1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

Author manuscript
Diabetologia. Author manuscript; available in PMC 2021 September 01.

-, HHS Public Access
«

Published in final edited form as:
Diabetologia. 2020 September ; 63(9): 1694-1705. doi:10.1007/s00125-020-05217-1.

Real-world evidence: the devil is in the detail

Mugdha Gokhalel2, Til Stirmer?, John B. Buse3

LPharmacoepidemiology, Center for Observational & Real-World Evidence, Merck, 770
Sumneytown Pike West Point PA 19486, USA

2Department of Epidemiology, Gillings School of Global Public Health, University of North
Carolina, Chapel Hill, NC, USA

3-Department of Medicine, University of North Carolina, Chapel Hill, NC, USA

Abstract

Much has been written about real-world evidence (RWE), a concept that offers an understanding
of the effects of healthcare interventions using routine clinical data. The reflection of diverse real-
world practices is a double-edged sword that makes RWE attractive but also opens doors to several
biases that need to be minimised both in the design and analytical phases of nonexperimental
studies. Additionally, it is critical to ensure that researchers who conduct these studies possess
adequate methodological expertise and ability to accurately implement these methods. Critical
design elements to be considered should include a clearly defined research question using a causal
inference framework, choice of a fit-for-purpose data source, inclusion of new users of a treatment
with comparators that are as similar as possible to that group, accurately classifying person-time
and deciding censoring approaches. Having taken measures to minimise bias ‘by design’, the next
step is to implement appropriate analytical techniques (for example propensity scores) to minimise
the remnant potential biases. A clear protocol should be provided at the beginning of the study and
a report of the results after, including caveats to consider. We also point the readers to readings on
some novel analytical methods as well as newer areas of application of RWE. While there is no
one-size-fits-all solution to evaluating RWE studies, we have focused our discussion on key
methods and issues commonly encountered in comparative observational cohort studies with the
hope that readers are better equipped to evaluate nonexperimental studies that they encounter in
the future.
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Introduction

Real-world evidence (RWE) remains one of the most enticing concepts in medicine,
surrounded by much buzz. Recent developments, including the first-ever regulatory approval
of label expansion of IBRANCE (palbociclib) for male breast cancer based on RWE, have
brought in a new era in the applicability of RWE in healthcare [1]. RWE is defined as
‘clinical evidence about the usage and potential benefits or risks of a medical product
derived from analysing real-world data (RWD)’ [2]. RWD are data relating to patient health
status and/or the delivery of healthcare routinely collected from different sources and find
application in many areas including therapeutic development to comparative effectiveness/
safety, reimbursement, regulatory decision-making and clinical guideline development [2,
3]

The reflection of “diverse real-world practices’ enhances the appeal of RWD making it more
relatable than data from RCTs. However, this very element that makes RWD attractive also
makes it challenging to work with. Additionally, inaccurate application of methods and
shortage of adequate methodological know-how potentially threaten the validity of RWD
studies [4]. In this paper we discuss commonly encountered issues and recommend key
methodological considerations and potential solutions in the design, implementation and
evaluation of real-world pharmacoepidemiological studies. This paper provides a general
overview of a broad topic and because a detailed discussion on each subtopic is beyond the
scope of this review, we have cited several references in relevant sections for interested
readers to explore further.

Defining the research question using a causal inference framework

It is a misconception that the entire purpose of RWD is to reduce the cost or complexity of
trials (although this is feasible and done in some settings) or simply to get evidence ‘without
randomisation’. RWE when done correctly is an important stand-alone source of evidence
that complements RCTs and laboratory and other studies, which together inform decision-
making. Understanding the research question is crucial to ensure that the right tools to
generate robust RWE are employed.

