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Abstract

Objectives: Clinical prediction models that support treatment decisions are usually evaluated for 

their ability to predict the risk of an outcome rather than treatment benefit – the difference between 

outcome risk with versus without therapy. We aimed to define performance metrics for a model’s 

ability to predict treatment benefit.

Study Design and Setting: We analyzed data of the Synergy between Percutaneous Coronary 

Intervention with Taxus and Cardiac Surgery (SYNTAX) trial, and of 3 recombinant tissue 

plasminogen activator trials. We assessed alternative prediction models with a conventional risk 

concordance-statistic (c-statistic) and a novel c-statistic for benefit. We defined observed treatment 

benefit by the outcomes in pairs of patients matched on predicted benefit but discordant for 

treatment assignment. The ‘c-for-benefit’ represents the probability that from two randomly 

chosen matched patient pairs with unequal observed benefit, the pair with greater observed benefit 

also has a higher predicted benefit.

Results: Compared to a model without treatment interactions, the SYNTAX Score II had 

improved ability to discriminate treatment benefit (c-for-benefit 0.590 versus 0.552), despite 

having similar risk discrimination (c-statistic 0.725 versus 0.719). However, for the simplified 

Stroke-Thrombolytic Predictive Instrument (TPI) versus the original Stroke-TPI, the c-for-benefit 

(0.584 versus 0.578) was similar.
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Conclusion: The proposed methodology has the potential to measure a model’s ability to predict 

treatment benefit not captured with conventional performance metrics.
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Individualized treatment decisions; Treatment benefit; Prediction models; Discrimination; 
Concordance

Introduction

Treatments that demonstrate benefit on average in clinical trials help some patients but not 

others. A major focus of patient-centered outcomes research and personalized medicine is to 

better understand this heterogeneity of treatment effect (HTE) so that treatment might be 

targeted to those who benefit, and avoided in those where it is useless or harmful [1–3]. A 

risk modeling approach to clinical trial analysis has been proposed [4]; examples of this 

approach to trial analysis have been described for selecting patients for surgical versus 

medical therapy in carotid endarterectomy [5], for thrombolytic choice in acute myocardial 

infarction [6], for percutaneous coronary intervention versus coronary artery bypass in non-

acute coronary artery disease patients [7], for continuation of dual antiplatelet therapy 

following PCI [8] and for better targeting prevention programs such as diabetes prevention 

[9] or lung cancer screening [10].

A clinical risk prediction model – any model that uses patient characteristics to predict 

patient outcomes conditional on a treatment strategy – can well support treatment decision 

making when it accurately predicts individual treatment benefit, i.e. the difference in 

potential outcomes under different treatment regimens [11, 12]. However, risk prediction 

models are usually validated for their ability to predict risk, not for their ability to predict 

treatment benefit – the difference between outcome risk with versus without therapy (or with 

two alternative strategies). Optimizing commonly used performance measures, such as the 

concordance-statistic (c-statistic) used to assess a risk prediction model’s discriminative 

ability (i.e. its ability to predict higher risks for those patients with the outcome compared to 

those without the outcome [13–15]), does not necessarily optimize a model’s decision 

making potential, because performance measures for treatment selection should assess how 

well a model discriminates patients who benefit from those who do not [16–18]. However, 

discrimination measures are based on comparing predictions to actual outcomes in 

individual patients; measuring discriminative ability of benefit predictions is thus hampered 

by the fact that the actual benefit for each patient is inherently unobservable, since their 

potential (counterfactual) outcome under the alternative therapy is not known [19, 20].

Thus, we aimed to develop methods for validation of models that are used for predicting 

treatment benefit. We hereto adapt popular measures of predictive performance, and apply 

these measures to two previously developed prediction models intended to support decision 

making on reperfusion therapy: the SYNTAX Score II – developed to stratify patients 

according to their benefit from coronary artery bypass graft (CABG) compared to 

percutaneous coronary intervention (PCI) – and the Stroke-Thrombolytic Predictive 

Instrument (Stroke-TPI), which predicts benefit from thrombolysis in acute ischemic stroke.

van Klaveren et al. Page 2

J Clin Epidemiol. Author manuscript; available in PMC 2020 August 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



