Table 10.
i | Algorithms | Holm | Shaffer | Adjusted p-Value |
|||
---|---|---|---|---|---|---|---|
28 | NB vs. Majority Voting | 5.2372 | 0.0000 | 0.0018 | 0.0018 | 0.0036 | 0.0036 |
27 | DT vs. Majority Voting | 4.5826 | 0.0000 | 0.0019 | 0.0024 | 0.0037 | 0.0048 |
26 | NB vs. ANN | 4.0916 | 0.0000 | 0.0019 | 0.0024 | 0.0038 | 0.0048 |
25 | SVM (RBF Kernel) vs. Majority Voting | 3.5460 | 0.0004 | 0.0020 | 0.0024 | 0.0040 | 0.0048 |
24 | DT vs. ANN | 3.4369 | 0.0006 | 0.0021 | 0.0024 | 0.0042 | 0.0048 |
23 | NB vs. SVM (Linear Kernel) | 3.2187 | 0.0013 | 0.0022 | 0.0024 | 0.0043 | 0.0048 |
22 | NB vs. SVM (Poly Kernel) | 3.0551 | 0.0023 | 0.0023 | 0.0024 | 0.0045 | 0.0048 |
21 | NB vs. KNN | 3.0005 | 0.0027 | 0.0024 | 0.0024 | 0.0048 | 0.0048 |
20 | DT vs. SVM (Linear Kernel) | 2.5641 | 0.0103 | 0.0025 | 0.0025 | 0.0050 | 0.0063 |
19 | DT vs. SVM (Poly Kernel) | 2.4004 | 0.0164 | 0.0026 | 0.0026 | 0.0053 | 0.0063 |
18 | SVM (RBF Kernel) vs. ANN | 2.4004 | 0.0164 | 0.0028 | 0.0028 | 0.0056 | 0.0063 |
17 | DT vs. KNN | 2.3458 | 0.0190 | 0.0029 | 0.0029 | 0.0059 | 0.0063 |
16 | KNN vs. Majority Voting | 2.2367 | 0.0253 | 0.0031 | 0.0031 | 0.0063 | 0.0063 |
15 | SVM (Poly Kernel) vs. Majority Voting | 2.1822 | 0.0291 | 0.0033 | 0.0033 | 0.0067 | 0.0067 |
14 | SVM (Linear Kernel) vs. Majority Voting | 2.0185 | 0.0435 | 0.0036 | 0.0036 | 0.0071 | 0.0071 |
13 | NB vs. SVM (RBF Kernel) | 1.6912 | 0.0908 | 0.0038 | 0.0038 | 0.0077 | 0.0077 |
12 | SVM (RBF Kernel) vs. SVM | 1.5275 | 0.1266 | 0.0042 | 0.0042 | 0.0083 | 0.0083 |
11 | SVM (RBF Kernel) vs. SVM | 1.3639 | 0.1726 | 0.0045 | 0.0045 | 0.0091 | 0.0091 |
10 | SVM (RBF Kernel) vs. KNN | 1.3093 | 0.1904 | 0.0050 | 0.0050 | 0.0100 | 0.0100 |
9 | ANN vs. Majority Voting | 1.1456 | 0.2519 | 0.0056 | 0.0056 | 0.0111 | 0.0111 |
8 | KNN vs. ANN | 1.0911 | 0.2752 | 0.0063 | 0.0063 | 0.0125 | 0.0125 |
7 | DT vs. SVM (RBF Kernel) | 1.0365 | 0.3000 | 0.0071 | 0.0071 | 0.0143 | 0.0143 |
6 | SVM (Poly Kernel) vs. ANN | 1.0365 | 0.3000 | 0.0083 | 0.0083 | 0.0167 | 0.0167 |
5 | SVM (Linear Kernel) vs. ANN | 0.8729 | 0.3827 | 0.0100 | 0.0100 | 0.0200 | 0.0200 |
4 | NB vs. DT | 0.6547 | 0.5127 | 0.0125 | 0.0125 | 0.0250 | 0.0250 |
3 | KNN vs. SVM (Linear Kernel) | 0.2182 | 0.8273 | 0.0167 | 0.0167 | 0.0333 | 0.0333 |
2 | SVM (Linear Kernel) vs. SVM | 0.1637 | 0.8700 | 0.0250 | 0.0250 | 0.0500 | 0.0500 |
1 | KNN vs. SVM (Poly Kernel) | 0.0546 | 0.9565 | 0.0500 | 0.0500 | 0.1000 | 0.1000 |