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abstract

PURPOSE Liquid biopsy specimen genomic profiling is integrated in non–small-cell lung cancer (NSCLC)
guidelines; however, data on the clinical relevance for ALK/ROS1 alterations are scarce. We evaluated the
clinical utility of a targeted amplicon-based assay in a large prospective cohort of patients with ALK/ROS1-
positive NSCLC and its impact on outcomes.

PATIENTS AND METHODS Patients with advanced ALK/ROS1-positive NSCLC were prospectively enrolled in the
study by researchers at eight French institutions. Plasma samples were analyzed using InVisionFirst-Lung and
correlated with clinical outcomes.

RESULTSOf the 128 patients included in the study, 101 were positive for ALK and 27 for ROS1 alterations. Blood
samples (N = 405) were collected from 29 patients naı̈ve for treatment with tyrosine kinase inhibitors (TKI) or
from 375 patients under treatment, including 105 samples collected at disease progression (PD). Sensitivity was
67% (n = 18 of 27) for ALK/ROS1 fusion detection. Higher detection was observed for ALK fusions at TKI failure
(n = 33 of 74; 46%) versus in patients with therapeutic response (n = 12 of 109; 11%). ALK-resistancemutations
were detected in 22% patients (n = 16 of 74) overall; 43% of the total ALK-resistance mutations identified
occurred after next-generation TKI therapy. ALKG1202Rwas themost commonmutation detected (n = 7 of 16).
Heterogeneity of resistance was observed. ROS1 G2032R resistance was detected in 30% (n = 3 of 10). The
absence of circulating tumor DNAmutations at TKI failure was associated with prolongedmedian overall survival
(105.7months). Complex ALK-resistancemutations correlated with poor overall survival (median, 26.9months v
NR for single mutation; P = .003) and progression-free survival to subsequent therapy (median 1.7 v 6.3months;
P = .003).

CONCLUSION Next-generation, targeted, amplicon-based sequencing for liquid biopsy specimen profiling
provides clinically relevant detection of ALK/ROS1 fusions in TKI-naı̈ve patients and allows for the identification
of resistance mutations in patients treated with TKIs. Liquid biopsy specimens from patients treated with TKIs
may affect clinical outcomes and capture heterogeneity of TKI resistance, supporting their role in selecting
sequential therapy.

JCO Precis Oncol 4:272-282. © 2020 by American Society of Clinical Oncology

INTRODUCTION

Since the discovery of driver oncogenic alterations in
non–small-cell lung cancer (NSCLC), the treatment
landscape has grown exponentially. Specific tyrosine
kinase inhibitors (TKIs) targeting different alterations
have impressively improved outcomes of patients with
advanced NSCLC compared with chemotherapy.1,2

Molecular testing is recommended at the time of
diagnosis3 and it should be also considered at disease

progression (PD) in patients receiving TKI treatment to
assess the resistance mechanisms that may support
the selection of subsequent therapies. Tumor biopsy is
the preferred approach for molecular testing, but in up
to 30% of cases, the tissue quality is inadequate.4,5

Analysis of circulating tumor DNA (ctDNA) liquid bi-
opsy specimens provides a noninvasive surrogate
material for detecting somatic mutations and is cur-
rently integrated in NSCLC clinical guidelines.6,7
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ALK and ROS1 fusions occur in approximately 5% and 2%,
respectively, of cases of advanced NSCLC.8 Highly se-
lective TKIs have enlarged the therapeutic arsenal. In
patients positive for ALK, crizotinib9 was the first TKI
approved as frontline treatment, but second-generation
TKIs (ie, alectinib, ceritinib, or brigatinib)2 have improved
frontline clinical outcomes, displacing crizotinib from the
first-line TKIs, and third-generation TKIs, such as lorlatinib,
with high activity in the crizotinib-resistance setting,10 are
being tested as first-line therapy (ClinicalTrials.gov identi-
fier: NCT03052608). Unfortunately, PD remains inevitable.
ALK mutations are one of the main mechanisms of re-
sistance to TKI, identified in up to 30% of the cases at
PD after crizotinib therapy.11 Second- and third-generation
TKIs can overcome resistance to crizotinib,12 and a se-
quential strategy has been established as the standard of
care after TKI failure.3,13-15 Similarly, ROS1-positive NSCLC
can develop crizotinib-resistance mutations in the ROS1
kinase domain, conferring variable degrees of sensitivity or
resistance to next-generation TKIs.16-18 However, each TKI
has a different spectrum of coverage for resistance
mutations.12 Thus, detecting specific resistance mutations
may influence the choice of the TKI sequence.

