(τ + 1) = 1

n ∑
i = 1

n
γik
(τ + 1), k ∈ {1, …, K} .

We could obtain θ(τ+1) using the Newton-Raphson method, though naive application of 

Newton-Raphson will not guarantee an increase in (9), which is necessary for the ascent 

property of the lower bound of the log-likelihood. Since the Hessian matrix H(θ(τ)) at the 

τth iteration is positive definite, it can be shown that if θ moves in the direction 

ℎ(τ) = − H θ(τ) −1∇LB θ(τ); Γ(τ + 1)  of the Newton-Raphson method, the LB(·) function is 

guaranteed to increase initially. In our modified Newton-Raphson method we do not find the 

successor point θ(τ+1) = θ(τ) + h(τ) as in the standard Newton-Raphson method. We instead 

take h(τ) as a search direction and perform a line search [7] to find 

λ* = argmaxλ ∈ (0, 1]LB θ(τ) + λℎ(τ); Γ(τ + 1) , then we find the successor point θ(τ+1) by

θ(τ + 1) = θ(τ) − λ*H θ(τ) −1∇LB θ(τ); Γ(τ + 1) . (13)

In Algorithm 1, we summarize the proposed variational EM algorithm.

Remark 4: The initial parameters γik
(0) are chosen independently and uniformly on (0,1), and 

each γi
(0) is multiplied by a normalizing constant so that ∑k = 1

K γik
(0) = 1 for every i. We start 

with an M-step to obtain initial π(0) and θ(0).

Remark 5: Using standard arguments that apply to minorization-maximization algorithms 

[20], we can show that our variational EM algorithm preserves the ascent property of the 

lower bound of the log-likelihood, namely,

LB π(τ), θ(τ); Γ(τ) ≤ LB π(τ + 1), θ(τ + 1); Γ(τ + 1) .
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4. Model selection

In practice, the number of groups is unknown and should be chosen. Handcock et al. [15] 

propose a Bayesian method of determining the number of groups by using approximate 

conditional Bayes factors in a latent position cluster model. Daudin et al. [11] also derive a 

Bayesian model selection criterion that is based on the integrated classification likelihood 

(ICL). In this section, we use the conditional likelihood of the network series, given an 

estimate of the membership vector, to construct an effective model selection criterion.

Algorithm 1

Variational EM algorithm

• Initialize Γ(0), π(0), and θ(0).

• Iteratively solve the Variational E-step and M-step with τ ∈ {0,1,…} until convergence:

  – Variational E-step: Solve Γ(τ+1) from the maximization of Q π(τ), θ(τ), Γ(τ); Γ  under the constraints that γi1,

…,γiK ≥ 0 and ∑k = 1
K γik = 1 for i ∈ {1,…, n};

  – Variational M-step: Compute πk
(τ + 1) = (1/n)∑i = 1

n γik
(τ + 1)

 for k ∈ {1,…,K}, and solve θ(τ+1) using the 

modified Newton-Raphson method (13) with the gradient and Hessian of (9).

Let zik = 1 γ ik = max1 ≤ j ≤ Kγ ij  indicate the assignment of each node to a component once 

the algorithm has converged. We obtain the conditional log-likelihood of the network series 

y1,…, yT, given initial network y0 and estimated component membership vector 

z = z1, …, zn , as

cl(θ, z) = lnPr y1, …, yT y0, z ,

which can be written using conditional dyadic independence in the form

cl(θ, z) = ∑
t = 1

T
∑

i < j

n
lnPr Y t, ij = yt, ij yt − 1, ij, z .

We propose the following conditional likelihood Bayesian information criterion to choose 

the number of groups for our method:

CL−BICK = − 2cl(θcl, z) + dK(θcl, z)ln{Tn(n − 1)/2},

where θcl is the conditional likelihood estimate given K groups and dK(θ, z) = tr HK
−1V K  is 

the model complexity, following Vann and Vidoni [41], based on HK = E − ∇θ
2cl(θ, z)  and 

V K = var ∇θcl(θ, z) . We choose the optimal K by minimizing the CL-BIC score. The 

composite likelihood BIC has been previously studied by Saldana et al. [37] for stochastic 

blockmodels and by Xue et al. [48] for discrete graphical models.
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We may derive the explicit conditional likelihood BIC for Examples 1 and 2. For TERGM 

with stability parameters θ1
s, …, θK

s  in Example 1, we obtain

cl θs, z = ∑
t = 1

T
∑

i < j

n
−ln 1 + exp θzi

s + θzj
s + yt, ijyt − 1, ij + 1 − yt, ij 1 − yt − 1, ij (θzi

s + θzj
s ) .