Researchers should accurately describe the goals of real-world studies using a causal
inference framework, like they would for an RCT, including any nuances (e.g. are we
comparing initiation of treatment A vs treatment B or are we comparing patients switching
from treatment A to treatment B vs patients staying on treatment A?) [5]. While RWE is
inherently relevant to clinical practice, it examines a different pattern of care (i.e. RWE and
RCTs ask different questions). However, imagining an RWE study as a hypothetical trial
forces a more stringent thought process about the intervention, comparators, timelines,
outcomes and confounders [6, 7]. In estimating a causal effect, we ideally want to examine
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all potential outcomes in the same patients during the same time period, under contrasting
treatments [8]. However, this is impossible, as for each patient the outcome can be observed
only under one treatment. We therefore compare the outcomes of two groups: treatment A vs
an ‘exchangeable’ substitute treatment B [9, 10]. The validity of effect estimates depends on
how valid the substitution is [10]. While there are no guarantees that an effect estimate can
be causally interpreted, setting a causal goal for the study lays the foundation for robust
design and analytical decisions [5-8].

Data sources

Table 1 describes several data sources and provides examples of their application in diabetes
research. RWD sources include administrative claims data [11-13], electronic health records
[14, 15] and disease or treatment registries [16, 17]. Additionally, patient-generated data
from surveys, questionnaires, smartphone apps and social media are increasingly being
considered for the purposes of pharmacovigilance, patient characterisation and disease
understanding [11, 18, 19]. However, these need careful evaluation as not all health apps are
thoroughly validated and their pace of growth is fast outpacing the vetting process [20]. Data
linkages with appropriate safeguards offer opportunities to combine useful features from two
or more data sources to conduct real-world studies [21].

Study design

Several classification schemes exist for real-world study designs [22] but, broadly, cohort
studies, case—control studies and self-controlled case series are the three basic types [23].
Cohort studies follow patients from the treatment to the outcome. Case—control studies
select disease cases and controls from the source population and compare treatment histories
in the two groups, thereby introducing several avenues for biases. Cohort design is a direct
analogue of an experiment and has generally become the standard design for observational
studies unless an alternate design is dictated by the research question. Self-controlled
methods compare treatments and outcomes within the same individual rather than across
groups of individuals by looking at different treatment times within the same person. They
are a good fit in settings with acute recurrent or non-recurrent events and intermittent
exposures and transient effects, assuming availability of precise timings [24]. Choice of a
study design depends on several factors including the research question of interest, rarity of
the exposure/outcome and avenues for biases. We direct interested readers to publications by
Rothman et al [23] and Hallas and Pottegard [25] for further reading on this subject. As
cohort studies are most intuitive when assessing incidence, natural history or comparative
effectiveness/safety, we will focus much of our further discussion with this design in
perspective. Recently, clear design diagrams have been proposed to intuitively visualise
studies conducted using healthcare databases/electronic medical records (Fig. 1) [26].

Potential biases

The biggest criticism of real-world studies is their potential for systematic error (biases).
These are broadly classified as confounding (due to lack of randomisation), selection bias
(due to procedures used to select study population) and information bias (measurement
error) [23].

Diabetologia. Author manuscript; available in PMC 2021 September 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Gokhale et al. Page 4

Confounding

Confounding is the distortion of the treatment—outcome association when the groups being
compared differ with respect to variables that influence the outcome. In comparing drug
treatments, confounding by indication is a common issue that occurs because patients have
an ‘indication’ for a particular drug [27]. As an example, comparing patients prescribed
insulin vs oral glucose-lowering agents leads to confounding by indication as the two
populations are imbalanced on the ‘indication’ (severe vs milder diabetes). When a
treatment is known to be associated with an adverse event, confounding by contraindication
is possible. In comparing thiazolidinediones with dipeptidyl peptidase-4 (DPP-4) inhibitors
to assess the risk for heart failure, for example, patients with existing heart conditions are
likely to be channelled away from thiazolidinediones. Restricting the study population to
those without prevalent heart failure will therefore minimise intractable confounding by
contraindication [28].

In real-world studies confounding by frailty is possible. This is a particular problem in older
adults, as frail, close-to-death patients are less likely to be treated with preventive treatments.
Thus, when comparing users vs non-users of a particular drug to assess outcomes associated
with frailty (e.g. mortality risk), the non-user group is likely to have higher mortality risk
and make the drug look better than it really is [29, 30].

Selection bias

This bias occurs when the selected population is not representative of the target population
to which inference is to be drawn (due to selective survival rate, differential losses to follow-
up, non-response, etc.) [31]. Selection bias is sometimes intertwined with confounding
depending on the setting in which it occurs (e.g. epidemiologists sometimes use the term
selection bias to mean ‘confounding by indication’, others use the term selection bias when
confounders are unmeasured) [32].

