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a b s t r a c t 

The COVID-19 outbreak continues to threaten the health and life of people worldwide. It is an immediate 

priority to develop and test a computer-aided detection (CAD) scheme based on deep learning (DL) to 

automatically localize and differentiate COVID-19 from community-acquired pneumonia (CAP) on chest 

X-rays. Therefore, this study aims to develop and test an efficient and accurate deep learning scheme 

that assists radiologists in automatically recognizing and localizing COVID-19. A retrospective chest X-ray 

image dataset was collected from open image data and the Xiangya Hospital, which was divided into a 

training group and a testing group. The proposed CAD framework is composed of two steps with DLs: 

the Discrimination-DL and the Localization-DL. The first DL was developed to extract lung features from 

chest X-ray radiographs for COVID-19 discrimination and trained using 3548 chest X-ray radiographs. The 

second DL was trained with 406-pixel patches and applied to the recognized X-ray radiographs to localize 

and assign them into the left lung, right lung or bipulmonary. X-ray radiographs of CAP and healthy con- 

trols were enrolled to evaluate the robustness of the model. Compared to the radiologists’ discrimination 

and localization results, the accuracy of COVID-19 discrimination using the Discrimination-DL yielded 

98.71%, while the accuracy of localization using the Localization-DL was 93.03%. This work represents 

the feasibility of using a novel deep learning-based CAD scheme to efficiently and accurately distinguish 

COVID-19 from CAP and detect localization with high accuracy and agreement with radiologists. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

At the end of 2019, a novel coronavirus pneumonia, COVID-19,

egan to rapidly propagate due to widespread person-to-person

ransmission [1] . By April 5th, 2020, there were over 1 million con-

rmed COVID-19 cases, and tens of thousands of people lost their

ives. The epidemic of 2019-nCoV pneumonia poses an enormous

hreat and challenge to the global population. 

Key to fighting against COVID-19 is diagnosing infected patients

s soon as possible and providing them with proper treatment

nd care. Reverse-transcription polymerase chain reaction (RT-PCR)

s considered to be the gold standard for diagnosing the disease

2] . Some respiratory specialists have suggested that a nucleic acid

est was not required to confirm the disease if typical imaging
∗ Corresponding authors. 
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ndings of coronavirus were present [3] . Volumetric CT chest im-

ges of the lungs and soft tissues have been investigated in re-

ent studies for detecting COVID-19 [4] . However, the high ra-

iation doses and costs limit the use of CT, especially for preg-

ant women and children [5] . Chest X-ray, a non-invasive chest

xam with a low radiation dose, can completely image the lungs

nd is more time and cost efficient than CT. Therefore, X-rays can

erve as an effective method for the early detection of COVID-19.

owever, COVID-19 may share some common radiographic features

ith other pneumonias, making its discriminability difficult for

adiologists. 

Currently, artificial intelligence using deep learning plays an im-

ortant role in the medical image area due to its excellent feature

xtraction ability. Deep learning models (DLs) accomplish tasks by

utomatically analysing multi-modal medical images. Computer vi-

ion refers to using DLs in processing images or videos and how

 computer might gain information and understanding from this

ethod. Advanced computer-aided diagnosis schemes are mostly

https://doi.org/10.1016/j.patcog.2020.107613
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2020.107613&domain=pdf
mailto:houmuzhou@sina.com
mailto:liuxw@csu.edu.cn
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based on state-of-the-art methods, such as fully convolutional neu-

ral networks (FCNNs) [6] , VGGNet [7] , ResNet [8] , Inception [9] ,

and Xception [10] . Some examples of the application of AI include

cancer detection and classification [11] , the diagnosis of diabetic

retinopathy [12] , multi-classification of multi-modality skin lesions

[13] , polyp detection during colonoscopy [14] , etc. 