For any given K and the corresponding estimate θcl
s

, we derive the explicit estimate of VK as

V K(θcl
s ) = ∑

t = 1

T
u(θcl

s )u(θcl
s )

⊤
,

where u(θcl
s ) = u(θcl, 1

s ), …, u(θcl, K
s )

⊤
 and for k ∈ {1,…, K},

u(θcl, k
s ) = ∑

i < j

n
−

exp(θcl, zi
s + θcl, zj

s )

1 + exp(θcl, zi
s + θcl, zj

s )
yt, ijyt − 1, ij + 1 − yt, ij 1 − yt − 1, ij zik + zjk .

We also derive the explicit estimate of HK denoted by HK(θcl
s ) as follows:

T ∑i < j
n 4exp(θcl, 1

s + θcl, 1
s )

{1 + exp(θcl, 1
s + θcl, 1

s )}
2 Ii, j1 … T ∑i < j

n exp(θcl, 1
s + θcl, K

s )

{1 + exp(θcl, 1
s + θcl, K

c )}
2 Ii, j

1, K

⋮ ⋱ ⋮

T ∑i < j
n exp(θcl, K

s + θcl, 1
s )

{1 + exp(θcl, K
s + θcl, 1

s )}
2 Ii, j

K, 1 … T ∑i < j
n 4exp(θcl, K

s + θcl, K
s )

{1 + exp(θcl, K
s + θcl, K

s )}
2 Ii, jK

,

where Ii, j
k = zikzjk and Ii, j

k, l = zikzjl + zilzjk for k, l ∈ {1, …, K}. We now obtain the 

estimate of dK as dK = tr(HK
−1V K). Finally, for Clustering time-evolving networks through 

TERGM with a stability parameter, we determine the optimal number of groups from

K = arg min
K

CL−BI CK = arg min
K

− 2cl(θcl
s , z) + dK(θcl

s , z)ln{Tn(n − 1)/2},

where θcl
s

 and z are the estimates of θs and z Corresponding to a given K. The details for 

STERGM with formation and persistence parameters in Example 2 are presented in the 

appendix.

We also introduce an alternative model selection Criterion based on modified integrated 

Classification likelihood. Again for the TERGM with stability parameters, the modified ICL 

Can be written as
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ICLK = ∑
t = 1

T
∑

i < j

n
lnPr Y t, ij = yt, ij yt − 1, ij, z − Kln{Tn(n − 1)/2},

where the second term penalizes the K stability parameters and we Choose the optimal 

number of groups as

K = argmax
K

ICLK .

Model selection results using both Conditional likelihood BIC and modified ICL in the 

simulation studies are presented on Section 5.

5. Simulation studies

5.1. Simulation studies for mixture of TERGMs and STERGMs

Firstly simulation studies were Conducted when the dataset was generated from a mixture of 

TERGMs and STERGMs. To simulate time-evolving network from the K-Component 

mixture of TERGMs with stability parameters, i.e., Example 1, we first specify network 

structure by choosing randomly the categories of the nodes according to the fixed mixing 

proportions and by defining initial densities for each group. We then obtain the initial 

network y0 by simulating all the edges based on the probabilities specified by the density 

parameters and the categories of the nodes. Next, we set different stability parameters for 

each group and simulate the edges in networks y1,…, yT sequentially, based on the 

probabilities determined by the parameters, the preceding networks, and the categories of the 

nodes. Similarly, we simulate time-evolving networks from the K-component mixture of 

STERGMs with formation and persistence parameters, i.e., Example 2. For each of the four 

model settings listed in Table 1, we use 100 nodes and 10 discrete time points.

To check the performance of the algorithm at identifying the correct number of groups, we 

count the frequencies of min CL-BIC and max ICL over 100 repetitions. To assess the 

clustering performance, we calculate the average value of the Rand Index (RI) and the 

average value of Normalized Mutual Information (NMI) over the 100 repetitions. The NMI 

can be used to compare the performance of clusterings with different numbers of clusters 

since it is a normalized metric. To assess the estimation performance of the algorithm, we 

calculate the average root squared error for estimated mixing proportions and network 

parameters over the 100 repetitions: RSEπ = (∑k = 1
K (πk − πk)2)1/2

 and 

RSEθ = (∑k = 1
K (θk − θk)2)

1/2
 We check the performance of our criterion functions in 

choosing the correct number of groups, with K0 denoting the true number of groups. As in 

Table 2, both CL-BIC and modified ICL perform well. The average values of Rand Index 

and Normalized Mutual Information are reported in Table 3.

Table 4 summarizes the estimation performance of our algorithm using RSEπ, RSEθs, 

RSEθf, and RSEθp. The results of Tables 2 – 4 together tell us that our algorithm performs 

Lee et al. Page 12

J Multivar Anal. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



convincingly on this set of test datasets. We also found that our proposed algorithm performs 

convincingly in an unbalanced setting where the cluster proportions are unequal, and these 

results are provided in the supplementary material.

