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ABSTRACT Pseudomonas aeruginosa is an opportunistic human pathogen that fre-
quently causes health care-associated infections (HAIs). Due to its metabolic diversity
and ability to form biofilms, this Gram-negative nonfermenting bacterium can persist
in the health care environment, which can lead to prolonged HAI outbreaks. We de-
scribe the creation of a core genome multilocus sequence typing (cgMLST) scheme
to provide a stable platform for the rapid comparison of P. aeruginosa isolates using
whole-genome sequencing (WGS) data. We used a diverse set of 58 complete P.
aeruginosa genomes to curate a set of 4,440 core genes found in each isolate, repre-
senting �64% of the average genome size. We then expanded the alleles for each
gene using 1,991 contig-level genome sequences. The scheme was used to analyze
genomes from four historical HAI outbreaks to compare the phylogenies generated
using cgMLST to those of other means (traditional MLST, pulsed-field gel electropho-
resis [PFGE], and single-nucleotide variant [SNV] analysis). The cgMLST scheme pro-
vides sufficient resolution for analyzing individual outbreaks, as well as the stability
for comparisons across a variety of isolates encountered in surveillance studies, mak-
ing it a valuable tool for the rapid analysis of P. aeruginosa genomes.
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Pseudomonas aeruginosa is a ubiquitous Gram-negative bacterium responsible for
32,600 multidrug-resistant, health care-associated infections (HAIs) per year in the

United States (1). P. aeruginosa can cause a variety of HAIs, including pneumonia and
bloodstream and wound infections; it is also the main cause of mortality in cystic
fibrosis patients (2).

P. aeruginosa has a large, complex genome with intrinsic, adaptive, and acquired
resistance mechanisms (3) and multiple virulence factors (4), making infections both
difficult to treat and highly morbid (5). P. aeruginosa can also form biofilms, allowing it
to persist in the health care environment, including on surfaces (6), medical devices (7),
and in water sources (8). Because of its ubiquity, outbreaks involving P. aeruginosa can
be both clonal and involve multiple sequence types (STs) (9), as defined by the
traditional seven-gene multilocus sequence typing (MLST) scheme (10, 11).

The advent of whole-genome sequencing (WGS) has changed HAI outbreak inves-
tigations by drastically increasing the resolution with which isolates can be genetically
characterized (12, 13). Traditional MLST schemes can be expanded from seven genes to
core genome MLST (cgMLST) schemes with WGS data by including the thousands of
genes common to a particular species (14) or on an ad hoc basis (15). Herein, we
describe the creation of a cgMLST scheme for P. aeruginosa and apply it to explore the
diversity of the species in publicly available genomes. We also compare it to other
phylogenetic methods using isolates from a convenient set of four HAI outbreaks.
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MATERIALS AND METHODS
Development of the P. aeruginosa cgMLST scheme. Genes from all 58 complete P. aeruginosa

genomes available from RefSeq (16) in January 2017 were aligned and compared using BLAT v36x2 (17).
All genes present as a single copy in each genome with �95% nucleotide similarity to the allele from the
reference PAO1 genome were used to construct a core genome MLST (cgMLST) scheme. The cgMLST
scheme was implemented using custom scripts (https://github.com/DHQP) on an additional 1,991
genomes downloaded from RefSeq (16) for evaluation, to refine the loci included in the scheme, and to
expand the alleles for each gene. A Bonferroni correction threshold of P � 0.05 (P � 0.05/
2,049 � 1.1 � 10�5) was used to determine whether any genes should be removed from the cgMLST
scheme if they were missing, present as multiple copies, or varied by �10% in size at a statistically
significant rate in the total set of 2,049 genomes (58 complete plus 1,991 assemblies). This was
implemented by determining a Z-score associated with the absence of each gene, and genes with
Z-scores higher than that of P were removed. For each gene in the scheme the number missing, present
as multiple copies, and Z-score for all RefSeq genomes analyzed are included in Spreadsheet S2 in the
supplemental material.

Identification of prophage and recombination genes. The web server PHASTER (18) (phaster.ca)
was used to identify genes included in the cgMLST scheme that originated form prophage sequences
(Spreadsheet S2). ClonalFrameML (19) was run using default parameters on a dendrogram made with the
cgMLST scheme for the 58 complete P. aeruginosa genomes to find genes that included regions of
recombination (Spreadsheet S2).