Liquid biopsy already provides an alternative option to
tissue for molecular profiling in treatment-naı̈ve patients
with NSCLC.19 Although a few studies have recently
reported the feasibility of using liquid biopsy specimens
for profiling patients positive for ALK20-22 and ROS123

alternations, larger, real-life, prospective cohorts are
needed to assess the relevance of this strategy.

Here, we evaluated the clinical utility of targeted, amplicon-
based, NGS liquid biopsy in a large prospective cohort of
patients positive for ALK/ROS1. Also, we assessed the
clinical relevance of the detection of ALK/ROS1 fusions and
resistance mutations on clinical outcomes and explored
ctDNA as a potential predictive biomarker for efficacy of
sequential TKIs.

PATIENTS AND METHODS

Study Population

Patients ≥ 18 years old with ALK- and ROS1-fusion–positive
advanced NSCLC were prospectively enrolled between
October 2015 and August 2018 at Gustave Roussy (CEC-
CTC study no. 2008-A00585-50), at Centre Léon Bérard,
and six other French institutions (LIBIL study, Clinical-
Trials.gov identifier: NCT02511288). All patients provided
written informed consent for biomedical research and the
institutional ethics committees approved the protocol.ALK or
ROS1 fusion was determined by a validated test on tumor
tissue (Data Supplement).

Sample Collection and ctDNA Analysis

Prospective samples were collected at any time point at
diagnosis and/or at each disease radiologic evaluation
(under response by RECIST v1.125 v progression). Patients
receiving therapy with no previous sample collected at
diagnosis were also enrolled; samples were collected at
each radiologic evaluation. In blood samples, plasma was
isolated and ctDNA analysis was centralized (Inivata,
Cambridge, UK, and Research Triangle Park, NC) using
InVisionFirst-Lung, which identifies single nucleotide vari-
ants, insertions and deletions, copy number variations,
and fusions, with whole-gene and gene hotspots across
a 36-gene panel (Data Supplement). Methods were as
previously described24 (Data Supplement). Fusion load was
evaluated using fusion reads normalized to control single
nucleotide polymorphism primers across all replicates at
each time point. Relative change in fusion load was cal-
culated between time 0 (T0) and subsequent time points
(TX) to give an estimate of fusion load over time relative to T0.

Statistical Analysis

Outcomes assessment is summarized in the Data Sup-
plement. Survival curves were estimated with the Kaplan-
Meier method and were compared by the log-rank test. All
P values were two-sided and values, .05 were considered
statistically significant.

CONTEXT

Key Objective
To determine if liquid biopsy specimens are clinically relevant in patients with ALK- and ROS1-positive advanced NSCLC.
Knowledge Generated
In a multicenter cohort of 128 patients with ALK- and ROS1-positive advanced NSCLC, an amplicon-based ctDNA next-

generation sequencing (NGS) liquid biopsy was feasible and clinically relevant; 67% of ALK and ROS1 fusions were
detected in liquid biopsy specimens at diagnosis, and ALK- and ROS1-resistance mutations were identified in 22% of
patients at TKI failure. This increased to 29% of patients at progression to second-generation TKI therapy.

Relevance
This amplicon-based, NGS liquid biopsy can enable molecular diagnosis for ALK/ROS1 fusions from specimens at diagnosis

and, in patients treated with TKIs, allows for the identification of resistancemutations that may influence treatment selection
and clinical outcomes.
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The presence of one ALKmutation was defined as “single
ALK,” the presence of two or more ALK resistance mu-
tations was defined as “complex ALK”; the presence of
other somatic mutations was defined as “others,” “non-
ALK,” or non-ROS1,” and the absence of mutations in
blood, included in the 36-gene panel, was defined as
“negative ctDNA.” The prognostic value was measured in
univariate analysis. For sensitivity analysis, referring to
tissue data as the standard, the sensitivity was defined as
true positive divided by the sum of true-positive and false-
negative results.