Since COVID-19 has become widespread, many researchers have

dedicated their efforts to the application of machine vision and

deep learning in the diagnosis of the disease based on medical im-

ages and have achieved good results. Ozturk et.al. [15] proposed a

model that uses DarkNet as a classifier and obtained a classifica-

tion accuracy of 98.08% for binary classification (COVID-19 vs. no

findings) and 87.02% for multiple classification (COVID-19 vs. no

findings vs. pneumonia). Khan et.al. [16] proposed a deep model

based on the Xception architecture to detect COVID-19 cases from

chest X-ray images, which achieved an overall accuracy of 89.6%

and a recall rate for COVID-19 cases of 93% in classifying COVID-

19, healthy conditions, bacterial pneumonia and viral pneumo-

nia. Narin et al. [17] employed three state-of-the-art deep learning

models (ResNet50, InceptionV3 and Inception-ResNetV2) and ob-

tained the best accuracy of 98% with a pre-trained ResNet50 model

for 2-class classification. However, they did not include pneumonia

cases in their experiment. Moreover, there are several deep learn-

ing models that use CT images to detect COVID-19. For example,

ResNet-18 was used as the CNN to diagnose the diease from chest

CT, which achieved an area under the curve of 0.92 and had equal

sensitivity to a senior radiologist [18] . 

Computer-aided detection (CAD) is a common occurrence in

hospitals. Bai et al. [19] found that artificial intelligence (AI) can

help clinicians distinguish COVID-19 from other pneumonia on

chest CT. Moreover, it is not easy to distinguish soft tissue with

poor contrast on X-ray. To overcome these limitations, CAD sys-

tems have been implemented to assist clinicians in automatically

detecting and quantifying suspected diseases of vital organs on

X-rays [20] . Notably, deep learning can automatically detect clin-

ical abnormalities from chest X-rays at a level exceeding prac-

tising radiologists [21] . Due to the lack of available data, how-

ever, almost all previous study data originated from open datasets

on the net, and thus it is unknown how well their correspond-

ing models would perform with real-world data. To the best of

our knowledge, there are few studies about localizing the dis-

ease. In this paper, we developed an efficient and accurate deep

learning model-based computer-aided detection scheme for au-

tomatically localizing COVID-19 from CAP on chest X-rays. The

novel CAD scheme comprised two different DLs: the first DL is

utilized to automatically recognize and collect X-rays belonging

to COVID-19 patients (i.e., the X-rays differentiated from CAP pa-

tients), and the second DL is utilized for detecting localization of

left lung, right lung or bipulmonary in each X-ray radiograph. The

details of this work, including the structure of the CAD scheme

and performance evaluation, are manifested in the following

sections. 

2. Methodology 

Our proposed CAD framework comprises two deep learning

models: the Discrimination-DL and the Localization-DL. The whole

process of our proposed scheme is demonstrated in Fig. 1 . The first

Discrimination-DL is used to automatically recognize and collect X-

rays of COVID-19 patients. The acquired X-rays are then applied as

input to the second Localization-DL for automated detection of left

lung, right lung or bipulmonary. The lung localized from all X-rays

of interest is combined to detect and localize the lung parts of the

particular patient at the end step. The DL architectures, training

process and measurement methods for the two DLs are discussed

in the next two sections. 
.1. Patient cohorts 

There are openly available annotated chest X-ray databases with

ecorded patients. The dataset used in this study comprises a total

f 3545 chest X-ray images and is referred to as COVID19-DB. To

enerate the COVID19-DB dataset, for example, chest X-ray radio-

raphs, we combined and modified two different openly available

atasets: 1) chest X-ray radiographs of the pneumonia cohort were

ollected from the RSNA Pneumonia Detection Challenge [22] , and

) the COVID-19 cohort with chest X-ray radiographs comprised

23] . Four radiologists from Xiangya Hospital manually verified the

OVID-19 from CAP on chest X-rays. This study was approved by

he Ethics Committee of the Xiangya Hospital of Central South Uni-

ersity. Informed consent was obtained from all participants. 

The rescale strategy is important in applying DL to large im-

ges since the resolution is limited by the GPU memory. In terms

f our task, there are few data available, and we use extensive data

ugmentation [24] (such as random clipping, flipping, shifting, tilt-

ng and scaling) to extend the available dataset as well as optimize

he CAD scheme generalization capability. To optimize and improve

he proposed CAD scheme, we will consistently expand the data of

OVID19-DB. 