Tree generation from cgMLST scheme. DendroPy 4.2 (20) was used to create dendrograms using
the unweighted pair group method with arithmetic mean (UPGMA) and neighbor joining (NJ) methods
based on the number of allelic differences in the cgMLST scheme between genomes. The UPGMA
method generated dendrograms more similar to the trees generated by the hqSNV pipeline (Table S2),
so was used as the primary method in this work. Bootstrap support values were determined using the
SumTrees package in DendroPy.

Pulsed-field gel electrophoresis. Pulsed-field gel electrophoresis (PFGE) patterns were determined
using standard procedures for Gram-negative bacteria (https://www.cdc.gov/hai/pdfs/labsettings/
Modified-PulsedNet-procedure-GNB.pdf) and analyzed through the BioNumerics software package from
Applied Maths NV (Sint-Martens-Latem, Belgium). DendroPy 4.2 (20) was used to create dendrograms
using UPGMA clustering based on the number of band differences in the PFGE patterns between isolates.

Whole-genome sequencing. DNA was extracted using the Promega Maxwell 16 Cell Low Elution
Volume (LEV) DNA purification kit and the automated Maxwell 16 MDx instrument (Madison, WI). High
quality input genomic DNA (gDNA) was fragmented with the Covaris ME220 Focused-ultrasonicator
(Woburn, MA). Sample libraries were prepared using the NuGEN Ovation Ultralow System V2 assay kit
(San Carlos, CA). Sequencing was completed using the Illumina MiSeq platform (San Diego, CA) to
produce 250-bp paired-end reads.

Genome assembly, annotation, and sequence typing. Genomes were assembled de novo using
high quality reads with SPAdes v3.9 (21). Genes were identified using Prokka v1.12 (22). Sequence types
(STs) were determined using the multilocus sequence typing (MLST) definitions from PubMLST (https://
pubmlst.org/paeruginosa/).

Generation of SNV trees. The hqSNV pipeline SNVPhyl 1.3.0 (23) was used to generate phylogenetic
trees using sequenced reads from the isolates associated with the four outbreaks, with the SNV
abundance set to 0.75, minimum coverage set to 10, and the filter-density threshold and window set to
2 and 11, respectively. The median assembly based on Mash distance (24) was used as the reference. The
k-mer-based trees were generated with the SNV pipeline kSNP v3.0 (25), using the assembled genomes
from the outbreaks and a k-mer length of 13.

Tree comparisons. Statistical comparisons of PFGE, cgMLST, and SNV tree topologies generated
from the outbreak isolates were made using the unweighted Kendall-Colijn similarity metric imple-
mented through the R package treespace (26). P values were calculated for the similarity of trees using
a Z-test on a population standard deviation generated from 10,000 comparison scores from random trees
(27). A threshold of P � 0.05 was used to determine similarity. Tree images were created and annotated
using iTOL v3 (28).

Data availability. Raw sequences have been deposited in NCBI BioProject ID PRJNA288601.

RESULTS
Development of the P. aeruginosa cgMLST scheme. All 58 complete P. aeruginosa

genomes available in NCBI’s RefSeq (16) in January of 2017 were used to construct the
initial cgMLST gene set, as depicted in Fig. 1. There were 36 unique STs represented in
the set, which also included eight genomes from high-risk clones (29), composed of
three each of ST111 and ST253 and two from ST235 (Spreadsheet S1). The average
genome size was 6.7 MB with 6,096 open reading frames. Three of the sequences
included plasmids, which were excluded from the construction of the cgMLST scheme.
There were 353,592 total gene alleles in the entire set, which when aligned represented
17,258 gene loci; 4,514 of the genes were present as a single copy in each genome and
were included in the initial cgMLST gene list, which was later reduced to 4,440 genes
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after assessing an additional 1,991 contig-level genomes. These genes totaled 4.3 MB,
representing �64% of the average P. aeruginosa genome.

The core genome included 2,780 genes with known or probable functions, including
the seven from the traditional MLST scheme. There were five virulence factors (exoT,
lasB, lecA, toxA, and toxR) (4), as well as 23 genes involved in antimicrobial resistance,
including one fosfomycin resistance enzyme, two beta-lactamases, and 20 components
of multigene, multidrug efflux pump systems (30) (Spreadsheet S2).

The core gene list was also compared to representative genomes from the other 12
members of the P. aeruginosa species group (NCBI:txid136841) (31). They contained an
average of 148 (3.4%) of the cgMLST genes, where Pseudomonas citronellolis had the
most with 463 (10.5%), while Pseudomonas caeni had no overlapping genes (Table S1).