5.2. Simulation studies for robustness of model selection

We conduct additional simulation studies to check which model selection criterion is more 

robust in choosing the correct number of groups when the time-evolving networks are not 

simulated from the true model. This time we use the ‘simulate.stergm’ function in the tergm 

package [27] in R [36] to simulate K time-evolving networks [26] and combine them into a 

larger time-evolving network in which each of the original time-evolving networks is the 

subnetwork containing nodes from one of the K groups. First, we specify each network 

structure by choosing randomly the categories of the nodes according to the fixed mixing 

proportions and by defining the network densities. Next, we set different mean relational 

durations, which represent different degrees of stability, and simulate each time-evolving 

network to have the average network density we defined over the time points. Finally, we 

combine the K time-evolving networks into a single time-evolving network by adding a 

fixed number of edges between randomly chosen pairs of individuals in different groups. For 

each of the two model settings listed in Table 5, we use 100 nodes, 10 discrete time points, 

and 10 edges added between randomly chosen pairs of nodes in different groups.

As shown in Table 6, in the new simulation setting where the time-evolving networks are not 

simulated from the true model, CL-BIC still performs well in choosing the correct number 

of groups using either TERGM with a stability parameter or STERGM with formation and 

persistence parameters. However, as shown in Table 7, modified ICL fails to choose the 

correct number of groups. Tables 6 and 7 show that the performance of our proposed CL-

BIC in choosing the correct number of groups seems more robust than modified ICL when 

the model assumptions are violated.

The average RI and NMI results are reported in Tables 8 and 9. In all models, TERGM with 

a stability parameter and STERGM with formation and persistence parameters achieve a 

high average RI and NMI for the correct number of mixtures. Moreover, we see a fairly high 

average RI and NMI with the selected (via minimum CL-BIC) number of groups K. The 

results of Tables 6, 8, and 9 together tell us that our algorithm based on CL-BIC can perform 

convincingly in choosing the correct number of groups and assigning nodes to groups even 

when the time-evolving networks are not generated from the true model.

6. Applications to real-world time-evolving networks

Here, we apply our proposed model-based clustering methods to detect groups in two time-

evolving network datasets: International trade networks of 58 countries from 1981 to 2000, 

and collaboration networks of 151 researchers at a large American research university from 

2004 to 2013. In particular, we are interested in analyzing the rate of evolution of these time-

evolving networks as in Knecht [24], Snijders et al. [39], and Krivitsky and Handcock [26]. 

Before proceeding, we introduce metrics to measure the instability of edges in the estimated 

groups G1, …, GK. For k, l ∈ {1, …, K} and t ∈ {1, …, T}, define
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• the “1 → 0” instability of edges between Gk and Gl at the time t:

S1 0
kl (t) =

∑i ∈ Gk, j ∈ Glyt − 1, ij 1 − yt, ij
∑i ∈ Gk, j ∈ Glyt − 1, ijyt, ij

;

• the “0 → 1” instability of edges between Gk and Gl at the time t:

S0 1
kl (t) =

∑i ∈ Gk, j ∈ Gl 1 − yt − 1, ij yt, ij
∑i ∈ Gk, j ∈ Gl 1 − yt − 1, ij 1 − yt, ij

;

• the total instability of edges between Gk and Gl at the time t:

Stotkl (t) =
∑i ∈ Gk, j ∈ Gl yt − 1, ij 1 − yt, ij + 1 − yt − 1, ij yt, ij
∑i ∈ Gk, j ∈ Gl yt − 1, ijyt, ij + 1 − yt − 1, ij 1 − yt, ij

.

The three instability statistics defined above evaluate the within-group instability when k = l 

and the between-group instability when k ≠ l. Next, we define AS1 0
kl , AS0 1

kl  and AStot
kl

as the averages over all t of S1 0
kl (t), S0 1

kl (t) and Stot
kl (t), respectively. Here, a larger value 

of AS1 0
kl  indicates that the network is more likely to dissolve ties, a larger value of 

AS0 1
kl  implies that the network is more likely to form ties, and a larger value of AStot

kl

implies that the network is less stable overall.

6.1. International trade networks

We first consider finding groups for the yearly international trade networks of n = 58 

countries studied by Ward and Hoff [44]. We follow Westveld and Hoff [45] and Saldana et 

al. [37] to define networks y1981, …, y2000 as follows: for any t ∈ {1981, …, 2000}, yt,i j = 1 

if the bilateral trade between country i and country j in year t exceeds the median bilateral 

trade in year t, and yt,i j = 0 otherwise. By definition, this setup results in networks in which 

the edge density is roughly one half. Here, we employ model-based clustering through 

TERGM with a stability parameter, i.e., Example 1.