More specifically, we collected 2004 radiographs of CAP, 1314

adiographs of healthy controls, and 204 radiographs of COVID-

9 that were randomly split into two independent subsets for the

iscrimination-DL, where the training subset used 80%, and the

alidation subset used 20%. The training and validation subsets

ere together employed for model fitting and preventing model

ver-fitting in the training phase. There was no patient overlap be-

ween phases. Moreover, the objects of the Xiangya Hospital of

entral South University were patients diagnosed with Covid-19

nd CAP from January 25, to May 1, 2020. The enrolled Covid-19

atients were confirmed as positive by RT-PCR on nasopharyngeal

wabs and throat swabs. Clinical manifestations, laboratory and X-

ays of patients were collected. All chest X-rays (CXRs) were ac-

uired as computed or digital radiographs following usual local

rotocols. CXRs were acquired in the posteroanterior (PA) or an-

eroposterior (AP) projection. X-ray images were collected from 21

ovid-19 patients, 20 CAP patients and 20 controls, which were

ainly used as test data. The testing subset was performed in the

esting phase to prove model generalization. 

For each of the COVID-19 patients in the COVID19-DB, the non-

ulmonary region was divided into the left lung and right lung. By

oing so, we can acquire a sample of 200 X-ray radiographs as the

raining set and 21 X-rays from the Xiangya Hospital as the testing

or the Localization-DL. Among them, 157 and 183 were “positive”

nfected in the left pulmonary region and right pulmonary region,

espectively. We randomly assembled 200 X-rays of healthy con-

rols as “negative” infections located in both pulmonary regions.

ext, to localize the pulmonary region of COVID-19, we conducted

xperiments to identify the infected region located in the left lung,

ight lung or bipulmonary region. 

.2. Deep learning architectures 

The structure of the proposed CAD scheme is a single, unified

etwork composed of three parts, as illustrated in Fig. 2 : (1) a

ounding-box regression that encodes lung features into each su-

erpixel, (2) a discrimination deep learning model that predicts a

ifferentiating probability distribution, and (3) a localizing deep

earning model that distinguishes the corresponding pulmonary

nd generates the location probability distribution. 

.2.1. Proposed pulmonary regressor with superpixel 

The task of the Discrimination-DL is to distinguish COVID-19

rom CAP on chest X-rays, which are acquired for detection of the
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Fig. 1. Flow diagram of the proposed CAD system illustrating the discrimination and localization of COVID-19 from CAP on chest X-ray radiographs. We utilized 

the Discrimination-DL to distinguish COVID-19 from CAP on chest X-rays, and the Localization-DL was trained to detect lung localization (i.e., left lung or right lung or 

bipulmonary). Abbreviations: Healthy: healthy controls; CAP: community-acquired pneumonia; Left: left lung; Right: right lung. 
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nfected pulmonary region. We formulated this task as a categor-

cal classification problem. Specifically, we utilized each X-ray ra-

iograph as the input of a classifier (Discrimination-DL) and dis-

riminated whether the X-ray radiograph belonged to the COVID-

9, CAP or healthy. 

In this way, each X-ray radiograph excluded non-pulmonary re-

ions, and the lungs were first segment with a proposal of lung

egressor (namely, PoL, a minimum bounding-box approach [25] ).

he minimum bounding-box approach ( Eq. (1) ) takes the non-zero

egion, which corresponds to lung regions, and computes the vec-

or representing the 4 parameterized coordinates for each part as

ollows: 

l x = (x − x a ) /w a , l y = (y − y a ) /h a 

 w 

= log (w/w a ) , l h = log (h/h a ) (1) 

here x and y are the centre coordinates of the lung region, and

 and h are its width and height, respectively. Each variable ∗ and

a (where ∗ is one of x, y, w, h) denote the predicted lung region

nd ground-truth label, respectively. The output of the PoL consists

f two vectors and is illustrated in Fig. 2 (1). The X-ray radiograph

s divided into 100 superpixels (a set of pixels with similar repre-

entations), and the calculated features are stored in each super-

ixel. Manual lung segmentation is often dependent on the exper-

ise of the clinician and is time-consuming. Therefore, we present

he VGG [7] -based PoL network for lung segmentation. 
.2.2. Discrimination structure 

In the Discrimination-DL, we employed the feature pyramid

etwork as the backbone, as shown in Fig. 2 (2). The backbone

omputes a convolutional feature map over an entire input im-

ge. First, the original X-ray radiographs are resized to 224 × 224

sing cubic interpolation of OpenCV. This step can be interpreted

s image resampling processing, and the Discrimination-DL greatly

educes the input size and parameters, which promotes training

fficiency and reduces the risk of over-fitting. Based on the resam-

led X-ray radiographs, we build a feature pyramid network (FPN)

26] basic unit on top of the ResNet [8] architecture as a COVID-19

iscriminator to determine a preliminary probability distribution.

n general, FPN utilizes a top-down structure and skip connection

o improve multi-scale prediction from a single X-ray radiograph.

e constructed an FPN with pyramid level l ∈ [5, 8], which indi-

ates a resolution of 2 l . 