Data were processed and analyzed using SPSS software,
version 25.0.0 (IBM Corp., Armonk, NY). The numbers of
all included patients and recorded variables were reported
using descriptive statistics and the relationship between
clinical characteristics and response was determined by
Fisher exact test.

RESULTS

Of 128 enrolled patients, 101 had ALK-positive and
27 ROS1-positive NSCLC. Baseline characteristics are
summarized in Table 1. Overall, 404 blood samples were
collected: 29 in TKI-naı̈ve patients (25 with ALK fusions,
four with ROS1 fusions) and 375 in patients receiving
treatment (Data Supplement). A median of two samples
was collected per patient (range, 1 to 13 samples).

Detection of ctDNA ALK/ROS1 Fusions

Treatment-naı̈ve cohort. Twenty-seven samples were eli-
gible for analysis. In 18 patients, the fusion was detected in
blood (n = 16 patients with ALK; n = 2 with ROS1), with
a sensitivity of 67% for ALK and ROS1 fusion (Data Sup-
plement). In the ALK cohort, eight variant 1, two variant 2, and
six variant 3 fusions were detected. In the ROS1 cohort, one
CD74-ROS1 and one SLC34A2-ROS1 fusion were detected.

Fusion detection in blood was associated with a high
number of metastatic sites and visceral involvement (Data
Supplement). Themetastatic pattern was not related to ALK
variants orROS1 partner gene. PlasmaNGS was performed
on 25 samples, of which 11 (44%) had concurrent gene
aberrations: TP53 mutation (24%; n = 6), followed by
NRAS, STK11, and CDKN2A mutations, and EGFR am-
plification (Data Supplement). One patient had an
ALKL1196Q mutation at diagnosis.

Radiologic response. A total of 143 samples collected at
the time of confirmed objective response by RECIST,
version. 1.1, were evaluable for fusion analysis (ALK,
n = 109; ROS1, n = 34). Fusions were detected in 14
samples (10%): 12 of 109 (11%) for patients with ALK and
two of 34 (6%) for ROS1 patients (Data Supplement).

A total of 121 samples were collected at the time of PD on
systemic therapies (eg, chemotherapy, TKIs; ALK, n = 96;
ROS1, n = 15). Among them, 74 were collected at TKI
failure, with a detection rate of 45% (n = 33 of 74) for ALK
and 30% (n = 3 of 10) forROS1 fusions (Data Supplement).
The detection rate was higher in patients with visceral and
bone metastases (Data Supplement).

Detection of ctDNA Mutations at TKI Failure

ALKmutations were detected in 22% of samples (n = 16 of
74) collected at TKI failure, including five samples with
single ALK mutations, three with complex ALK mutations,
and eight with ALK and other genes mutations (Fig 1A).

ALK mutations were more frequently detected in patients
with bone or liver progression (75% to 80%) compared with
exclusive CNS or thoracic progression (10%). Detection of
ALK mutations at isolated CNS relapse was 10% (n = 3 of
29); 0% after crizotinib (n = 0 of 11) versus 18% after
therapy with a next-generation TKI (n = 3 of 17). In 55%, no
mutations were detected (n = 16 of 29). ALK variant 3 was
associated with ALK mutations (37%; n = 6 of 16), com-
pared with variant 2 (13%; n = 2 of 16) and variant 1 (none).

TABLE 1. Patients’ Baseline Characteristics

Characteristic
ALK

(n = 101)
ROS1

(n = 27)

Age, median (range), years 52 (21-84) 54 (26-83)

Sex

Male 42 (42) 13 (50)

Female 59 (58) 13 (50)

Missing 1

Smoking status

Never 57 (58) 18 (69)

Smoker 42 (42) 8 (31)

Missing 1

Histology

Adenocarcinoma 97 (96) 25 (93)

NSCLC, other 4 (4) 1 (7)

Squamous — —

Missing — 1

Stage at diagnosis

I-IIIA 11 (14) 3 (14)

IIIB-IV 70 (86) 19 (86)

Missing 20 5

Brain metastasis at baseline 42 (42) 9 (35)

Molecular diagnosis

FISH (+) 78 (77) 19 (70)

IHC (+) 63 (62) 15 (56)

Other (+) — 2 (7)

No. of prior systemic lines at
inclusion, median (range)

2 (1-9) 2 (1-8)

NOTE. Data reported as No. (%) unless otherwise indicated.
Abbreviations: —, no cases; FISH, fluorescence in situ hybridization; IHC,

immunohistochemistry; PD, progressive disease, NSCLC, non–small-cell lung
cancer.