First, we use our proposed CL-BIC to determine the number of groups and K = 3 is chosen. 

Hence, we shall identify three groups of countries based on different degrees of stability.

We summarize the characteristics of the three estimated groups, including some basic 

network statistics and parameter estimates, in Table 10. We also calculate the within-group 

and between-group instability measures. As shown in Table 11, group G3 has the smallest 

total instability AStot
33, which implies that those countries in G3 consistently maintain their 

trading countries. In addition, the “1 → 0” and “0 → 1” instability measures show that 

countries in group G2 change their trading countries more actively than countries in G1 and 

G3. To summarize, groups G1, G2, and G3 correspond to the medium stability, low stability, 

and high stability groups, respectively.
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In Fig. 1, we plot the international trade networks with estimated groups represented by 

orange for G1, light green for G2, and light blue for G3 to illustrate our model-based 

clustering result. To illustrate how networks change over time for countries in each of the 

three groups, in Fig. 2 – 4 we isolate one representative country from each group: Israel 

from G1, Thailand from G2, and the United States from G3.

6.2. Collaboration networks

We next find groups for the yearly collaboration networks at a large research university from 

2004 to 2013. There are n = 151 researchers from various academic units in this dataset. We 

define networks y2004, …, y2013 as follows: for any t ∈ {2004, …, 2013}, yt,i j = 1 if 

researcher i and researcher j have an active research grant together during year t, and yt,ij = 0 

otherwise. Here, we employ model-based clustering through STERGM with formation and 

persistence parameters, i.e., Example 2.

Again, we use our proposed CL-BIC and K = 2 is chosen as an optimal number of groups. 

Therefore, we shall identify two groups of researchers based on different degrees of 

formation and persistence.

Table 12 summarizes their basic network statistics and parameter estimates, while Table 13 

displays the within-group and between-group instability measures. As these tables show, G1 

has higher “1 → 0”, “0 → 1”, and total instability than G2. Thus, the researchers in G1 tend 

to have fewer stable collaborations and work with more collaborators than those in G2.

Compared to TERGM with a stability parameter, STERGM with formation and persistence 

parameters provide more detailed insights about time-evolving networks. Based on the 

parameter estimates in Table 12, in each group, the stability is more explained by the 

persistence parameter than the formation parameter. In view of this fact, we further calculate 

the mean relational duration using the persistence parameter estimates for each estimated 

group. We obtain the mean relational durations of 2.18 years for G1 and 2.85 years for G2.

Fig. 5 presents the collaboration networks with estimated groups represented by orange for 

G1 and light blue for G2. We also plot the networks of several representative individual 

researchers, anonymized by the assignment of four-digit identification numbers, in Fig. 6 – 

8.

7. Conclusions

We propose a novel model-based clustering framework for time-evolving networks based on 

discrete time exponential-family random graph models, which simultaneously allows 

modeling and detecting group structure. Our model-based framework achieves different 

goals than a dynamic stochastic blockmodel framework. For example, the communities 

found via the latter framework are by assumption sets of nodes with higher edge probability 

within the sets than between the sets. By contrast, our model-based clustering framework 

allows for groups to be differentiated by other time-evolving features of interest.

Our model can be extended as follows. First, the network parameters can be modeled as 

time-varying functions (e.g., [30]) instead of constants. For example, Corneli et al. [10] 
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propose a model for dynamic networks based on conditional non-homogeneous Poisson 

point processes where intensity functions are dependent on the node memberships and 

assumed to be stepwise constant, with common discontinuity points. Secondly, to effectively 

capture the time-evolving group structure of discrete tune exponential-family random graph 

models, we can incorporate a hidden Markov structure into our model.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

We first present the complete proof of Theorem 1 and then include the details for the 

proposed conditional likelihood BIC for STERGM with formation and persistence 

parameters.

Proof of Theorem 1

The proof consists of three parts. First, we show that the mixing proportions πk, k ∈ {1 …, 

K}, and the conditional probability of observing an edge pkl = Pr(Yt,ij = 1 | yt−1,ij, Zik = Zjl = 

1), k, l ∈ {1, …, K}, k ≤ l, are generically identifiable. Next, we recover the network 

parameters by showing there exist unique closed-form expressions of θk, k ∈ {1, …, K} in 

terms of the conditional probability of observing an edge. We assume that there are no linear 

dependencies among the network statistics. Finally, we derive the condition on the number 

of different network parameters considered in the model to maintain the identifiability.