In COVID19-DB, we discovered that the COVID-19 cohort, CAP

ohort and pneumonia cohort encounter class imbalance. Lin et al.

27] introduced the focal loss starting for class imbalance of binary

lassification. With this method, we extend the binary focal loss

unction to the multi-focal loss function for the Discrimination-DL

s 

 dis (p) = −α
1 

N 

N ∑ 

i =0 

(1 − p i ) 
γ log (p i ) (2) 
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Fig. 2. Deep learning architectures. (1). We utilized the proposal of a lung regressor (PoL) with superpixel to generate the Discrimination-DL input. The PoL matrix is 

a 2 × 4 vector, which illustrates the bipulmonary region coordinates. (2). The Discrimination-DL adopts a feature pyramid network as a backbone network on top of a 

ResNet architecture and generates a differentiated probability across cohort categories. (3). The Localization-DL constructed attention modules use a state-of-the-art residual 

attention network basic unit. The located region is defined as a 1 × 2 vector and represents all potential pulmonary locations. Abbreviations: PoL: proposal of lung regressor; 

CAP: community-acquired pneumonia; Left/L: left lung; Right/R: right lung; Bilateral: bipulmonary. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1 Training procedure for Discrimination-DL. 

Input: image is the training data set; tag is the tags assigned to 

the training data; roi is the bipulmonary region coordinates; K 

is the number of epochs 

Output: the trained model m ; 

1: (X ) ← (generate lung regions of image with roi ) 

2: (Y ) ← (one hot encode of tag) 

3: (t rainX, t rainY ) , (v alX, v alY ) ← split(( X , Y ), split size=0.2) 

4: for each epoch e in Range K do 

5: m e ← modelFit( adam, (trainX, trainY )) 

6: r e ← modelEvaluate( m e , (v alX, v alY )) 

7: if earlyStopping( r e ) is TRUE then 

8: break 

9: end if 

10: end for 

11: m dis ← save bestModel( { (m e , r e ) | t = 1 , 2 , . . . , K } ) 

[  

l

H  

w  

p  

i  

m  

t  
Here, i is the index of a class in a chest X-ray, and p i is the pre-

dicted probability of class i. By default, the weight factor α is 0.25,

N is the number of classes, and the tuneable focusing parameter

γ is 2. Finally, we note that the multi-focal loss function ( Eq. (2) )

combines the softmax operation [28] . This energy function is the

approximate maximum-function and is defined as 

f j (x ) = 

e z j (x ) 

∑ K 
i =1 e 

z i (x ) 
(3)

where x takes as input a vector, and the individual z i ( x ) values are

the elements of the input vector and can take any real value. The

term in the denominator is the normalization term, which ensures

that the sum of the output values of the function will equal 1, thus

constituting a valid probability distribution. With the help of the

softmax classifier, the Discrimination-DL architecture maps each X-

ray radiograph to a vector of three continuous numbers between

0, 1 and 2, indicating the probabilities of the input radiograph be-

longing to COVID-19, healthy or CAP classes. In Discrimination-DL,

the predictions of a class do not compete with those of another

class. The batch size and number of epochs were experimentally

set to 16 and 20, respectively, for all experiments. The pseudocode

for Discrimination-DL is shown in Algorithm 1 . 

2.2.3. Localization structure 

After X-ray radiographs belonging to COVID-19 are identified, a

deep learning-based scheme is used to locate the pulmonary re-

gion. This task is formulated as a binary classification issue. In this

study, we developed the Localization-DL architecture, as shown in

Fig. 2 (4) . The objective of Localization-DL is to identify the in-

fected pulmonary region as belonging to the left lung, right lung

or bipulmonary region. We employ a residual attention network
29] as the basic unit to achieve this goal. In the attention residual

earning, the output H of the attention module is modified as 

 κ (x ) = (1 + M κ (x )) ∗ F κ (x ) (4)

here attention mask M ∈ [0, 1] with M approximates 0, H ap-

roximates original features F, and κ ranges over the correspond-

ng spatial location (i.e., 0 for right pulmonary, 1 for left pul-

onary). The final layer computes the binary cross-entropy func-

ion (5) combined with the sigmoid classifier function, which is
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Table 1 

Composition of the number of allocated CXRs. 