Exploration of P. aeruginosa diversity. The 1,991 contig-level P. aeruginosa ge-
nome assemblies available in RefSeq (16) as of January of 2017 were assessed using the
cgMLST scheme to explore the diversity of the species. These included 336 unique STs,
154 with more than one representative genome, as well as 190 genomes without
defined STs.

Because assembled genomes may have artifacts of short-read sequencing, such as
missing, incomplete, or duplicated genes (13), it was expected that some of the cgMLST
loci would be absent or overrepresented from isolates in the expanded set. One
hundred and fourteen genes were removed from the scheme because they were either
missing from or present as multiple copies in too many genomes (see details in the
Materials and Methods section), leaving a final set of 4,440 loci (Spreadsheet S2). On
average there were 21 genes missing per sample, giving a coverage of 99.5% of the
4,440-gene cgMLST scheme, and in the average assembly there were 1.4 alleles with
multiple copies (Spreadsheet S3).

We examined the core gene set for evidence of homologous recombination by
applying ClonalFrameML (32) to a dendrogram made from the 58 complete genomes.
There were 510 unique recombination sequences identified on 369 of the genes,
representing 0.55% of the 92,837 unique cgMLST alleles in those genomes. Two-thirds
(342/510) of the unique recombination sequences were found on multiple genomes,
supporting the observation that homologous recombination helps shape the core
genome of bacteria (33). Since recombination has been to shown to have greater effect
on branch length rather than tree topology (34), which is of more concern when
assessing relatedness in HAI outbreaks, and the alleles affected still met the statistical
criteria for inclusion (Spreadsheet S2), they were not removed from the scheme.

Additionally, 20 (0.45%) of the 4,440 core genes were similar to prophage se-
quences, as determined by PHASTER (18). While prophage sequences can have higher

FIG 1 Creation of P. aeruginosa cgMLST gene set.
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rates of mutation, they can also accelerate evolution when stably incorporated into the
genome (35), and thus contribute to phylogeny. Like the recombination alleles, there
was no empirical evidence of increased variation in the prophage alleles in the cgMLST
scheme (Spreadsheet S2), so they too were kept in the scheme.

A pairwise comparison between the alleles found in each isolate was used to make
a difference matrix for all isolates, from which the UPGMA was used to create a
dendrogram (Fig. 2). The isolates generally clustered by ST, as different STs varied by an
average of 3,889 alleles (median: 3,739; range: 8 to 4,300), while genomes from the
same ST differed by an average of 331 alleles (median: 209; range: 0 to 2,903). Nineteen
pairs of genomes differed by less than 10 alleles, including four pairs with zero allele
differences. However, there were also instances of large diversity within STs, as 27
included isolate pairs that differed by more than 1,000 alleles. And the STs were not
completely distinct in all cases, as 47 genomes had more common alleles with genomes
from different STs rather than their own. Of course, some of the extreme observed
differences within STs could be due to variations in sequence quality.

Analysis of isolates from HAI outbreaks. Isolates from four HAI outbreaks were
used to compare the phylogeny created using the cgMLST scheme to those made from

FIG 2 Dendrogram from cgMLST scheme of 2,049 P. aeruginosa genomes. Stars indicate entries used to construct the core gene list.
The most common MLST types are highlighted on the dendrogram.
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pulsed-field gel electrophoresis (PFGE) patterns and single nucleotide variant (SNV)
pipelines. Outbreak 1 occurred in a single hospital unit (36) and included 12 isolates
from three STs; outbreak 2 occurred in a skilled nursing facility with ventilated residents
(9) and included 28 isolates from four different STs; outbreak 3 occurred in an intensive
care unit and included nine isolates from three different STs; and outbreak 4 included
26 isolates from a single ST that were found across multiple facilities within the same
geographic area. Only clinical isolates were included in this analysis.

PFGE, a means for determining relatedness between bacterial genomes using
restriction digestion (37), generates dozens of fragments and offers more discrimina-
tory power than traditional MLST for P. aeruginosa (38). Isolates from outbreaks 1, 2, and
3, for which both PFGE and WGS data were available, were selected for comparison.
Only two isolates from outbreak 4 underwent both PFGE and WGS, so it was excluded
from this analysis. Differences in PFGE patterns were used to construct UPGMA den-
drograms. These were compared to trees created by the cgMLST scheme using the
Kendall-Colijn metric (26), a quantitative measure of the difference in topology be-
tween two phylogenetic trees (27).