Allman et al. [4] show in Theorem 2 that it is possible to generically identify the mixing 

proportions and the conditional probability of observing an edge in the random graph 

mixture model with binary edge state variables. In our proposed model, the conditional 

probability of observing an edge is separated into two cases when yt−1,i j = 0 and yt−1,i j = 1, 

and we are able to obtain similar matrix A as in the proof of Thorem 2 in Allman et al. [4] 

containing the probabilities of observing the network time series, conditional on the node 

states. Then as in Allman et al. [3], Lemma 16, we partition the nodes to obtain three 

sequences of pairwise edge-disjoint subnetworks with corresponding matrix of probabilities 

and apply Kruskal’s Theorem [29, Theorem 4a]. Finally, with an appropriate marginalization 

as in the proof of Thorem 2 in Allman et al. [4], we are able to recover the the mixing 

proportions and the conditional probability of observing an edge.

Now to recover the network parameters, we show there exist unique closed-form expressions 

of θk, k ∈ {1, …, K} in terms of pkl, k, l ∈ {1, …, K}, k ≤ l and these expressions can be 

obtained by exploiting the convex duality of exponential families. Let
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ψ* μ, yt − 1, ij = sup
θ

θ⊤μ − ψ θ, yt − 1, ij

be the Legendre-Fenchel transform of ψ(θ, yt−1,i j), where the subscripts k and l have been 

dropped and μ = μ(θ) = Eθ{g(Yt,Yt−1)} is the mean value parameter vector whose entries 

are the expectations of the corresponding network statistics when θ is the canonical 

parameter. Here, ψ(θ, yt−1,i j) can be written as

ψ θ, yt − 1, ij = sup
μ

θ⊤μ − ψ* μ, yt − 1, ij = sup
p

θ⊤μ(p) − ψ* μ(p), yt − 1, ij ,

where μ(p) = ∑y* ∈ 0, 1 g y*, yt − 1, ij Pr Y t, ij = y*|yt − 1, ij, z  and 

ψ* μ(p), yt − 1, ij = ∑y* ∈ 0, 1 Pr Y t, ij = y*|yt − 1, ij, z lnPr Y t, ij = y*|yt − 1, ij, z  since the 

Legendre-Fenchel transform of ψ(θ, yt−1,i j) is self-inverse [43].

Hence, closed-form expressions of θ in terms of p can be found by maximizing θ⊤ μ(p) – 

ψ*{μ(p), yt−1,i j} with respect to p and it is unique since the natural parameter space is 

convex for an exponential family and θ⊤ μ(p) – ψ*{μ(p), yt−1,i j} is strictly concave in p.

To show θ⊤ μ(p) – ψ*{μ(p), yt−1,i j} is strictly concave, we show the Hessian is negative 

definite. Let c be the cardinality of |p|, then the Hessian Hc is a c × c diagonal matrix with 

diagonal elements −1/py* y* ∈ 0, 1 . Here, −Hc is positive definite because the determinants 

of all upper-left sub-matrices are positive and therefore, Hc is negative definite.

Lastly, we further need conditions on the choice and number of different network parameters 

considered in the model. First, the network parameters should be chosen carefully in the 

model such that we avoid linear dependencies among the corresponding network statistics. 

Secondly, let p be the number of different network parameters considered in the model. For 

fixed K, we have K p total network parameters and this value cannot be greater than K+

{K(K−1)}/2, which is the number of identifiable conditional probabilities of observing an 

edge between two nodes given edge state of previous time point and their membership 

labels. Hence, the maximum number of different network parameters identifiable in the 

model is ⌊(K + 1)/2⌋ where ⌊·⌋is a floor function.

Conditional likelihood BIC for STERGM with formation and persistence parameters

Let ki denote the component assigned to node i by the zi vector, i.e., the value of k such that 

zik = 1 The conditional log-likelihood of STERGM with formation and persistence 

parameters can be written as

cl θf, θp, z = ∑
t = 1

T
∑

i < j

n
−lnC θf, θp + yt, ij − yt, ijyt − 1, ij (θki

f + θkj
f ) + yt, ijyt − 1, ij (θki

p + θkj
p ) ,

where C θf, θp = {1 + exp(θki
p + θkj

p )}
yt − 1, ij

{1 + exp(θki
f + θkj

f )}
1 − yt − 1, ij

.
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For any given K and the corresponding estimates θcl
f

 and θcl
p

 we derive the explicit estimate 

of VK as

V K(θcl
f , θcl

p ) = ∑
t = 1

T
u(θcl

f , θcl
p )u(θcl

f , θcl
p )

⊤
,

where u(θcl
f , θcl

p ) = u(θcl, 1
f ), …, u(θcl, K

f ), u(θcl, K + 1
p ), …, u(θcl, 2K

p )
⊤

 and for k ∈ {1,…,K},

u(θcl, k
f ) = ∑

i < j

n
−

1 − yt − 1, ij exp θcl, zi
f + θcl, zj

f

1 + exp θcl, zi
f + θcl, zj

f + yt, ij − yt, ijyt − 1, ij zik + zjk ,

and for l ∈ {K + 1,..., 2K},

u(θcl, l
p ) = ∑

i < j

n
−

yt − 1, ijexp θcl, zi
p + θcl, zj

p

1 + exp θcl, zi
p + θcl, zjj

p + yt, ijyt − 1, ij zil + zjl .