Dataset Covid19 Healthy CAP 

RSNA pneumonia detection challenge 0 1314 2004 

COVID-19 CXR dataset 204 0 0 

Total 225 1334 2024 

Training subset 160 1050 1600 

Validation subset 44 264 404 

Testing subset (Xiangya Hospital) 21 20 20 

CXR: chest X-rays; RSNA: Radiological Society of North America. 
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efined as follows: 

 loc (y ) = − 1 

N 

N ∑ 

i =0 

(y i log ( ̂  y i ) + (1 − y i ) log (1 − ˆ y i )) (5)

here y i and ˆ y i specify the predicted class and ground-truth class,

espectively. The input of the Localization-DL comprises the left

ulmonary and right pulmonary, which is a 64 × 128 rectangu-

ar patch obtained by downsampling a 224 × 224 patch at the ex-

racted lung pixel depicted on the X-ray radiograph. The located

egion part is a one-dimensional vector that contained 1 for the in-

ected region and 0 for the non-infected region on both pulmonary

egions (e.g., [1, 1] illustrates that bipulmonary are infected). 

The proposed CAD scheme uses 3 × 3 convolutions, which are

ctivated by a rectified linear unit (ReLU, [30] ) and is trained end-

o-end using the Adam [31] optimizer, derived from Eq. (7) : 

v t = β1 v t−1 + (1 − β1 )d w t 

s t = β2 s t−1 + (1 − β2 )d w 

2 
t 

 t+1 = w t − α
v t √ 

s t + ε
(6) 

here α is the initial learning rate, d w is the gradient at time t

long w, v t is the exponential average of the gradients along w

nd s t is the exponential average of the squares of the gradients

long w . Here, β1 is 0.9, β2 is 0.999 and ε is 10 −8 . We used an ini-

ial learning rate of 1 e − 3 for Adam that was decayed by a factor

f 5 each time when the validation loss plateaus after an epoch.

he optimization was performed for 50 epochs through COVID-

B, and the batch size was experimentally set to 16. To prevent

ver-fitting, we used the EarlyStopping function from the Keras

ramework, which stopped training when a monitored quantity

topped improving. The pseudocode for Localization-DL is shown

n Algorithm 2 . 

lgorithm 2 Training procedure for Localization-DL. 

nput: image is the training data of COVID-19 X-rays; annotation is

the labels assigned to the affected lung region; K is the number

of epochs 

utput: the trained model m ; training time T 

1: (X ) ← (generate lung regions of image with roi ) 

2: (Y ) ← annotation 

3: (t rainX, t rainY ) , (v alX, v alY ) ← split(( X , Y ), split size=0.2) 

4: for each epoch e in Range K do 

5: m e ← modelFit( adam, (trainX, trainY )) 

6: r e ← modelEvaluate( m e , (v alX, v alY )) 

7: if earlyStopping( r e ) is TRUE then 

8: break 

9: end if 

10: end for 

11: m loc ← save bestModel( { (m e , r e ) | t = 1 , 2 , . . . , K } ) 

.3. Loss function 

For training the DL functions, we assign a multi-focal loss

unction to each category in the Discrimination-DL and a binary

lass label to each pulmonary part. We assign a positive label to

he COVID-19 cohort and assign a negative label to non-COVID-

9 cohorts. Cohorts that are negative do not contribute to the

ocalization-DL objective. With these definitions (2) and (5) , we

efine an objective function to minimize the multitask loss for a

hest X-ray radiograph as 

 ( { p } , { y } ) = 

∑ 

i 

λdis L dis (p i ) + 

∑ 

i 

λloc L loc (y i ) (7)
Here, i is the index of a category in a mini-batch and p i is the

iscriminated probability of category i. y i is the predicted category,

nd ˆ p i is the ground truth. In the term λdis L dis (p i ) , the multi-

ocal loss is activated for a positive label ( λdis = 

1 
2 ) and is acti-

ated otherwise ( λdis = 1 ). In the term λloc L loc (y i ) , the binary loss

s activated only for a positive label ( λloc = 

1 
2 ) and is deactivated

therwise ( λloc = 0 ). The outputs of the Discrimination-DL and the

ocalization-DL layers consist of p and y , respectively. 

