Table 5.
Classification algorithms | Accuracy (±STD) | Specificity (±STD) | Precision (±STD) | Recall (±STD) | F1-Measure (±STD) | AUC (±STD) | MCC (±STD) |
---|---|---|---|---|---|---|---|
Without using Augmented Images | |||||||
DT | 72.98 ± 3.54 | 70.93 ± 12.06 | 73.06 ± 6.20 | 74.96 ± 8.82 | 73.41 ± 3.22 | 0.73 ± 0.04 | 0.47 ± 0.07 |
ANN | 74.29 ± 5.28 | 74.29 ± 32.99 | 74.29 ± 8.57 | 74.29 ± 30.07 | 74.29 ± 17.5 | 0.74 ± 0.05 | 0.49 ± 0.13 |
SVM (RBF Kernel) | 80.03 ± 4.40 | 80.18 ± 10.61 | 81.05 ± 8.12 | 79.91 ± 7.44 | 80.01 ± 4.30 | 0.80 ± 0.04 | 0.61 ± 0.09 |
KNN | 80.17 ± 4.62 | 83.30 ± 7.82 | 82.68 ± 6.42 | 77.03 ± 7.23 | 79.47 ± 4.92 | 0.80 ± 0.05 | 0.61 ± 0.09 |
NB | 80.46 ± 6.03 | 79.57 ± 6.26 | 80.00 ± 5.71 | 81.36 ± 7.70 | 80.58 ± 6.18 | 0.80 ± 0.06 | 0.61 ± 0.12 |
SVM (Poly Kernel) | 83.34 ± 3.46 | 85.89 ± 5.63 | 85.42 ± 4.37 | 80.77 ± 5.81 | 82.87 ± 3.63 | 0.83 ± 0.03 | 0.67 ± 0.07 |
SVM (Linear Kernel) | 85.07 ± 6.94 | 87.09 ± 9.64 | 87.11 ± 8.73 | 83.08 ± 7.39 | 84.83 ± 6.74 | 0.85 ± 0.07 | 0.71 ± 0.14 |
Using Augmented Images | |||||||
NB | 84.63 ± 6.75 | 85.94 ± 6.26 | 85.51 ± 6.43 | 83.31 ± 8.46 | 84.32 ± 7.12 | 0.85 ± 0.07 | 0.69 ± 0.13 |
DT | 84.84 ± 5.27 | 84.19 ± 4.82 | 84.36 ± 4.85 | 85.49 ± 6 | 84.91 ± 5.34 | 0.85 ± 0.05 | 0.7 ± 0.11 |
ANN | 94.93 ± 2.54 | 94.2 ± 3.52 | 94.29 ± 3.1 | 95.65 ± 3.5 | 94.96 ± 2.55 | 0.95 ± 0.03 | 0.9 ± 0.05 |
KNN | 97.27 ± 1.86 | 95.83 ± 2.5 | 95.98 ± 2.35 | 98.7 ± 1.25 | 97.31 ± 1.81 | 0.97 ± 0.02 | 0.95 ± 0.04 |
SVM (RBF Kernel) | 97.7 ± 1.85 | 97.41 ± 2.17 | 97.49 ± 2.27 | 97.99 ± 1.91 | 97.71 ± 1.82 | 0.98 ± 0.02 | 0.95 ± 0.04 |
SVM (Poly Kernel) | 97.98 ± 1.99 | 97.7 ± 2.26 | 97.75 ± 2.18 | 98.19 ± 1.58 | 97.89 ± 2.05 | 0.98 ± 0.02 | 0.95 ± 0.04 |
SVM (Linear Kernel) | 98.78 ± 0.96 | 98.14 ± 1.69 | 98.19 ± 1.68 | 99.23 ± 0.72 | 98.79 ± 0.95 | 0.99 ± 0.01 | 0.98 ± 0.02 |