METHODS

Theoretical background

The performance of a prediction model is typically measured in two dimensions: 

discrimination and calibration [21]. Discrimination is a model’s ability to separate low risk 

subjects from high risk subjects. For binary or time-to-event outcomes, it is usually 

measured by a c-statistic, which is the proportion of all possible pairs of observations 

discordant on the outcome (i.e. one with the outcome and one without), in which the subject 

with the outcome had a higher predicted probability than the one without the outcome [13, 

14]. Calibration refers to the agreement of a model’s predicted probabilities with observed 

frequencies across the range of predictions [22]. Calibration may be measured by the 

difference between predicted and observed outcomes in groups defined by quantiles of 

predicted risk [23]. When we similarly aim to measure a prediction model’s performance in 

predicting treatment benefit this requires predictions and observations of benefit instead of 

risk.

With clinical trial data, we can predict treatment benefit based on a multivariable model 

which regresses the outcome of interest with both the treatment and baseline characteristics. 

The individual predicted (absolute) treatment benefit can be defined as the predicted risk 

with one treatment minus the predicted risk with an alternative treatment. For example, 

when an individual’s predicted mortality is 10% under one treatment and 8% under the 

alternative treatment, then the predicted absolute treatment benefit of the alternative 

treatment is 2%. Often a constant relative treatment effect is assumed, implying no statistical 

interactions between the treatment and the prognostic factors. In contrast, relative treatment 

effect heterogeneity – i.e. variation of relative treatment effect across individuals – can be 

modeled by including treatment interactions in the prediction model [4, 24, 25].

While calculating the predicted benefit in an individual is straightforward, we cannot 

directly observe the actual treatment benefit for an individual patient in a clinical trial, 

because the counterfactual outcome is missing. Since we are interested in observed 

treatment benefit conditional on predicted treatment benefit, we propose to define observed 

treatment benefit as the difference in outcomes between 2 patients with the same predicted 

benefit but different treatment assignments. With a binary outcome (say, alive or dead), there 

are only 4 possible outcome combinations for a pair of patients of whom the first is in the 

intervention and the second is in the control arm: the first alive and the second dead indicates 

treatment benefit, both alive and both dead indicate no treatment effect, and the first dead 

while the second is alive indicates treatment harm (Table 1) [26].

Having matched each patient from one trial arm with a patient from the other trial arm with 

similar (ideally identical) predicted treatment benefit, the agreement between predictions 

and observations of treatment benefit can be assessed with standard validation techniques, 

using these pairs of patients (with a trinary response variable: −1=harm; 0=no effect; 

+1=benefit) instead of individuals (with a binary response variable). The c-statistic for 

benefit (‘c-for-benefit’) is defined as the proportion of all possible pairs of matched patient 

pairs with unequal observed benefit in which the patient pair receiving greater treatment 

benefit was predicted to do so (Illustrated in Supplementary table 1). The c-for-benefit thus 
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represents the probability that from two randomly chosen matched patient pairs with 

unequal observed benefit, the pair with greater observed benefit also has a higher predicted 

benefit. Calibration for benefit assesses whether the absolute observed benefit matches the 

predicted benefit. This can be examined by ordering observations according to predicted 

benefit, and grouping into subgroups (e.g. quintiles of predicted benefit).

Matching of patients could alternatively be based on the covariates that are used to predict 

treatment benefit instead of the predicted treatment benefit itself. The independence from the 

treatment benefit prediction model and closer matching of patient characteristics may be 

considered advantages of a covariate matching procedure, at the expense of less accurate 

matching of the predicted treatment benefit. To analyze the sensitivity for the choice 

between these two matching procedures we compared Mahalanobis-metric covariate 

matching with predicted treatment benefit matching [27, 28].

Case studies

To understand how informative the evaluation of benefit might be in comparison with a more 

conventional risk-focused approach, we examined alternative versions of two published 

predictive models that were developed to predict treatment benefit.