The topologies of the PFGE and cgMLST trees were statistically similar for outbreaks
1, 2, and 3 (Table S3). The tree topologies also showed similar clustering by ST for
outbreaks 1 and 3, and by facility in outbreak 2 (as all the isolates were from the same
ST) (Fig. 3), validating the results obtained from the statistical comparison. The isolates
with identical PFGE patterns varied by a median value of 26 (0.59%) and 29 (0.66%)
alleles for outbreaks 1 and 3, respectively. There were no isolates with identical PFGE
patterns from outbreak 2.

Given that P. aeruginosa genomes from the same ST vary by only a few hundred
alleles on average, the cgMLST scheme was tested to see if it could differentially cluster
outbreak isolates from genomes of the same ST from RefSeq. The median allele
difference between the unrelated RefSeq and the outbreak isolates was more than four
times greater than within the outbreak isolates themselves for all outbreaks (Table 1),
and trees generated using the cgMLST scheme show distinct clusters separating the
outbreak from RefSeq genomes (Fig. S1). There were no instances where an outbreak

FIG 3 PFGE and cgMLST trees of isolates from three P. aeruginosa HAI outbreaks. Isolates from outbreaks 1 and 3 are colored by MLST sequence types (ST),
while those from outbreak 2 (which were all from the same ST) are colored by the facility they were recovered from.
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isolate was more closely related to a RefSeq genome of the same ST than to another
outbreak isolate.

SNV-based WGS comparison techniques are commonly used in HAI outbreak inves-
tigations to create phylogenetic trees to determine isolate relatedness and possible
sources of infection (39). While cgMLST can measure thousands of allele-level differ-
ences, SNV-based approaches consider millions of possible nucleotide-level variations
in both coding and noncoding sequences, providing much greater resolution, though
analysis can be complicated by factors such as recombination (19) and convergent
evolution (40). Trees made from the cgMLST scheme were compared to those from two
SNV tools: SNVPhyl, an hqSNV pipeline (23), and kSNP, a k-mer based SNV program (25).
SNV applications rely on large aligned core genomes for comparison (41), so only
closely related isolates from the four outbreaks were included in the analysis. For
outbreaks 1, 2 and 4, isolates from the predominant ST were included. For outbreak 3,
the cgMLST tree showed that the isolate from ST2775 was similar to the ST309 isolates
(Fig. 3), so it was also included in the SNV analysis.

The dendrograms made from the cgMLST distances had quantitatively similar
topologies to the trees from the k-mer based SNV pipeline for outbreaks 1, 3 and 4, and
for outbreaks 3 and 4 for the hqSNV pipeline (Table 2). The trees from outbreak 4
showed similar clustering, as illustrated in the same two subgroups emerging in both
the cgMLST and hqSNV trees (Fig. 4). The cgMLST allele differences and SNV counts
correlated with each other as well, though there was much more variability for
outbreaks 2 and 4, which both had more than twice as many isolates as the other two
outbreaks (Fig. S2). Additionally, there were drastic differences in the slope of the
correlations between SNVs and cgMLST allele differences for the k-mer and hqSNV
pipelines, because areas of homologous recombination were filtered out by the hqSNV
pipeline but included in the cgMLST scheme (Table S4) and the k-mer pipeline. While
these regions affected only a fraction of the unique alleles in the outbreak isolates (0.76
to 3.8%), they are overrepresented in the k-mer pipeline SNV counts because of the
higher density of SNVs in these alleles resulting from recombination.

DISCUSSION

Because its pathogenicity is not limited to specific strains (42) and multiple STs are
often found in the health care environment (9), investigations of outbreaks of P.
aeruginosa HAIs require flexible classification tools that can rapidly assess relatedness
among both diverse and genetically similar isolates. The P. aeruginosa cgMLST scheme

TABLE 1 Differentiation of outbreak isolates versus unrelated RefSeq isolates of same
sequence type

Outbreak MLST ST

No. of
outbreak
isolates

No. of
RefSeq
isolates

Median
allele
difference

Within
outbreak

Within
RefSeq

Outbreak versus
RefSeq

1 164 10 2 51 118 916
2 233 25 10 51 134 323.5
3 309 8 6 69.5 103 299.5
4 308 26 23 64 196 376

TABLE 2 Comparison of cgMLST to SNV Trees

Outbreak
No. of
isolates MLST ST

Core genome
size (hqSNV)

P value of tree similarity scorea

hqSNV k-mer SNV

1 10 164 94.69% 0.12 4.3 � 10-3,*
2 25 233 94.86% N/A (dissimilar) N/A (dissimilar)
3 8 309 (7), 2775 93.23% 1.5 � 10-2,* 1.1 � 10-2,*
4 26 308 93.13% 1.4 � 10-14,* 1.2 � 10-3,*
a*, P value � 0.05; N/A, not applicable.
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presented herein provides a means for comparison of WGS data using a simple, static
scheme that can easily accommodate diverse samples and, as well, rapidly add new
isolates into the analyses.