. Performance 

The proposed work was implemented using the publicly

vailable Keras [32] framework with the TensorFlow [33] back-

nd. Training and testing of each model used a single NVIDIA

TX1080Ti GPU with hexa-core 3.20 GHz processor and 16 GB

emory. To measure the experiments in a fair setting (inspired

y [30] ), all DLs were designed and implemented using the same

rinciples. The pseudocode for the testing procedure is shown in

lgorithm 3 . 

lgorithm 3 Testing procedure for the computer-aided diagnosis

cheme. 

nput: image is collected from Xiangya Hospital of Central South

University; tag is the tags assigned to the training data;

annotation is the labels assigned to affected lung region; roi is

the bipulmonary region coordinates; 

utput: discrimination result pred dis ; localization result pred loc 

1: lung ← (generate lung regions of image with roi ) 

2: m ← load model( m dis ) 

3: pred dis ← modelEvaluate( m, lung) 

4: if pred dis is COVID-19 then then 

5: m ← load model( m dis ) 

6: pred dis ← modelEvaluate( m, lung) 

7: end if 

.1. Patient characteristics 

Our testing cohort consisted of 61 chest X-ray radiographs, of

hich 21 were with COVID-19 and 20 were with CAP and 20

ere with non-infection (as depicted in Table 1 ). The average age

ith COVID-19 was lower than that with non-COVID-19 (45 vs. 64

ears). The COVID-19 cohort was less likely to have an evaluated

-reactive protein (CRP) than the non-COVID-19 cohort (31 vs. 41)

r a reduced erythrocyte sedimentation rate (ESR) (52 vs 66). 

We evaluated the proposed CAD scheme with respect to the

iscrimination of COVID-19 from CAP and the localization of CAP

arts separately. For the CAD scheme, we developed two DLs, one

or COVID-19 discrimination and one for infected pulmonary local-

zation, and proposed a lung box as well as a superpixel approach

s preprocessing methods. 
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Fig. 3. Performance of discriminating COVID-19 from CAP on testing subset. (A). ROC curve for the Discrimination-DL with radiologists for performance comparison. The 

area under the ROC of the Discrimination-DL was 99%. (B). ROC curves for COVID-19 from CAP on the testing subset trained with Discrimination-DL were 1 for COVID-19, 

1 for healthy controls, and 0.99 for CAP. Abbreviations: receiver operating characteristic (ROC) curve (AUC); accuracy (Acc); community-acquired pneumonia (CAP); healthy 

controls (Healthy). 

Fig. 4. Representative chest X-ray radiographs corresponding to Grad-CAM images. 
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3.2. Discrimination influences 

First, we evaluated the model w. r. t. its ability to discriminate

a given chest X-ray radiograph into COVID-19 or non-COVID-19 re-

gardless of localization. The Discrimination-DL achieved a training

loss of 2.29% and training accuracy of 98.71% and yielded a valida-

tion loss of 4.58% and validation accuracy of 95.12%. Fig. 3 shows

the receiver operating characteristic (ROC) curve (AUC) comparison

with the radiologists’ performance and the performance of each

class case. The result shows that the most accurate DL demon-

strated a performance that outperformed four radiologists. How-

ever, the CAP accuracy was poor in the remaining cases. 

Furthermore, we compared the average predictions of the

Discrimination-DL and present a summary of studies conducted

on the automatic diagnosis of COVID-19 from chest X-rays. Narin

et al. [17] achieved an accuracy of 98% with a pre-trained ResNet50

model but did not include pneumonia cases in their experiment.

Hemdan et al. [34] achieved an accuracy of 90% on a 2-class prob-

lem based on the VGG19 architecture pre-trained on ImageNet. Oz-

turk et al. [15] proposed a CNN model based on the DarkNet archi-

tecture to classify COVID-19 cases from X-ray images and achieved

a binary and 3-class classification accuracy of 87%. Khan et al.