SYNTAX Score II—The SYNTAX Score II was derived in the Synergy between 

Percutaneous Coronary Intervention with Taxus and Cardiac Surgery (SYNTAX) trial 

(ClinicalTrials.gov, number NCT00114972) [29, 30]. In the SYNTAX trial 1,800 patients 

(178 deaths during 4 years of follow-up) with unprotected left main coronary artery 

(ULMCA) disease or de novo three vessel disease that were randomized to either CABG or 

PCI with first generation drug eluting stents (baseline characteristics in Table 2). The 

SYNTAX Score II includes eight prognostic factors for mortality and treatment interactions 

with each of the prognostic factors [7]. For comparison we also considered a prediction 

model with the eight prognostic factors and an overall treatment effect, i.e. without treatment 

interactions [25]. The models are described in Table 3. The following approach for 

measuring the ability to predict benefit was applied to these two models consecutively.

For each patient the predicted benefit (of treatment with CABG) was calculated as the 

absolute risk prediction when treating with PCI minus the absolute risk prediction when 

treating with CABG. To realize an equal number of patients in both trial arms we randomly 

selected 897 out of 903 patients in the PCI arm. Each of the 897 patients in the CABG arm 

was matched to one of the 897 selected patients in the PCI arm, based on their rank of 

predicted benefit within the treatment arm. For each pair of patients, the predicted benefit of 

treating with CABG was set to the average of their individual benefit predictions. The 

observed benefit for each patient pair was calculated as the mortality outcome (0 = alive; 1 = 

dead) of the patient in the PCI arm minus the mortality outcome of the patient in the CABG 

arm (Table 1). For the set of 897 predicted and observed treatment benefits, we calculated 

the c-for-benefit, and we plotted average observed benefit versus predicted benefit in 

quintiles of predicted benefit (calibration plot).

When a model is validated in the same data that was used for model derivation, estimates of 

model performance will be too optimistic [31, 32]. We therefore corrected the c-for-benefit 
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and the calibration plot for optimism with a bootstrap procedure based on 1000 samples with 

replacement from the original data, stratified by treatment arm. The sample size in both 

treatment arms of the bootstrap sample was equal to the sample size of the treatment arms in 

the original data [33]. The models were refitted in each bootstrap sample. The optimism for 

each bootstrap resample was calculated as the difference in performance between validation 

in the bootstrap sample and validation in the original data. The optimism was subtracted 

from the apparent performance estimate. We used empirical quantiles of the bootstrap 

distribution as confidence intervals for the risk c-statistic, the c-for-benefit, and for the 

difference of these performance measures between the SYNTAX Score II and the model 

without treatment interactions.

Stroke TPI—The Stroke TPI was developed on a pooled database of 5 clinical trials testing 

recombinant tissue plasminogen activator (rt-PA) against placebo in the treatment of acute 

ischemic stroke (n = 2184 patients). The Stroke TPI predicts the probability of a good 

functional outcome (modified Rankin Score mRS <=1) and the probability of severe 

disability or death (mRS >=5) with and without rt-PA. The model for prediction of good 

functional outcome contained 7 prognostic factors, the treatment and 4 interactions between 

treatment and prognostic factors [34]. Recently, a modified Stroke TPI was developed, 

primarily to improve ease-of-use by non-specialists, by replacing a full NIH stroke severity 

score with a simplified 3-item version. Importantly, 2 of the 4 treatment interactions were 

eliminated [35]. Both models are described in Table 3. While discriminatory performance 

was shown to be relatively well maintained in the simplified compared to the original model, 

a remaining concern is that the simplified Stroke TPI may have a reduced ability to segregate 

patients by their probability of benefiting. Herein, we test these models on the NINDS trial 

and the ATLANTIS A and B trial (baseline characteristics in Table 2) which comprise a 

subset of the development dataset for these tools [36–38]. The NINDS Trial (n=591) 

included patients treated from 0 to 180 minutes from symptom onset; the ATLANTIS A 

Trial (n=48) from 0 to 360 minutes; and the ATLANTIS B Trial (n=566) from 180 to 300 

minutes. The ECASS 2 Trial (n=778) was excluded from validation in our study [39].

For each patient in this 1205 patients sample the predicted benefit (of treatment with rt-PA) 

was calculated as the predicted probability of a good functional outcome when treated with 

rt-PA minus the predicted probability of a good functional outcome when treated with 

placebo, for both the original and the simplified Stroke TPI. The methods used for matching 

of patients, calculation of observed treatment benefit and assessment of discrimination and 

calibration of treatment benefit predictions (with calibration plots and with c-statistics, 

respectively) were identical to the methods described above for the SYNTAX trial. We chose 

not correct for optimism in the performance of the Stroke TPI, because variable selection 

was based on clinical judgement in the development of the simplified Stroke TPI and 

therefore could not have been iteratively replicated in a bootstrap approach [33].