We also derive the explicit estimate of HK as

HK(θcl
f , θcl

p ) =

H11 … H1K 0 … 0
⋮ ⋱ ⋮ ⋮ ⋱ ⋮

HK1 … HKK 0 … 0

0 … 0 H(K + 1)(K + 1) … H(K + 1)(2K)
⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 … 0 H(2K)(K + 1) … H(2K)(2K)

,

where
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H11 = ∑
t = 1

T
∑

i < j

n 4(1 − yt − 1, ij)exp(θcl, 1
f + θcl, 1

f )

1 + exp(θcl, 1
f + θcl, 1

f )
2 Ii, j1 ,

H1K = ∑
t = 1

T
∑

i < j

n (1 − yt − 1, ij)exp(θcl, 1
f + θcl, K

f )

1 + exp(θcl, 1
f + θcl, K

f )
2 Ii, j

1, K,

HK1 = ∑
t = 1

T
∑

i < j

n (1 − yt − 1, ij)exp(θcl, K
f + θcl, 1

f )

1 + exp(θcl, K
f + θcl, 1

f )
2 Ii, j

K, 1,

HKK = ∑
t = 1

T
∑

i < j

n 4(1 − yt − 1, ij)exp(θcl, K
f + θcl, K

f )

1 + exp(θcl, K
f + θcl, K

f )
2 Ii, jK ,

H(K + 1)(K + 1) = ∑
t = 1

T
∑

i < j

n 4yt − 1, ijexp(θcl, 1
p + θcl, 1

p )

1 + exp(θcl, 1
p + θcl, 1

p )
2 Ii, j1 ,

H(K + 1)(2K) = ∑
t = 1

T
∑

i < j

n yt − 1, ijexp(θcl, 1
p + θcl, K

p )

1 + exp(θcl, 1
p + θcl, K

p )
2 Ii, j

1, K,

H(2K)(K + 1) = ∑
t = 1

T
∑

i < j

n yt − 1, ijexp(θcl, K
p + θcl, 1

p )

1 + exp(θcl, K
p + θcl, 1

p )
2 Ii, j

K, 1,

H(2K)(2K) = ∑
t = 1

T
∑

i < j

n 4yt − 1, ijexp(θcl, K
p + θcl, K

p )

1 + exp(θcl, K
p + θcl, K

p )
2 Ii, jK .

In the equations above, Ii, j
k = zikzjk and Ii, j

k, l = zikzjl + zilzjk for k, l ∈{1,…K}.

We now obtain the estimate of dK as dK = tr(HK
−1V K). Finally, for clustering time-evolving 

networks through STERGM with formation and persistence parameter, re determine the 

optimal number of groups from

K = argmin
K

CL−BI CK = argmin
K

− 2cl(θcl
f , θcl

p , z) + dK(θcl
f , θcl

p , z)ln{Tn(n − 1)/2},

where θcl
f

, θcl
p

 and z are the estimates of θf, θp and z for a given K.
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Fig. 1. 
International trade networks with estimated groups in four different years. Nodes assigned to 

G1, G2, and G3 are colored orange, light green, and light blue, respectively.
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Fig. 2. 
Trade network of Israel, with estimated membership vector γ = (0.711, 0.072, 0.218). Although 

primarily classified as medium stability, Israel has stable trade with high-level GDP 

countries in G3, which explains its 21.8% membership in G3.
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Fig. 3. 
Trade network of Thailand, with estimated membership vector γ = (0.049, 0.910, 0.041). 
Primarily classified in the low-stability group, Thailand’s economic boom from 1987 to 

1996 was triggered by its improved foreign trade and influx of foreign investment, which is 

consistent with its rapidly increasing number of trading partners.
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Fig. 4. 
Trade network of the United States, with estimated membership vector 

γ = (0.004, 0.000, 0.996). The United States is solidly in the high-stability group.
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Fig. 5. 
Collaboration networks with estimated groups in four different years. Nodes assigned to G1 

and G2 are colored orange and light blue, respectively.
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Fig. 6. 
Collaboration network of researcher #4201, with estimated membership vector 

γ = (0.8506, 0.1494).
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Fig. 7. 
Collaboration network of researcher #3423, with estimated membership vector 

γ = (0.0175, 0.9825).
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Fig. 8. 
Collaboration network of researcher #4607, with estimated membership vector 

γ = (0.4000, 0.6000).