Information bias

This arises due to inaccurate measurement or misclassification of treatments, outcome or
confounders [23]. Its effect on results depends on whether misclassification is differential or
non-differential across the treatments being compared. In a cohort study, non-differential
exposure misclassification occurs when treatment status is equally misclassified among
patients who develop or do not develop the outcome. As an illustration, if 10% of patients in
both treatment A and treatment B groups received free drug samples (and therefore no
prescription record in claims data), an equal proportion of patients in each group will be
misclassified as ‘unexposed’. Non-differential outcome misclassification in a cohort study
occurs when patients who develop the outcome are equally misclassified in treatment A and
treatment B groups (e.g. 15% of healthy patients receiving treatment A or treatment B are
misclassified as having lung cancer). Differential misclassification occurs when
misclassification of treatment status is uneven between individuals that have or do not have
the outcome, or when misclassification of the outcome is not the same between treatment A
and treatment B. While non-differential misclassification of treatments and outcomes will
generally bias estimates towards the null, differential misclassification can lead to spurious
associations or can mask true effects. The effect of misclassification on results also depends
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on whether the results are reported as absolute or relative [23]. Absolute measures present
difference in risk of the outcome in treatment A vs treatment B, while relative measures
present the ratio of risk of outcome for treatment A vs treatment B. When misclassification
is non-differential, studies reporting absolute measures should have outcome definitions with
high sensitivity and specificity as low values for either can lead to bias. In studies reporting
relative measures, near-perfect specificity, even at the cost of low sensitivity, is desired [33].

Another common criticism of RWD concerns ‘missing data’. The commonly used strategy
of excluding records with missing data can severely bias results. Multiple imputation
methods for mitigating the effect of missing data have been shown to decrease bias and
improve precision in a variety of disease areas including diabetes [34, 35]. Methods for
addressing missing data should be based on a careful consideration of reasons for
missingness and availability of validation datasets needed for imputation methods [36].

Time-related biases

These are biases that misclassify person-time attributed to the treatment. Immortal time bias
is one such bias arising from misclassification of the time before the treatment during which
a patient, by design, could not have experienced the outcome and the patients have to be
event-free until treatment starts [37]. Misclassifying this time or excluding it from the
analysis altogether leads to immortal time bias [37, 38]. This is exacerbated in studies
comparing treatment users vs non-users (Fig. 2) but can occur when comparing active
treatments without careful consideration of person-time. Consider an example comparing a
sulfonylurea vs metformin, where metformin users consisted of patients with or without
prior sulfonylurea use. For the metformin patients with prior sulfonylurea use, their time on
sulfonylureas before metformin was misclassified as ‘metformin-exposed” which led to
immortal time bias and spuriously suggested the protective effect of metformin on mortality
risk, since they had to survive to switch to metformin [39, 40].

In studies assessing cancer outcomes, events occurring shortly after initiation may not be
meaningfully attributed to the exposed period, particularly since carcinogenic exposures
typically have long induction periods [41]. Not counting person-time and events during a
predefined time-lag after drug initiation accounts for both these periods (Fig. 3). Similarly, it
is unlikely that patients stop being “at risk’ on the day after drug discontinuation and a
period of latency should also be considered to provide an opportunity to capture the outcome
that was potentially present subclinically before treatment discontinuation [41]. As an
example, a recent study exploring the incidence of breast cancer with insulin glargine vs
intermediate-acting insulin used induction and lag periods to account for cancer latency [42].