[16] introduced CoroNet, which is based on the Xception structure

pre-trained on the ImageNet dataset, and achieved an accuracy of
 r  
9%. Table 2 shows that the performances of Discrimination-DL are

etter than those of the compared methods. A Grad-CAM [35] for

mportant features of the lung that lead the Discrimination-DL

o classify a case as COVID-19 from CAP was generated using

radient-weighted class activation mapping [36] , which on repre-

entative chest X-ray radiographs from the test set demonstrates

hat the model focused on the area of abnormality ( Fig. 4 ). 

.3. Localization results 

The Localization-DL yielded a training loss of 3.73% and training

ccuracy of 96.95%, while the Localization-DL achieved a validation

oss of 5.26% and validation accuracy of 94.62%. We assessed the

bility to localize the presence of CAD on the infected pulmonary

issue, as shown in the upper panel of Fig. 5 , which illustrated the

OC curve comparing the Localization-DL with radiologists’ perfor-

ance and the performance of the infected pulmonary system. To

ssess localization performance, the model agreed best with the

uman observer. The result depicts the Localization-DL results ri-

al that of four radiologists. Note here that the performance of the

ingle pulmonary system is clearly superior to that of the bipul-

onary system. 

The attention mechanism brought a more discriminative feature

epresentation. Fig. 6 shows several examples of attention residual
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Table 2 

Automated predictions on a testing subset of chest X-Rays. 

Method Architecture Pre-trained Predicted performance 

Covid19 Healthy CAP Average 

Narin et al. [17] ResNet50 � 100% 100% × 98% 

Hemdan et al. [34] VGG19/DenseNet201 � 100% 80% × 90% 

Ozturk et al. [15] DarkNet × 98% 86% 85% 87% 

Khan et al. [16] Xception � 89% 85% 95% 89% 

Discrimination-DL ResNet50 + FPN × 99% 93% 90% 94% 

Pre-trained: the model was loaded with pre-trained weights from ImageNet database; CAP: community- 

acquired pneumonia; Healthy: healthy controls. 

Fig. 5. Performance of localizing infected pulmonary on the testing subset. (A). The ROC curve for Localization-DL compared with radiologist performance. The area 

under the curve was 93%. (B). The ROC curve of each case with the trained Localization-DL was 0.92 for left pulmonary, 0.93 for right pulmonary and 0.87 for bipulmonary. 

Abbreviations: receiver operating characteristic (ROC) curve (AUC); accuracy (Acc); left pulmonary (left); right pulmonary (right); bipulmonary (Bilaterel). 

Fig. 6. Several examples illustrating that the high-level part features with attention masks. 
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earning. The pulmonary instance mask highlights the potentially

nfected part of the pulmonary system. 

.4. CAD performance 

Our final CAD scheme achieved a test accuracy of 93.65%, sen-

itivity of 90.92% and specificity of 92.62%. Compared to the aver-

ge radiologist, our CAD scheme had higher test accuracy (93.65%

s. 88.14%), sensitivity (90.92 vs. 77.54%) and specificity (92.65% vs.

6.24%). The testing time was 272 ms per image on the testing

ubset. The above results suggest that our CAD scheme enjoys high

fficiency and good performance. 
. Discussion 

Since COVID-19 was first detected at the end of 2019, it has

pread all over the world. Since the vaccine is estimated to be

ears away [37] , it is critical to diagnose the disease at an early

tage so that patients infected with COVID-19 receive treatment

nd isolation to prevent virus spread. Mass testing has been

uccessful in controlling the outbreak of COVID-19 in numerous

laces, such as China [38] . PCR is considered the gold standard to

onfirm the disease. However, it is time consuming and limited by

he number of test kits. 

In contrast, chest X-ray (CXR) machines are available in all hos-

itals to produce projection images of the patient’s thorax. Usually,
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CXR is the first choice for radiologists to detect chest pathology

and plays a pivotal role in the diagnosis of CAP and epidemiologi-

cal studies. It has been recently reported that ground-glass opacifi-

cation, consolidation, peripheral and diffuse distribution, and bilat-

eral involvement are found in the chest X-ray findings in COVID-19

A recent study found that radiologists detect COVID-19 from CAP

with high specificity but moderate sensitivity, which means there

are missed diagnoses of COVID-19. This reminds us that there is

an urgent demand for developing applications to aid radiologists

in detecting COVID-19. 