RESULTS

In non-acute coronary artery disease in the SYNTAX trial, the model assuming a constant 

relative treatment effect (i.e. without treatment interactions) discriminated high-risk from 

low-risk patients only slightly worse than the SYNTAX Score II (risk c-statistics corrected 
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for optimism 0.719 vs 0.725; Table 4). The SYNTAX trial arms were well balanced for 

predicted benefit regardless of the two models that were used to predict benefit (Figure 1). 

Due to the treatment interactions in the SYNTAX Score II, the range of predicted treatment 

benefit was much wider and, notably, contained negative benefit (treatment with PCI 

favorable). The c-for-benefit was 0.065 (95% CI −0.003 to 0.144) higher for the SYNTAX 

Score II than for the model assuming a constant relative treatment effect (0.620 vs 0.555; 

Table 4), although the difference was corrected for optimism to 0.038 (95% CI −0.030 to 

0.117) (0.590 vs 0.552; Table 4). Due to the uncertainty in the interaction effect estimates 

the performance measures of the SYNTAX Score II required a 10 times larger correction for 

optimism (c-for-benefit corrections 0.030 vs. 0.003; Table 4). Calibration in quintiles of 

predicted benefit was fairly good for the SYNTAX Score II (Figure 2). Again, the SYNTAX 

Score II required a larger correction for optimism than the model without interactions.

As expected, the discriminative ability of the simplified Stroke TPI was somewhat less than 

the original Stroke TPI (risk c-statistics 0.790 vs 0.811, respectively; Table 4). Again, trial 

arms were well balanced for predicted benefit for both models (Figure 1). Due to less 

treatment interactions in the simplified Stroke TPI, the range of predicted treatment benefit 

was smaller as compared to the original Stroke TPI, especially for patients with predicted 

treatment harm (negative benefit). Surprisingly, the c-for-benefit was not worse for the 

simplified Stroke TPI (0.584 vs 0.578 for the original Stroke TPI; difference 0.006 [95% CI 

−0.023 to 0.028]; Table 4), and neither was calibration (Figure 2). These results indicate that 

the additional complexity of the original Stroke TPI does not increase the ability to predict 

treatment benefit for the patients in this validation subpopulation.

As expected, when patients were matched based on their covariates instead of on their 

predicted treatment benefit, the predicted treatment benefit for two patients within a matched 

pair was less similar (Supplementary figure 1). However, the c-for-benefit, and its difference 

between two models, was very similar both for the SYNTAX Score II and for the Stroke TPI 

(Supplementary table 2; Supplementary figure 2).

DISCUSSION

We proposed measures to validate predictions of treatment benefit, extending widely used 

approaches to validate predictions of risk. Hereto we defined observed treatment benefit as 

the difference in outcomes between 2 patients with the same predicted benefit but discordant 

on treatment assignment. The proposed methodology gave interpretable measures of 

discrimination and calibration, both for the SYNTAX score II and a simplified alternative 

[25], and for the original and the simplified Stroke TPI [34, 35]. The metrics were robust to 

the method of selecting patient pairs, matching either on the predicted benefit or on the 

underlying covariates. The metrics proposed may help refocus the goals of clinical 

prediction modeling from discrimination on the basis of outcome risk to discrimination on 

the basis of potential for treatment benefit, which can theoretically better support optimizing 

outcomes when considering two alternative treatment strategies [18].

The increase in c-for-benefit of 0.038 (95% CI −0.030 to 0.117) when using treatment 

interaction terms in the SYNTAX Score II (from 0.552 to 0.590) indicated a major – 
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although imprecise – improvement in discriminative ability. The absolute difference with the 

c-statistic of a coin toss (0.5; random treatment assignment) almost doubles from 5.2% to 

9.0%. The superiority of the SYNTAX Score II is likewise reflected in the calibration 

curves. While all patient subgroups appear to benefit from bypass surgery compared to PCI 

when the simplified score is used, there are clearly two “low benefit” quintiles identified 

with the SYNTAX Score II, for whom bypass surgery may not to be justified – particularly 

among the lowest benefit quintile for whom PCI appears clearly superior.

