Skip to main content
. 2020 Aug 26;165:113909. doi: 10.1016/j.eswa.2020.113909

Table 10.

p-value and adjusted p-value for pairwise multiple comparisons of different supervised classification algorithms (Phase-I: Normal vs. Abnormal) using the validation set at α=0.05.(Abbreviations: SVM: Support Vector Machine, DT: Decision Tree, KNN: k-Nearest Neighbor, NB: Naïve Bayes, ANN: Artificial Neural Network, STD: Standard Deviation, AUC: Area Under Curve, MCC: Matthews Correlation Coefficient).

i Algorithms z=R0-RiSE p Holm Shaffer Adjusted p-Value
pHolm pShaffer
28 NB vs. Majority Voting 5.2372 0.0000 0.0018 0.0018 0.0036 0.0036
27 DT vs. Majority Voting 4.5826 0.0000 0.0019 0.0024 0.0037 0.0048
26 NB vs. ANN 4.0916 0.0000 0.0019 0.0024 0.0038 0.0048
25 SVM (RBF Kernel) vs. Majority Voting 3.5460 0.0004 0.0020 0.0024 0.0040 0.0048
24 DT vs. ANN 3.4369 0.0006 0.0021 0.0024 0.0042 0.0048
23 NB vs. SVM (Linear Kernel) 3.2187 0.0013 0.0022 0.0024 0.0043 0.0048
22 NB vs. SVM (Poly Kernel) 3.0551 0.0023 0.0023 0.0024 0.0045 0.0048
21 NB vs. KNN 3.0005 0.0027 0.0024 0.0024 0.0048 0.0048
20 DT vs. SVM (Linear Kernel) 2.5641 0.0103 0.0025 0.0025 0.0050 0.0063
19 DT vs. SVM (Poly Kernel) 2.4004 0.0164 0.0026 0.0026 0.0053 0.0063
18 SVM (RBF Kernel) vs. ANN 2.4004 0.0164 0.0028 0.0028 0.0056 0.0063
17 DT vs. KNN 2.3458 0.0190 0.0029 0.0029 0.0059 0.0063
16 KNN vs. Majority Voting 2.2367 0.0253 0.0031 0.0031 0.0063 0.0063
15 SVM (Poly Kernel) vs. Majority Voting 2.1822 0.0291 0.0033 0.0033 0.0067 0.0067
14 SVM (Linear Kernel) vs. Majority Voting 2.0185 0.0435 0.0036 0.0036 0.0071 0.0071
13 NB vs. SVM (RBF Kernel) 1.6912 0.0908 0.0038 0.0038 0.0077 0.0077
12 SVM (RBF Kernel) vs. SVM 1.5275 0.1266 0.0042 0.0042 0.0083 0.0083
11 SVM (RBF Kernel) vs. SVM 1.3639 0.1726 0.0045 0.0045 0.0091 0.0091
10 SVM (RBF Kernel) vs. KNN 1.3093 0.1904 0.0050 0.0050 0.0100 0.0100
9 ANN vs. Majority Voting 1.1456 0.2519 0.0056 0.0056 0.0111 0.0111
8 KNN vs. ANN 1.0911 0.2752 0.0063 0.0063 0.0125 0.0125
7 DT vs. SVM (RBF Kernel) 1.0365 0.3000 0.0071 0.0071 0.0143 0.0143
6 SVM (Poly Kernel) vs. ANN 1.0365 0.3000 0.0083 0.0083 0.0167 0.0167
5 SVM (Linear Kernel) vs. ANN 0.8729 0.3827 0.0100 0.0100 0.0200 0.0200
4 NB vs. DT 0.6547 0.5127 0.0125 0.0125 0.0250 0.0250
3 KNN vs. SVM (Linear Kernel) 0.2182 0.8273 0.0167 0.0167 0.0333 0.0333
2 SVM (Linear Kernel) vs. SVM 0.1637 0.8700 0.0250 0.0250 0.0500 0.0500
1 KNN vs. SVM (Poly Kernel) 0.0546 0.9565 0.0500 0.0500 0.1000 0.1000