Prevalent-user biases

Prevalent users are patients already on treatment before follow-up starts and therefore more
tolerant of the drug. Methodological problems due to inclusion of prevalent users are
illustrated by inconsistent results from studies examining cancer incidence with insulin
glargine, depending on the study design used [43, 44]. However, the most striking and
frequently cited example illustrating these issues is a series of studies highlighting the
discrepancies in the estimated effects of hormone therapy on cardiovascular outcomes
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between new users and prevalent users in the same data [45-48]. The Nurses’ Health cohort
study reported a decreased risk of major CHD in prevalent users of oestrogen and progestin
compared with non-users, in contrast to results from the RCT which showed an increased
risk in the oestrogen + progestin arm relative to placebo [49, 50]. A re-analysis of the
Nurses’ Health study cohort comparing new users of hormone therapy vs non-initiators
demonstrated results in line with the RCT, highlighting the issues due to inclusion of
prevalent users [51]. As the prevalent users have “‘survived’ treatment, any patients who
experienced early events (susceptible patients) will be automatically excluded in prevalent-
user studies, introducing substantial bias if the hazard for the outcome varies depending on
time spent on treatment [48, 52]. In studies with a mix of prevalent and incident users, the
differential proportion of prevalent users across two groups being compared leads to
selection bias and also obscures early events if the prevalent users contribute more person-
time. Moreover, since confounders are affected by prior treatment, they are mediators in a
causal pathway between the treatment to outcome and any analytical adjustment would
worsen the bias [48].

Methods for minimising bias by study design and analysis

Active comparator new-user design

To avoid prevalent-user biases, new-user design has been recommended as almost a default
strategy, except in settings where inclusion of prevalent users is preferable (e.g. describing
burden of illness) [53]. This design includes initiators of a drug, after a washout period
without that drug (treatment-naivety not necessary) and provides an intuitive timeline to start
follow-up [48]. Because new-user designs restrict the population to drug initiators, concerns
have been expressed about reduced generalisability and precision at the cost of high internal
validity. Modifications of the new-user design, such as the prevalent new-user designs, have
recently been proposed to address this (e.g. while comparing new-to-market vs older drugs)
[54]. Such designs propose including patients switching from older to newer drugs to
increase precision. However, precision gain needs to be carefully weighed against the
mixing of research questions (initiation vs switching) and the potential for biases introduced
by comparing switchers with patients who remain on treatment [55].

The merits of a new-user design are further amplified by comparing drugs in clinical
equipoise [56]. Comparing treated and untreated patients opens the door to a host of biases
(Fig. 2), which can be overcome by the active comparator new-user design comparing new
users of therapeutically equivalent drugs (active comparators; Fig. 3). This designh makes the
two cohorts ‘exchangeable’ with respect to baseline disease severity and outcome risk and
the follow-up can start from an intuitive, synchronised time point [57, 58]. The demonstrated
balance of measured characteristics may also increase the probability of balance of
unmeasured covariates, although this cannot be empirically demonstrated [28, 59]. Often
there may be situations in diabetes research where an active comparator is not available (e.g.
an RWE study emulating a placebo-controlled trial). In such cases, synchronising cohorts
based on any healthcare encounters that make the two cohorts as substitutable as possible is
still preferred over comparing with non-users [57]. In a recent example illustrating this
principle, the risk of cardiovascular outcomes with the sodium—glucose cotransporter-2
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(SGLT?2) inhibitor canagliflozin was assessed relative to non-SGLT2-inhibitors rather than to
non-users of canagliflozin (which could have led to inclusion of diabetes patients not on
pharmacological therapy and therefore caused imbalance of patient characteristics) [60].

The active comparator new-user design is analogous to a head-to-head RCT comparing two
drugs in equipoise. It allows following patients by ignoring treatment changes over time,
analogous to the “intent-to-treat” analyses in RCTs. This may introduce treatment
misclassification bias towards the null and should be avoided, particularly in studies
assessing harm, to avoid masking actual treatment-associated harm. Another option is the
‘as-treated’ approach where follow-up is censored at treatment discontinuation, switching or
augmentation. A caveat with the ‘as-treated” approach is potential selection bias introduced
because of informative censoring (i.e. patients censored because they made treatment
changes are not representative of patients who remain on treatment). This needs to be
addressed in the analysis using inverse probability of censoring weights [32].

Recent applications of these designs in diabetes research include new-user studies on SGLT2
inhibitors demonstrating no increased risk of amputations relative to non-SGLT2 inhibitors,
but increased risk relative to the most appropriate DPP-4 inhibitor comparator using
restrictive study criteria and robust analytic techniques [60, 61].