In contrast, the simplified Stroke TPI had a similar c-for-benefit compared to the original, 

indicating that removal of the treatment interactions included in the original equation did not 

diminish the discriminative ability for treatment benefit in the trial population included in 

this study. This contrasted with a small decrement in discrimination in outcome risk seen 

with simplified model compared to the original reflected in the conventional c-statistic. The 

conserved ability to predict benefit with the simplified Stroke TPI was also reflected in the 

calibration curve (Figure 2), which shows predicted harm in a single quintile in either model.

In addition to highlighting the novel statistical metrics, these examples also emphasize the 

importance of a risk modeling approach to clinical trial analysis when there are alternative 

treatments with distinct trade-offs. For the acute ischemic stroke example, there appear to be 

patients who are more likely to be harmed from thrombolysis despite the overall benefit; 

presumably because the risks of thrombolytic-related intracranial hemorrhage in these 

selected patients (i.e. those with especially high blood pressure arriving late in the treatment 

window) exceeds any benefits anticipated from reperfusion. Similarly, bypass surgery 

provides substantial mortality benefit for most patients, but for some the far less invasive 

PCI strategy would appear to be superior. Carefully developed and validated models that 

optimize performance metrics for treatment benefit can better segregate patients to the 

appropriate treatment strategy, in contrast to more conventional evidence based medicine 

approaches, which emphasize broad application of the best treatment on average.

We note that the c-for-benefit seen in these examples is in a range that would typically be 

considered only weakly predictive for conventional risk c-statistics. We would caution that 

new benchmarks are needed to interpret the c-for-benefit. Limits on the prediction of 

treatment benefit derive in part from the fact that the actual individual treatment benefit are 

(unlike individual outcomes) inherently unobservable. Our definition of ‘observed benefit’ – 

the difference between outcomes in pairs of matched patients discordant for treatment 

assignment – implicitly assumes that the potential outcomes with the two therapies are 

independent within each patient. Since the potential outcomes within each patient are 

presumably dependent to some (unknowable) degree, the observed benefit according to our 

definition contains more randomness than the actual – unobservable – individual patient 

treatment benefit. As a consequence, this observed benefit will be harder to predict, resulting 

in conservative c-for-benefit estimates. Because improvements in discrimination for benefit 

are generally more relevant for clinical decision making than improvements in performance 

measures for risk, these relatively small improvements might be of great clinical importance. 

Although more experience with this approach is needed, we anticipate that a c-for-benefit 

above 0.6 might be very unusual, except in the presence of highly deterministic markers that 
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indicate a treatment mechanism. This reflects the greater difficulty in predicting benefit 

compared to predicting outcome risk, the main challenge of personalized medicine.

We and others have previously emphasized the importance of both prognostic factors and 

treatment effect interactions for determining benefit [6, 24]. This is reflected in the 

improvement of the c-for-benefit in the SYNTAX example. The c-for-benefit might increase 

the appreciation of the importance of these interaction terms for predicting benefit. However, 

while treatment effect interactions are particularly helpful, we note that these interactions 

can be highly unreliable. Because less is known about effect modifiers than risk predictors 

and because power is much poorer to detect treatment effect interactions, statistically 

significant interactions often turn out “false positive” findings, particularly when multiple 

interaction effects are explored [40, 41]. Interactions should be motivated by external 

information, and including interaction effects makes external validation for benefit (i.e. on a 

sample including both treatment arms) even more critical than validation for risk. This is 

reflected in both examples: in SYNTAX, the c-for-benefit showed a higher optimism 

correction than the risk c-statistic; in the Stroke-TPI statistically significant interactions 

failed to improve the c-for-benefit. These considerations suggest that trials aimed at 

exploring HTE will need to be substantially larger than conventional trials to be adequately 

powered for interaction effects in addition to main effects.

Analogous to the methods we proposed here, a ROC measure was proposed for treatment-

selection markers using a potential outcomes framework [42]. This is a model-based 

measure, calculating the expected ROC curve for predicted benefit under the assumption that 

the benefit predictions are correct. Instead of assuming a correct benefit prediction model, 

we matched patients with discordant treatment on predicted treatment benefit to obtain 

observed values of treatment benefit.

