Skip to main content
. 2020 Aug 26;165:113909. doi: 10.1016/j.eswa.2020.113909

Table 5.

Phase-II (nCOVID vs. Pneumonia) classification performance of different supervised models using Training-Testing set in 10-fold cross-validation setup.

Classification algorithms Accuracy (±STD) Specificity (±STD) Precision (±STD) Recall (±STD) F1-Measure (±STD) AUC (±STD) MCC (±STD)
Without using Augmented Images
DT 72.98 ± 3.54 70.93 ± 12.06 73.06 ± 6.20 74.96 ± 8.82 73.41 ± 3.22 0.73 ± 0.04 0.47 ± 0.07
ANN 74.29 ± 5.28 74.29 ± 32.99 74.29 ± 8.57 74.29 ± 30.07 74.29 ± 17.5 0.74 ± 0.05 0.49 ± 0.13
SVM (RBF Kernel) 80.03 ± 4.40 80.18 ± 10.61 81.05 ± 8.12 79.91 ± 7.44 80.01 ± 4.30 0.80 ± 0.04 0.61 ± 0.09
KNN 80.17 ± 4.62 83.30 ± 7.82 82.68 ± 6.42 77.03 ± 7.23 79.47 ± 4.92 0.80 ± 0.05 0.61 ± 0.09
NB 80.46 ± 6.03 79.57 ± 6.26 80.00 ± 5.71 81.36 ± 7.70 80.58 ± 6.18 0.80 ± 0.06 0.61 ± 0.12
SVM (Poly Kernel) 83.34 ± 3.46 85.89 ± 5.63 85.42 ± 4.37 80.77 ± 5.81 82.87 ± 3.63 0.83 ± 0.03 0.67 ± 0.07
SVM (Linear Kernel) 85.07 ± 6.94 87.09 ± 9.64 87.11 ± 8.73 83.08 ± 7.39 84.83 ± 6.74 0.85 ± 0.07 0.71 ± 0.14
Using Augmented Images
NB 84.63 ± 6.75 85.94 ± 6.26 85.51 ± 6.43 83.31 ± 8.46 84.32 ± 7.12 0.85 ± 0.07 0.69 ± 0.13
DT 84.84 ± 5.27 84.19 ± 4.82 84.36 ± 4.85 85.49 ± 6 84.91 ± 5.34 0.85 ± 0.05 0.7 ± 0.11
ANN 94.93 ± 2.54 94.2 ± 3.52 94.29 ± 3.1 95.65 ± 3.5 94.96 ± 2.55 0.95 ± 0.03 0.9 ± 0.05
KNN 97.27 ± 1.86 95.83 ± 2.5 95.98 ± 2.35 98.7 ± 1.25 97.31 ± 1.81 0.97 ± 0.02 0.95 ± 0.04
SVM (RBF Kernel) 97.7 ± 1.85 97.41 ± 2.17 97.49 ± 2.27 97.99 ± 1.91 97.71 ± 1.82 0.98 ± 0.02 0.95 ± 0.04
SVM (Poly Kernel) 97.98 ± 1.99 97.7 ± 2.26 97.75 ± 2.18 98.19 ± 1.58 97.89 ± 2.05 0.98 ± 0.02 0.95 ± 0.04
SVM (Linear Kernel) 98.78 ± 0.96 98.14 ± 1.69 98.19 ± 1.68 99.23 ± 0.72 98.79 ± 0.95 0.99 ± 0.01 0.98 ± 0.02