An example that naturally fits with the active comparator new-user study is the use of
propensity scores, a powerful tool for controlling measured confounding [62-66]. A
propensity score is a summary score estimating the probability of treatment A vs treatment
B based on patients’ baseline characteristics. Once estimated, propensity scores can be
implemented by matching, weighting and stratification on the score [62, 63, 67, 68], all of
which allow empirical demonstration of covariate balance before and after implementation.
Propensity scores can also be included in an outcome model, although this takes away the
ability to empirically ‘see’ the adjustment and has other disadvantages so is therefore
discouraged [67]. The choice of method used to implement propensity scores (matching,
stratification, different types of weighting) depends on the target population to which
inference needs to be drawn and the extent of unmeasured residual confounding[62, 69-74].

Other methods such as disease risk scores (summary scores based on baseline outcome risk)
can have advantages in specific settings [75, 76]. When substantial unmeasured confounding
is expected, instrumental variable methods might be used to obtain unbiased effect estimates
[77, 78]. Instrumental variables are variables that affect treatment choice but not the
outcome of interest other than through treatment. Examples include physicians’ preference
and any rapid change in treatments (e.g. due to market access, guideline changes, warnings
about serious side effects). All of these methods, however, are based on a number of
assumptions that should be evaluated when conducting and interpreting real-world studies.
Further, more than one method can be considered as supplementary sensitivity analyses after
clearly specifying the reasons a priori. Given the dynamic treatment patterns in routine
clinical practice (discontinuation, reinitiation, switching treatment, etc.), analyses often need
to account for time-varying treatments and confounders depending on the research question
of interest.
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Recently, the utility of machine learning in causal inference has been explored [79, 80].
Machine learning algorithms have been shown to perform well in estimating propensity
scores in certain settings by reducing model mis-specification [81, 82] but can amplify bias
in certain settings (e.g. if use of instrumental variables in propensity score estimation is
encouraged) [83]. A concern with these methods is the lack of easy interpretability and the
risk of being data-driven rather than being informed by substantive knowledge and therefore
need careful consideration before being used.

Newer avenues for applicability of RWE

RWD are increasingly being used to predict outcomes from clinical trials, which supports
efficient resource management, faster drug approval times and making medicines available
sooner for patients. A recent example is a study comparing linagliptin vs glimepiride using
RWD from Medicare and commercial data [84]. While this study demonstrated linagliptin’s
‘non-inferiority” in line with the findings of the CAROLINA trial, the magnitude was
smaller than that observed in the trial. This was likely due to differences in the nature of
treatments being compared rather than a lack of robust methodology. Despite the difference
in magnitude of results, this supports the value that RWD brings. Another application is the
use of an RWD-based comparator for single-arm trials when using a randomised control arm
is not feasible, as was done with BLINCYTO (blinatumomab) indicated for leukaemia
treatment [2]. We use blinatumomab as a powerful example of use of RWD in regulatory
decision-making. It is not inconceivable that RWD may find applications in the future in
areas where randomised trials may be deemed unethical, such as treatment of heart failure
without background SGLT?2 inhibitor therapy, or for the prevention of rare events where
sample sizes could become prohibitive. The main challenge to address here is the differences
between trial participants vs patients in routine practice, including the potential for
differential recording of characteristics, warranting deeper design and analytical
considerations depending on the nature and extent of differences. Efforts are also ongoing to
map the potential effects of RCT data to real-world populations, although we are not aware
of examples of this in diabetes research. Pragmatic trials (that measure effectiveness of the
treatment/intervention in routine clinical practice) including RWD are also increasingly
being explored in a number of disease areas [85, 86]. Finally, we may be at the verge of a
paradigm shift with respect to classification of validity and hierarchy of study designs. The
approach of prioritising internal validity (getting unbiased estimates) at the cost of external
validity (generalisability or transportability of results), and our current thinking of internal
validity as a prerequisite for external validity can negatively affect the value that RWE
brings. Westreich et al recently proposed a joint measure of the validity of effect estimates
(target validity) and defined target bias as any deviation of the estimated treatment effect
from the true treatment effect in a target population rather than the current distinction
between internal and external validity [87].