Various other methods have been proposed to measure the ability of prediction models to 

support clinical decisions. Benefit graphs were proposed to measure the difference in 

outcome when two different models are used for treatment decision making, by multiplying 

the proportion of patients with different treatment recommendations with their observed 

mortality difference in the randomized treatment arms [25, 43]. Net benefit of treatment can 

also be evaluated across a range of treatment benefit thresholds, where benefit is the 

difference between the probabilities of an event under treatment and under control [44]. Net 

benefit is then determined for those patients for whom the treatment recommendation was 

congruent with the treatment allocation in the trial, and compared to the net benefit of all 

patients in the treatment arm (“treat all”). These evaluations can be shown in decision 

curves. A key element of decision curves is that the risk threshold at which a patient would 

opt for treatment is used both to determine the sensitivity (true-positive-rate) and specificity 

(true-negative-rate) of the prediction model and to weigh the relative harms of false-positive 

and false-negative predictions [45]. This dual role of the risk threshold makes the curves 

useful for evaluating the quality of decision making based a risk model, but (anecdotally) 

also make it cognitively demanding and confusing for non-experts. The advantage of the 

methods we propose here is that they leverage simple and widely used metrics of model 

performance, i.e. measures for discrimination and calibration and might therefore be more 

easily understood by non-experts.
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In case of time-to-event outcomes instead of binary outcomes, the proposed methodology is 

still applicable, although the definition of observed benefit is somewhat different. Treatment 

benefit (+1) and treatment harm (−1) are defined as a shorter observed time-to-event for the 

patient in the intervention arm and in the control arm, respectively. When the shorter time-

to-event outcome is censored there is no observed treatment effect (0) for a patient pair.

Nonetheless, there are limitations to our approach. The c-for-benefit inherits the main 

limitation of the c-statistic in that it measures statistical discrimination, which does not take 

into account the decisional context. Thus, a given c-statistic may be adequate in one context 

and not in another. Additionally, theoretical arguments and carefully designed simulation 

studies, as well as more empirical work, are warranted in order to further understand and test 

the value of our proposed approach. While extension to trials with unbalanced treatment 

groups is easily accomplished through matching with replacement, more work is needed to 

understand how matching procedures might be adapted to unbalanced treatment groups, in 

particular in an observational setting, where the balance between treatment groups might 

vary over different levels of predicted benefit.

These caveats aside, our proposed measures are closely aligned with the goal of prediction 

for personalized medicine – that is, to segregate the population by their likelihood of 

benefiting from one therapy versus another, thus supporting treatment decisions in individual 

patients that optimize outcomes taking as much information about each patient into account 

as possible [46]. To deliver on this promise of more patient-centered evidence, new methods 

are necessary to explore HTE; the proposed methodology has the potential to measure and 

communicate a prediction model’s ability to predict treatment benefit, in contrast to 

conventional metrics which measure a prediction model’s ability to predict outcome risk.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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WHAT IS NEW?

Key findings

• We proposed a statistic of the concordance between predicted and observed 

treatment benefit (c-for-benefit). Observed treatment benefit was defined as 

the outcome difference in pairs of patients matched on predicted benefit but 

discordant for treatment assignment.

• In the SYNTAX trial, compared to a model without treatment interactions, the 

SYNTAX Score II had a substantially higher c-for-benefit, despite having 

similar outcome risk c-statistics.

What this adds to what was known

• In contrast with conventional performance metrics, the c-for-benefit has the 

potential to measure a model’s ability to predict treatment benefit.

What is the implication, and what should change now

• We recommend the c-for-benefit for comparing prediction models that are 

used for treatment decision making.
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Figure 1. Matching patient pairs on predicted treatment benefit
For each matched patient pair the predicted treatment benefit in one trial arm is plotted 

versus the predicted treatment benefit in the other trial arm. Perfect matching would result in 

dots located exactly on the diagonal. Upper left: SYNTAX Score II without treatment 

interactions (“Constant relative treatment effect”) ; Upper right: SYNTAX Score II; Lower 

left: Original Stroke TPI; Lower right: Simplified Stroke TPI.
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Figure 2. Calibration plots: observed treatment benefit versus predicted treatment benefit in 5 
equally sized groups of matched patient pairs with increasing predicted treatment benefit 
(quintiles)
Upper left: Benefit of treatment with CABG according to the SYNTAX Score II without 

treatment interactions (“Constant relative treatment effect”) ; Upper right: Benefit of 

treatment with CABG according to the SYNTAX Score II; Lower left: Benefit of treatment 

with rt-PA according to the Original Stroke TPI; Lower right: Benefit of treatment with rt-