Mezquita et al

274 © 2020 by American Society of Clinical Oncology



At PD, ALK mutations with third-generation TKIs were
detected in 43% (n = 7) of samples compared with 29% in
samples from patients treated with second-generation TKIs
(n = 31) and 11% with crizotinib (n = 36; Fig 1B). ALK
G1202R was detected as a single mutation (n = 3) or
concurrent with other ALK mutations (n = 4) and was the
most common resistance mutation (n = 1 after crizotinib
therapy; n = 6 after treatment with next-generation TKIs).

Non-ALK mutations were detected in 41% of samples (n =
30 of 74); 27% (n = 8 of 30) were concurrent with ALK
mutations. TP53 was the most common (n = 26 of 74),
54% (n = 14 of 26) as the unique mutation, 27% (n = 7 of
26) concurrent with ALKmutations, and in 19% of samples
(n = 5 of 26) associated with other mutations. Other mu-
tations detected included KRAS plus PI3KCA, PTEN plus
PI3KCA, MET, STK11, and CDKN2A (Data Supplement).

In 21 patients, 57 longitudinal samples during sequential
therapies were available. In five patients, de novo ALK
mutations emerged after TKI (Data Supplement).

Paired tissue and liquid biopsy specimens with resistance
mutations were available in six cases (in all cases, the ALK
fusion was confirmed in tissue samples, Table 2). The three
cases with single ALK mutation had 100% tissue- and

liquid-sample concordance (n =2 ALK G1202R; n =1 ALK
L1196M). The other three cases had complex ALK muta-
tions, one was concordant between tissue and liquid biopsy
specimens (ALK F1174V and ALK L1198F). However, some
discordance was observed in two cases: one case with ALK
G1202RplusALKE1154K in the tissue biopsy specimen and
ALKG1202R plus ALK I1268V in the liquid biopsy specimen;
and one case with more mutations detected in the liquid
biopsy specimen (tissue: ALK G1202R plus ALK F1174L;
liquid: ALKG1202R plus ALK F1174L plus ALKC1156Y plus
ALK G1269A plus ALK S1206F plus ALK T1151M).

In theROS1 cohort, among the 10 samples collected at the time
of PD, three (30%)had theROS1G2032R-resistancemutation.
All caseshad concurrentmutations (CTNNB1, TP53, andTP53
plusCDKN2A). The ctDNA somaticmutations evidenced at TKI
failure are depicted in Figure 1C and 1D. Three patients had
sequential samples for assessing the emergence of mutations;
in one case, we observed the emergence of ROS1mutation at
crizotinib failure (SLC34A2-ROS1 fusion; Data Supplement).

Clinical Outcomes in ALK-Positive Patients According to

Liquid Biopsy Specimens

The absence of mutations in ctDNA was associated with
improved overall survival (OS; n = 74 samples; n = 55
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FIG 1. Somatic mutations detected in liquid biopsies at progressive disease to tyrosine kinase inhibitor (TKI; A, C)
and according to exposure to prior TKI (B, D) in ALK (A, B) and ROS1 (C, D) positive patients.
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patients; Fig 2). Themedian OSwas 58.5 (95%CI, 26.9 to not
reached [NR]) months if one or more ALK mutations were
detected versus 44.1 (95%CI, 21.7 toNR)months if non-ALK
mutations were detected versus 105 (95% CI, 105.7 to NR)
months in patients negative for ctDNA (P = .001). This effect
was observed regardless of the number of lines of TKI received
(more than TKIs v two or fewer TKIs;P= .01). This observation
also held true when we assessed this outcome in the pop-
ulation exclusively treatedwith TKI as first-line therapy (n = 29;
P = .04). The patients’ characteristics according to the ctDNA
mutations are described in the Data Supplement.

The presence of complex ALK mutations was associated
with poor OS (median, 26.9 months; 95% CI, 13.9 months

to NR) compared with single ALK mutation (median, NR;
95% CI, 57.0 months to NR; P = .003). This effect was also
observed in the subgroup treated with upfront TKI (P = .038).
The median OS in the four patients with emergence of ctDNA
ALK G1202R was 59.5 (95% CI, 26.9 to NR) months.