In this study, we developed an efficient and accurate CAD

scheme and demonstrated its feasibility to recognize and local-

ize COVID-19 from CAP on chest X-ray radiographs. This work

and the novel CAD scheme have a number of unique characteris-

tics. First, a Discrimination-DL with proposed lung boxes was de-

veloped for the automatic detection of chest X-rays belonging to

COVID-19 patients. This DL-based process can generate high de-

tection accuracy compared to results from radiologists. Therefore,

the Discrimination-DL for automatic accuracy detection of COVID-

19 chest X-rays is reliable and can be employed to replace manual

diagnoses, which provides the capability of managing large-scale

datasets with high efficiency. 

Second, we developed a Localization-DL-based scheme to iden-

tify infected pulmonary (i.e., left pulmonary, right pulmonary or

bipulmonary), which considers the location coordinates and neigh-

bourhood information. After sufficient training and optimization,

the Localization-DL provides optimal identification results without

human intervention. Therefore, the Localization-DL was a reliable

CAD scheme for fully automatic identification of pulmonary infec-

tions from single COVID-19 chest X-rays. 

Third, the two challenges in this study (i.e., discrimination and

localization) were both formulated as classification problems, and a

deep learning model was used as the classifier to address the prob-

lems. Recently, deep learning has been successfully used to diag-

nose lung abnormalities at the radiologist level, consuming much

less time [21] . Following the success of DLs in many medical im-

age analysis communities, this work demonstrated that DL models

are effective for recognizing X-rays that belong to COVID-19 and

localizing infected pulmonary tissue from a single chest X-ray. 

In addition, based on the experimental results, we also ob-

served several obstacles. For example, (1) due to the lack of re-

sources, we were not able to compare COVID-19 chest X-ray images

to pneumonia caused by other types of viruses. Instead, we col-

lected 2004 radiographs of CAP, which in our view is sufficient to

represent the typical distribution of CAP. (2) Almost all deep learn-

ing methods lack interpretability, which makes it difficult to deter-

mine the exact image features for generating the output. (3) This

study focuses on whether a radiograph is COVID-19 but has not ad-

dressed classifying the disease according to severity. The next goal

of our team will be to make effort s to predict not only whether

COVID-19 exists but also the degree of severity to further the ad-

ministration of patients. In all, future improvements would be to

collect more data, perhaps hundreds or thousands of images of

both COVID-19 and other viral pneumonia. The new dataset should

also consider geographic diversity, which will increase its applica-

bility worldwide. 

5. Conclusions 

The COVID-19 pandemic continues to threaten the health and

lives of billions of people. Early discrimination and localization of

the disease is the key to winning the battle against the virus. With

this in mind, we developed and tested a novel CAD scheme for

COVID-19 detection and localization based on a sequential two-

step process including (1) detecting chest X-ray radiographs be-

longing to COVID-19 and (2) identifying infected pulmonary tis-
ue from each of the detected chest X-rays. We used two open-

ource datasets that contained 225 and 2024 images from patients

nfected with COVID-19 and pneumonia, respectively as well as

334 images from healthy people for training and validation. We

emonstrated that this novel deep learning-based CAD scheme en-

bles the differential diagnosis of COVID-19 from pneumonia on

hest X-rays from a different data source, Xiangya Hospital, and

an localize infected pulmonary tissue from each recognized X-ray

ith high accuracy or agreement with manual results from radiol-

gists. 

Although much work is still required to create a production-

eady solution, the hope is that the promising results achieved

y our two-step DL scheme on the test dataset and an increas-

ng number of open datasets will lead to it being implemented to

ccelerate the development of highly accurate and practical deep

earning solutions for detecting and localizing COVID-19 from chest

adiographs. Due to the lack of corresponding images from the

ata source, radiographs of other types of viral pneumonia were

ot included. As new data are collected, our goal is to extend the

roposed DL to the classification of four groups of radiographs

COVID-19, healthy, bacterial pneumonia and viral pneumonia), risk

tratification for survival analysis, and more detailed localization

f infected pulmonary tissue. Overall, our study provides a novel

nd reliable CAD tool for assisting in the processing of large-scale

hest X-ray data and in accurately identifying COVID-19-infected

ulmonary tissue in future clinical practice. 
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