Lee et al. Page 29

J Multivar Anal. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lee et al. Page 30

Table 1

Models 1–2 are two different simulation settings for for TERGM with stability parameters (Example 1) and 

Models 3–4 are two different simulation settings for STERGM with formation and persistence parameters 

(Example 2).

Model 1 Model 2

G1 G2 G1 G2 G3

Mixing proportion πk 0.5 0.5 0.33 0.33 0.33

Stability parameter θk
s −0.5 0.5 −1 0 1

Initial network density parameter θk
d −0.5 0.5 −1 0 1

Model 3 Model 4

G1 G2 G1 G2 G3

Mixing proportion πk 0.5 0.5 0.33 0.33 0.33

Formation parameter θk
f −1.5 1.5 −1.5 0 1.5

Persistence parameter θk
p −1 1 −1 0 1

Initial network density parameter θk
d −0.5 0.5 −1 0 1
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Table 2

Comparison of the model selection performance using the frequencies of min CL-BIC and max ICL over 100 

repetitions. The details about Models 1–4 can be found in Table 1.

Model 1 (K0 = 2) Model 2 (K0 = 3)

K = 1 K = 2 K = 3 K = 4 K = 1 K = 2 K = 3 K = 4

min CL-BIC 0 99 0 1 0 0 97 3

max ICL 0 100 0 0 0 0 96 4

Model 3 (K0 = 2) Model 4 (K0 = 3)

K = 1 K = 2 K = 3 K = 4 K = 1 K = 2 K = 3 K = 4

min CL-BIC 0 99 1 0 0 3 93 4

max ICL 0 100 0 0 0 0 99 1
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Table 3

Comparison of the clustering performance usng the average Rand Index (RI) and Normalized Mutual 

Information (NMI) for 100 repetitions for various models and values of K, with sample standard deviations in 

parentheses. The details about Models 1–4 can be found in Table 1.

Model 1 (K0 = 2)

K = 2 K = 3 K = 4

RI 1.000 (0.000) 0.874 (0.033) 0.773 (0.030)

NMI 1.000 (0.000) 0.674 (0.043) 0.521 (0.025)

Model 2 (K0 = 3)

K = 2 K = 3 K = 4

RI 0.751 (0.044) 0.996 (0.031) 0.943 (0.025)

NMI 0.482 (0.075) 0.990 (0.064) 0.827 (0.045)

Model 3 (K0 = 2)

K = 2 K = 3 k = 4

RI 1.000 (0.000) 0.874 (0.033) 0.774 (0.031)

NMI 1.000 (0.000) 0.675 (0.046) 0.521 (0.026)

Model 4 (K0 = 3)

K = 2 K = 3 K = 4

RI 0.761 (0.045) 0.998 (0.021) 0.945 (0.018)

NMI 0.511 (0.084) 0.995 (0.049) 0.836 (0.033)
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Table 4

Comparison of the estimation performance for mixing proportions and network parameters over 100 

repetitions with standard deviations shown in parentheses. The details about Models 1–4 and the root squared 

error can be found in Table 1 and Section 5.1.

Model 1 (K0 = 2) Model 2 (K0 = 3)

RSEπ RSEθs RSEπ RSEθs

0.056 0.013 0.073 0.038

(0.043) (0.008) (0.043) (0.098)

Model 3 (K0 = 2) Model 4 (K0 = 3)

RSEπ RSEθf RSEθp RSEπ RSEθf RSEθp

0.057 0.030 0.023 0.072 0.045 0.039

(0.043) (0.020) (0.015) (0.040) (0.094) (0.071)
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Table 5

Models 5–6 are two different simulation settings when the time-evolving networks are not simulated from the 

true model.

Model 5 Model 6

G1 G2 G1 G2 G3

Mixing proportion 0.4 0.6 0.3 0.4 0.3

Mean relational duration 5 2.5 7.5 5 2.5

Average network density 0.15 0.1 0.1 0.25 0.3
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Table 6

Frequencies of min CL-BIC over 100 repetitions. The details about Models 5–6 can be found in Table 5.

Model 5 (K0 = 2) Model 6 (K0 = 3)

K = 1 K = 2 K = 3 K = 4 K = 1 K = 2 K = 3 K = 4

TERGM 0 87 12 1 0 1 96 3

STERGM 0 93 2 5 0 8 91 1
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Table 7

Frequencies of max ICL over 100 repetitions. The details about Models 5–6 can be found in Table 5.