The group with absence of ctDNA mutations had a median
progression-free survival (PFS) to the therapy on which
their disease progressed of 14.8 (95% CI, 8.1 to 23.1)
months versus 9.6 (95% CI, 6.6 to 19.9) months if there
was one or more ALKmutation or 7.8 (95% CI, 4.5 to 11.7)
months if there were non-ALK mutations at TKI failure
(P = .31). The median PFS of the four cases with emer-
gence of ALK G1202R was 2.7 (95% CI, 2.03 to NR)
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months versus 8.6 (95% CI, 5.6 to 10.6) months in the
remaining population (P = .05).

We then studied the PFS to the subsequent therapy
according to ctDNAmutations detected in 56 samples. The
median PFS was 20.7 (95% CI, 6.3 to NR) months in the
negative ctDNA group versus 8 (95% CI, 2.8 to NR) months
for non-ALK mutations versus 2.8 (95% CI, 1.2 to NR)
months in the group with one or more ALK mutation de-
tected (P = .03).

We further explored the PFS specifically in the subgroup
harboring ALK mutations (n = 16; Data Supplement; Table
2). The ALK complex mutations were associated with poor
efficacy, with a median PFS of 1.7 (95% CI, 0.9 to NR)
months. In contrast, the ALK single mutation was more
commonly associated with longer PFS, with a median of
6.3 (95% CI, 1.8 to NR) months (P = .003). The median
PFS to the sequential therapy of the four cases with
emergence of ALK G1202R was 3.7 (95% CI, 1.2 to NR)
months versus 8.3 (95% CI, 4.9 to NR) months in overall
population (P = .15).

The ctDNA dynamics were evaluated at TKI baseline and
longitudinally in 34 patients. See the Data Supplement for
a representation of the association between the fusion and
the highest allelic frequency of any mutation detected in
blood in ALK-positive patients and therapeutic response.
The detection of fusion in blood and higher level of allelic
frequency were correlated with PD at the time of response
assessment.

The fusion load was calculated in nine patients. The
clearance of the fusion was well correlated with the
clearance of other somatic mutations detected in the same
sample (Data Supplement) in response to therapy.

DISCUSSION

Herein, we report the clinical relevance of a targeted,
amplicon-based NGS assay in a large, prospective, real-
world cohort of 128 ALK/ROS1-positive patients. At the time
of diagnosis, the sensitivity was 67%. At progression, ALK-
and ROS1-resistance mutations were reported in 22%
versus 30% of patients, respectively. We also describe the
clinical relevance of liquid biopsy specimens on patient
outcomes and the potential role of ctDNA as a predictive
biomarker.

In our cohort, the sensitivity of amplicon-based NGS for the
detection of ALK fusion was in line with the limited data
reported to date on other blood-based approaches, such
as hybrid-capture liquid biopsy (55%),26 RNA exosomes
(63%),27 and reverse transcriptase polymerase chain re-
action in platelets (65%).27 In the treatment-naı̈ve pop-
ulation with ROS1, we found a sensitivity of 67%; a single
study recently reported a detection rate of 50% in plasma
at the time of PD, with no data for treatment-I patients.23

Sensitivity was correlated with higher number of metastatic
sites and visceral involvement, reflecting the impact of

tumor burden. Our sensitivity data are comparable with the
detection rate of other mutations, for which liquid biopsy
specimens are routinely used in cases where adequate
tissue is unavailable.26

We showed the potential of ctDNA as a surrogate biomarker
for therapeutic response, including a novel method for
evaluating the relative fusion change: ALK/ROS1 fusion
detection was higher in patients at TKI failure than in those
whose disease was responding to TKI treatment (49% v
11%). ctDNA clearance was correlated to radiologic re-
sponse, which should be further explored.

Concurrent non-ALKmutations were associated with poor
outcomes, consistent with reports from studies using
tissue testing.28,29 This emphasizes the clinical relevance
of comprehensive genomic profiling to test for fusion and
also mutations in other genes. Interestingly, we reported
an ALK mutation at diagnosis that is typically detected
at TKI failure; this has been previously reported in pre-
clinical models.30 Its impact on clinical outcome remains
unknown.