PA according to the Simplified Stroke TPI.
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Table 1

Definition of observed treatment benefit for a pair of matched patients

Observed outcome of patient in 
treatment arm A

Observed outcome of patient in 
treatment arm B

Observed treatment benefit of treatment B 
versus treatment A

0 (alive) 1 (dead) −1 (harm)

0 (alive) 0 (alive) 0 (no effect)

1 (dead) 1 (dead) 0 (no effect)

1 (dead) 0 (alive) 1 (benefit)
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Table 2

Baseline characteristics of SYNTAX and Stroke TPI case studies

Characteristic Metric SYNTAX ATLANTIS
c

NINDS

Treatment arm
a % (ratio) 50.2 (903/1800) 49.3 (303/614) 49.1 (290/591)

Age (years) median [IQR] (n) 66 [58,72] (1800) 67.9 [58.8,74.7] (614) 68.4 [59.7,75.4] (591)

Male sex % (ratio) 77.7 (1398/1800) 60.3 (370/614) 42.8 (253/591)

SYNTAX score median [IQR] (n) 28 [20,36] (1789)

Creatinine clearance (mL/min) median [IQR] (n) 81.3 [64.5,103.3] (1638)

LVEF(%) median [IQR] (n) 60 [50,66] (1126)

poor LVEF (<30%) % (ratio) 1.9 (34/1772)

moderate LVEF (30–49%) % (ratio) 17.7 (313/1772)

good LVEF (≥50%) % (ratio) 80.4 (1425/1772)

ULMCA disease % (ratio) 39.2 (705/1799)

COPD % (ratio) 8.6 (154/1800)

Peripheral vascular disease % (ratio) 9.8 (177/1800)

Diabetes % (ratio) 21.0 (129/614) 21.2 (125/591)

Prior stroke % (ratio) 15.1 (93/614) 13.0 (77/591)

SBP (mm Hg) median [IQR] (n) 153 [137,168] (614) 152 [140,170] (591)

Minutes from stroke to treatment median [IQR] (n) 273 [240,293] (614) 110 [89,157] (591)

NIHSS median [IQR] (n) 10 [7,15] (614) 15 [9,20] (591)

3-variable stroke severity scale median [IQR] (n) 2 [0,3] (614)

Outcome
b % (ratio) 9.9 (178/1800) 40.4 (248/614) 34.5 (204/591)

a.
Treatment arm: PCI in SYNTAX; rt-PA in ATLANTIS and NINDS

b.
Outcome: All cause death in SYNTAX; Functionally normal/near-normal (mRS score 0 or 1) in ATLANTIS and NINDS

c.
Patients of the ATLANTIS A trial and the ATLANTIS B trial were merged
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Table 3

Model descriptions of SYNTAX and Stroke TPI case studies

A. Multivariable hazard ratios (95% confidence interval) for mortality of non-acute coronary artery disease patients. For continuous 
factors the hazard ratio of the interquartile range is presented. When a factor interacts with treatment (all factors in the SYNTAX 
Score II) the treatment-specific hazard ratio is calculated based on the combination of a factor’s main effect and the factor’s treatment 
interaction effect. Hazard ratios above 1 indicate an increase in mortality risk.

Factor

Constant relative treatment effect SYNTAX Score II

CABG PCI CABG PCI

PCI vs. CABG
a

1.47 (1.08,1.98) 1.44 (0.97,2.13)

SYNTAX score 36 vs 20 1.23 (1.01,1.51) 1.23 (1.01,1.51) 0.95 (0.69,1.31) 1.47 (1.13,1.91)

Age (years) 72 vs 58 1.80 (1.33,2.43) 1.80 (1.33,2.43) 2.68 (1.57,4.55) 1.49 (0.96,2.31)

CrCl (mL/min) 90 vs 65 0.68 (0.53,0.89) 0.68 (0.53,0.89) 0.79 (0.52,1.20) 0.60 (0.43,0.83)