As expected, the cgMLST scheme generated clusters consistent with traditional,
seven-gene MLST typing, but the increased resolution from the thousands of genes
included in the scheme revealed heterogeneity within STs when applied to thousands
of publicly available P. aeruginosa genomes. The cgMLST scheme revealed 47 genomes
in the public set with more similarity to members of different STs than their own. We
also observed this same phenomenon in the isolates from outbreak 3, as a group of
four ST309 isolates had more common alleles with an isolate from ST2775 than with the
other ST309 isolates from the same facility. While ST2775 and ST309 are closely related
(differing only by one of seven MLST alleles), an investigation of this outbreak using
MLST as a filter of relatedness would exclude the ST2775 isolate.

PFGE, another tool traditionally used in outbreak investigations, incorporates dozens
of fragments to provide more resolution than MLST, but still much less than cgMLST
schemes, and simplifies phylogenetic relationships versus sequencing-based ap-
proaches. This was evident when comparing PFGE-derived dendrograms to those made
using the cgMLST scheme for three P. aeruginosa HAI outbreaks. While both techniques
generated similar clustering, the cgMLST trees revealed subtle relationships between
the isolates, as expected from the increase in resolution.

While both approaches utilize WGS data, SNV-based techniques offer a more granular
means of genomic comparison than cgMLST. But because they abstract thousands of gene
sequences to simple allele names, cgMLST schemes are less computationally demanding
than the higher resolution SNV-based techniques, and cgMLST analyses do not have to be
rerun on the entire data set when new isolates are added because the core genome is
static, making them ideal for longitudinal analysis of large collections (43–45). When
applied to the outbreak isolates, the scheme produced topologically similar phyloge-
netic trees compared to an hqSNV pipeline for two of the four outbreaks. This variability
is likely due to multiple factors in addition to the fundamental difference of comparing
SNVs to cgMLST alleles, such as the larger aligned core genome size generated by SNV
pipelines (�93% of the genome for the hqSNV pipeline, which includes noncoding and
accessory genomic elements) compared to the cgMLST scheme (�64%), which only
considers the coding regions of species-wide core genes. The hqSNV pipeline also
explicitly filtered regions of recombination, some of which were included in the cgMLST
scheme. However, recombination events affected only a subset of core genes and, in
general, would not have outsized influence on tree topology since the scheme con-
siders any change to a single gene to be equivalent, whether it arises from one, ten, or

FIG 4 Trees generated by cgMLST scheme and hqSNV pipeline (SNVPhyl) for outbreak 4 isolates. Both techniques revealed two clusters of the same genomes
(outlined in red and blue) distinct from the larger set. Support values for 1,000 bootstraps are labeled on the cgMLST tree.
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hundreds of SNVs. The method of tree construction also differs between approaches
(maximum likelihood for the hqSNV pipeline and UPGMA for the cgMLST scheme).
These differences are largely a result of the cgMLST scheme’s simplicity, but this same
feature allows for increased speed of execution, making it a useful first pass filter to
identify outbreak clusters that may require higher resolution SNV analysis.

The cgMLST scheme for P. aeruginosa provides a standardized means of rapid typing
and comparison for this diverse, ubiquitous pathogen. It can be applied to surveillance
efforts to assess the population structure of the pathogen on larger scales and help
uncover previously undetected clusters of related infections before outbreaks occur in
a facility or region. In addition, because P. aeruginosa health care-associated outbreaks
often involve unrelated and nonclonal samples, it can rapidly identify potential trans-
mission events for further analysis. Given these applications, the P. aeruginosa cgMLST
scheme is a useful addition to the public health toolkit for WGS analysis. The scheme
has been adapted by Applied Maths NV (Sint-Martens-Latem, Belgium) for use on their
BioNumerics software package.

SUPPLEMENTAL MATERIAL
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