We found ALK mutations in 22% of samples at TKI failure,
which is comparable to the 24% presented by Shaw et al.35

However, this is lower than the 30% reported in tissue12 and
50% in liquid biopsy specimens in smaller cohorts of pa-
tients treated with second-generation TKIs.20,21

As previously reported, we detected more ALK-resistance
mutations after next-generation TKIs (≤ 43%). Interestingly,
the complex ALK mutations, potentially associated with
compound mutations after sequential exposure to TKIs,31

were detected in 45% of samples after crizotinib therapy
and more likely were related to a polyclonality PD.32 In
addition, liquid biopsy specimens can reveal molecular
heterogeneity, particularly in cases of complex ALK mu-
tations that were not observed in tissue testing.

The ALK G1202R mutation was the most commonly de-
tected (44%), generally after second-generation TKI, but
also seen after crizotinib. ALK-resistance mutations were
most frequently associated with ALK variant 3, including all
cases of ALK G1202R, as previously reported from tissue
biopsy specimens.33 We observed the emergence of some
de novomutations in longitudinal analyses during sequential
TKI therapy, including the emergence of ALK G1202R after
crizotinib, or the accumulation of ALK mutations during
sequential TKI therapy, as reported by Yoda et al.31 We
identified ROS1-resistance mutations in 30% of cases,
comparable to the 33% recently reported by Dagogo-Jack
et al.23

At TKI failure, no mutation was detected in approximately
half of the liquid biopsy specimens, as previously reported34,35;
this can be related to the sites ofmetastatic disease (ie, in case
of isolated CNS or thoracic PD), with lower detection rate
reported.36 Systemic bone and liver PD was associated with
higher detection than was isolated CNS or thoracic PD
(≤ 80% v 10%). Thus, the pattern of metastatic disease
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should be considered when interpreting data from liquid
biopsy specimens in the context of resistance. More prospec-
tive data are required to draw definitive recommendations.

Other non-ALK and non-ROS1 mutations were detected in
30% of ALK and 10% of ROS1 samples at resistance. One
hypothesis is that they could represent bypassmechanisms
in some cases, reported as the second main cause of TKI
resistance.12,37 KRAS, PI3KCA, or PTEN mutations iden-
tified potentially could be related to bypass mechanisms.

In an exploratory analysis in the ALK population, the ab-
sence of ctDNA mutations was associated with improved
outcomes; this could be related to a lower tumor burden or
a less heterogeneous tumor. In contrast, the complex ALK
mutations were associated with the worst survival outcome,
probably reflecting polyclonal and resistant tumors or
compound mutations. In the ROS1 population, similar
findings were observed. Patients with absence of ctDNA
mutations at TKI failure had an improved outcome, and all
patients with ROS1G2032R experienced rapid progression
(, 3 months) to subsequent TKI therapy.

Our study has some limitations. Although the amplicon-
based NGS approach used is highly sensitive for mutations,
it is limited to the detection of known fusion partners, which
cover 90% to 95% of the ALK/ROS1 population.38 Second,
the sample size is limited and the heterogeneity of the

samples collected in different time points is high, though, to
our knowledge, it is the largest, real-world, prospective
cohort of ALK/ROS1 studied. In addition, in the ALK
population, only 51% of the samples were collected after
next-generation TKI, the current standard of care; how-
ever the information derived from cases after crizotinib
therapy was also informative (ie, detection of ALK G1202R,
uncommon after crizotinib therapy, and complex mutations
that did not respond to the next TKI). Finally, patients were
included either as they were diagnosed with advanced
NSCLC or at any time of treatment, which may be associated
with a bias in recruitment of patients with long survival.
Prospective clinical trials are required in context of next-
generation TKI therapies39 that showed promising activity
against the ALKG1202R andROS1G2032Rmutations, which
are resistant to the majority of other available TKIs.

In conclusion, our clinical experience of an amplicon-based,
NGS liquid biopsy in a large, real-world, prospective cohort of
ALK/ROS1-positive patients with NSCLC provide evidence of
the clinical utility of this approach at the time of diagnosis as
well as at the time of PD for detection of resistance muta-
tions. Liquid biopsy specimens in TKI-treated patients cap-
ture heterogeneity of TKI resistance, supporting the role of
liquid biopsy in selecting sequential therapy.
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