LVEF (%) 50 vs 10 0.18 (0.08,0.40) 0.18 (0.08,0.40) 0.50 (0.14,1.81) 0.10 (0.04,0.28)

ULMCA disease 1.06 (0.78,1.43) 1.06 (0.78,1.43) 1.47 (0.93,2.34) 0.82 (0.54,1.23)

Male sex 0.90 (0.64,1.26) 0.90 (0.64,1.26) 1.68 (0.91,3.12) 0.59 (0.38,0.90)

COPD 1.87 (1.25,2.79) 1.87 (1.25,2.79) 2.84 (1.64,4.90) 1.35 (0.74,2.47)

PVD 2.64 (1.85,3.76) 2.64 (1.85,3.76) 2.79 (1.66,4.71) 2.79 (1.72,4.53)

B. Multivariable odds ratios (95% confidence interval) for good outcome after acute ischemic stroke. For continuous factors the odds 
ratio of the interquartile range is presented. When a factor interacts with treatment (male sex, prior stroke, SBP and minutes to 
treatment in the original Stroke TPI; SBP and minutes to treatment in the simplified Stroke TPI) the treatment-specific odds ratio is 
calculated based on the combination of a factor’s main effect and the factor’s treatment interaction effect. Odds ratios above 1 indicate 
an increase in the probability of good outcome.

Factor

Original Stroke TPI Simplified Stroke TPI

Control rt-PA Control rt-PA

rt-PA
a

1.51 (1.23,1.86) 1.45 (1.18,1.78)

Age (years) 75 vs 59
b

0.73 (0.63,0.85) 0.73 (0.63,0.85) 0.75 (0.65,0.87) 0.75 (0.65,0.87)

Male sex 1.45 (1.07,1.96) 0.95 (0.71,1.28) 1.03 (0.83,1.26) 1.03 (0.83,1.26)

Diabetes 0.48 (0.37,0.62) 0.48 (0.37,0.62) 0.50 (0.38,0.65) 0.50 (0.38,0.65)

Prior stroke 1.46 (0.99,2.15) 0.67 (0.45,1.00) 0.93 (0.70,1.23) 0.93 (0.70,1.23)

SBP (mm Hg) 169 vs 139 0.86 (0.69,1.07) 0.61 (0.49,0.76) 0.91 (0.73,1.13) 0.62 (0.50,0.78)

Minutes from stroke to 
treatment 288 vs 155 1.04 (0.81,1.33) 0.63 (0.50,0.81) 0.88 (0.64,1.20) 0.49 (0.37,0.66)

NIHSS 17 vs 8
c

0.17 (0.14,0.21) 0.17 (0.14,0.21)

3-variable stroke severity 

scale 3 vs 1
c

0.24 (0.20,0.29) 0.24 (0.20,0.29)

a.
At average prognostic factor levels

b.
At average NIHSS and average 3-variable stroke severity scale

c.
At average age
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Table 4

C-statistics (95% confidence interval) for risk and for benefit

Measure Constant relative 
treatment effect

SYNTAX Score 
II Difference Original 

Stroke TPI
Simplified 
Stroke TPI Difference

Risk c-statistic

Apparent 0.729 
(0.690,0.764)

0.744 
(0.707,0.780)

0.015 
(0.002,0.030)

0.811 
(0.790,0.830)

0.790 
(0.767,0.812)

−0.021 
(−0.039,−0.003)

Optimism 0.009 0.018 0.009

Corrected 0.719 
(0.681,0.754)

0.725 
(0.689,0.761)

0.006 
(−0.007,0.021)

Benefit c-
statistic

Apparent 0.555 
(0.496,0.615)

0.620 
(0.565,0.673)

0.065 
(−0.003,0.144)

0.578 
(0.547,0.607)

0.584 
(0.552,0.615)

0.006 
(−0.023,0.028)

Optimism 0.003 0.030 0.027

Corrected 0.552 
(0.493,0.612)

0.590 
(0.535,0.643)

0.038 
(−0.030,0.117)

Correction for optimism in the SYNTAX trial without treatment interactions (“Constant relative treatment effect”) and the SYNTAX Score II was 
based on internal validation with 1,000 bootstrap samples.
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