Conclusion

The value of RWE lies in going beyond the constraints of RCTs to understand the effects in
real-world populations. However, the hopes of ‘quick wins’ with RWE need to be balanced
with a knowledge of robust methodology. We have focused our discussion on key concepts,
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methods and recommendations in the hope that readers are better informed of the utility and
limitations of a particular RWE study that they encounter. The following key points should
be looked for when evaluating an RWE study: a clearly articulated research question; a fit-
for-purpose data source; a state-of-the-art design including appropriate comparators;
covariate balance; analysis methods including sensitivity analyses; and the likelihood of
being able to reasonably replicate the study in another similar setting. Several guidelines
have come into existence to assist investigators with proper conduct, interpretation and
reporting of real-world studies [88-90]. As the field continues to grow, it is important for
scientific journals and regulatory agencies to use peer reviewers with adequate
methodological know-how to ensure dissemination of high-quality RWE and maximise its
utility in decision-making.
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(first prescription of the drug of interest or comparator)

Predefined window to assess
inclusion/exclusion criteria
(intermittent medical and drug coverage?)

Washout period
(no prescription of drug of interest or comparator)

Exclusion of patients with prevalent outcome or
contraindications, if applicable
(depending on data availability this can be assessed

any time in history, before the index date)

Covariate assessment window
(demographics, baseline medications, comorbidities,
healthcare-use measures®)

\
Follow-up window: \
days (0, censoring®)

Day —-365¢ Day 0O Time

Fig. 1.

Frgmework for a cohort study using an administrative claims or electronic medical record
database, with methodology from Schneeweiss et al [26], and using templates from
www.repeatinitiative.org/projects.html, which are licensed under a Creative Commons
Attribution 3.0 Unported License. Typically, a gap of up to 45 days in medical or pharmacy
enrolment is allowed:; Pcovariates are measured in the 6 month period before entry in to the
cohort, and demographics are measured on day zero; ®earliest of outcome of interest,
switching or discontinuation of study drugs, death, disenrolment, or end of the study period;
d365 days pre-index are shown for illustrative purposes; this could be any predefined time
before the index date deemed appropriate, and tailored to the study question at hand. This
figure is available as part of a downloadable slideset
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Fig. 2.

Depiction of problems encountered when comparing treated vs untreated (not using active
comparator) patients; drug A could, as an example, be a DPP-4 inhibitor. (a) Different times
of follow-up (starting at the initiation date for the treated patients or time of healthcare
encounter T1 for the untreated patients) will lead to selection bias if immortal person-time is
excluded from the analysis. Confounding by indication may arise from the imbalance
between the two groups on “indication’. (b) Even if the follow-up for both groups starts from
time T1, the time between T1 and drug initiation would be misclassified as ‘time on drug A’
when in reality the patient was not on drug A before the first prescription. Red horizontal
lines represent follow-up time. Rx, prescription. This figure is available as part of a
downloadable slideset
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Fig. 3.

chhematic diagram of the active comparator new-user design comparing two glucose-
lowering drugs. The top and bottom horizontal lines represent study timelines for initiators
of drug A (e.g. DPP-4 inhibitor) and a therapeutically equivalent drug B (e.g. pioglitazone),
respectively. Both groups of patients spend a variable amount of time in the database before
‘new use’ is defined. To define the new-use period for both groups, we need a predefined
period equal to ‘expected days’ supply plus the grace period’ without a prescription being
filled for treatment A or treatment B (indicated by solid purple lines) prior to the start of the
washout period (solid orange lines). The washout period should also be free of any
prescriptions for A or B and covariates are measured during this time. The index date
indicates the date of the first prescription (Rx) and is followed by induction and latent
periods during which person-time and outcomes are not counted. Solid red lines represent
this time after the first prescription. Follow-up, indicated by the dashed red lines, starts at the
end of the latent period and ends at censoring. Note that patients’ timelines for start of
follow-up are intuitively synchronised by the active comparator new-user design, even
though the patients can have variable start points of enrolment in the database or variable
time points for end of follow-up/study end. 2If censoring is due to drug discontinuation, a
predefined lag period should be considered before stopping to count outcomes and person-
time. This figure is available as part of a downloadable slideset
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