Model 5 (K0 = 2) Model 6 (K0 = 3)

K = 1 K=2 K = 3 K=4 K = 1 K = 2 K = 3 K=4

TERGM 0 49 23 28 0 0 65 35

STERGM 0 53 32 15 0 0 59 41
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Table 8

Comparison of the clustering performance using average Rand Index with standard deviations shown in 

parentheses. The details about Models 5–6 can be found in Table 5.

Model 5 (K0 = 2)

K = 2 K = 3 K = 4 K = K

TERGM 0.976 (0.032) 0.797 (0.045) 0.716 (0.036) 0.948 (0.080)

STERGM 0.979 (0.025) 0.798 (0.054) 0.727 (0.041) 0.966 (0.056)

Model 6 (K0 = 3)

K = 2 K = 3 K = 4 K = K

TERGM 0.753 (0.054) 0.976 (0.033) 0.935 (0.023) 0.975 (0.037)

STERGM 0.756 (0.055) 0.972 (0.036) 0.931 (0.024) 0.961 (0.052)
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Table 9

Comparison of the clustering performance using average Normalized Mutual Information with standard 

deviations shown in parentheses. The details about Models 5–6 can be found in Table 5.

Model 5 (K0 = 2)

K = 2 K = 3 K=4 K = K

TERGM 0.922 (0.093) 0.535 (0.074) 0.403 (0.073) 0.863 (0.179)

STERGM 0.928 (0.076) 0.532 (0.084) 0.410 (0.071) 0.901 (0.131)

Model 6 (K0 = 3)

K = 2 K = 3 K = 4 K = K

TERGM 0.508 (0.094) 0.936 (0.064) 0.795 (0.044) 0.933 (0.070)

STERGM 0.500 (0.092) 0.926 (0.069) 0.778 (0.050) 0.901 (0.111)
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Table 10

Summary of network statistics, parameter estimates, and average memberships for each group. Groups G1, G2, 

and G3 correspond to the medium stability, low stability, and high stability groups, respectively.

G1 G2 G3

Total # of nodes 24 21 13

Average # of edges per node 17.11 34.28 42.42

Average # of triangles per node 150.17 443.95 613.15

Estimated mixing proportion π 0.3920 0.3677 0.2403

Estimated stability parameter θs 1.6323 1.3168 2.0712

Average membership of γ ⋅ 1 0.8147 0.1158 0.0579

Average membership of γ ⋅ 2 0.1060 0.8262 0.1101

Average membership of γ ⋅ 3 0.0794 0.0579 0.8320
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Table 11

Summary of within-group and between-group instability statistics for the proposed model-based clustering 

group assignments for the international trade network dataset. AS1 0
kl , AS0 1

kl , and AStot
kl  measure the 

average over all t of S1 0
kl (t), S0 1

kl (t), and Stot
kl (t), respectively, with standard deviations shown in 

parentheses.

AS1 0
11 AS0 1

11 AStot
11 AS1 0

22 AS0 1
22 AStot

22 AS1 0
33 AS0 1

33 AStot
33

0.088 0.014 0.023 0.048 0.248 0.082 0.002 0.014 0.004

(0.094) (0.009) (0.013) (0.041) (0.132) (0.047) (0.006) (0.034) (0.006)

AS1 0
12 AS0 1

12 AStot
12 AS1 0

13 AS0 1
13 AStot

13 AS1 0
23 AS0 1

23 AStot
23

0.098 0.042 0.058 0.041 0.048 0.043 0.011 0.049 0.016

(0.030) (0.014) (0.015) (0.021) (0.026) (0.008) (0.017) (0.088) (0.019)
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Table 12

Summary of network statistics, parameter estimates, and average memberships for each group. Groups G1 and 

G2 correspond to the low stability and high stability groups.

G1 G2

Total # of nodes 34 117

Average # of edges per node 2.92 1.90

Average # of triangles per node 0.8088 0.3957

Estimated mixing proportions π 0.2464 0.7536

Estimated formation parameter θf −2.2677 −2.9634

Estimated persistence parameter θ p 0.1647 0.6156

Average membership of γ ⋅ 1 0.7706 0.0941

Average membership of γ ⋅ 2 0.2294 0.9059
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Table 13

Summary of within-group and between-group instability statistics for the proposed model-based clustering 

group assignments for the collaboration network dataset. AS1 0
kl , AS0 1

kl , and AStot
kl  measure the average 

over all t of S1 0
kl (t), S0 1

kl (t), and Stot
kl (t), respectively, with standard deviations shown in parentheses.

AS1 0
11 AS0 1

11 AStot
11 AS1 0

22 AS0 1
22 AStot

22 AS1 0
12 AS0 1

12 AStot
12

0.672 0.014 0.029 0.2/2 0.003 0.005 0.540 0.005 0.010

(0.359) (0.006) (0.007) (0.059) (0.001) (0.001) (0.189) (0.001) (0.002)
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