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ABSTRACT

Although 23% of world population is infected with Mycobacterium tuberculosis (M. tb), only 5-10% manifest the disease.
Individuals surely exposed to M. tb that remain asymptomatic are considered potential latent TB (LTB) cases. Such
asymptomatic M. tb.-exposed individuals represent a reservoir for active TB cases. Although accurate discrimination
and early treatment of patients with active TB and asymptomatic M. tb.-exposed individuals are necessary to control
TB, identifying those individuals at risk of developing active TB still remains a tremendous clinical challenge. This
study aimed to characterize the differences in the serum metabolic profile specifically associated to active TB infected
individuals or to asymptomatic M. tb.-exposed population. Interestingly, significant changes in a specific set of
metabolites were shared when comparing either asymptomatic house-hold contacts of active TB patients (HHC-TB) or
active TB patients (A-TB) to clinically healthy controls (HC). Furthermore, this analysis revealed statistically significant
lower serum levels of aminoacids such as alanine, lysine, glutamate and glutamine, and citrate and choline in patients
with A-TB, when compared to HHC-TB. The predictive ability of these metabolic changes was also evaluated. Although
further validation in independent cohorts and comparison with other pulmonary infectious diseases will be necessary
to assess the clinical potential, this analysis enabled the discrimination between HHC-TB and A-TB patients with an
AUC value of 0.904 (confidence interval 0.81-1.00, p-value < 0.0001). Overall, the strategy described in this work could
provide a sensitive, specific, and minimally invasive method that could eventually be translated into a clinical tool for

TB control.
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Introduction

The bacterium Mycobacterium tuberculosis (M. tb) is
the underlying cause of tuberculosis (TB), one of the
most devastating infectious diseases. The World Health
Organization (WHO) estimates that there are about
10.4 million new cases and 1.8 million deaths from
TB each year [1]. Additionally, it is estimated that cur-
rently one quarter of the world’s population is latently
infected with M. tb [2]. M. tb exposed individuals that
remain asymptomatic are generally considered poten-
tial latent TB (LTB) cases [3,4]. LTB infection is
characterized by a persistent immune response to
M. tb in the absence of clinical, radiological and micro-
biological evidences. Only 5-15% of the patients with
LTB infection develop active TB disease during their
lifetime, being a reservoir of new active TB cases

[1,5,6]. Besides drug resistance, co-epidemic with
HIV, early diagnosis and failure to identify asympto-
matic yet infective cases, are some of the principal con-
cerns in controlling TB. TB diagnosis, till date, banks
on medical history and conventional methods, such
as tuberculin skin test (TST), chest X-rays, and bac-
teriological examination. TST and M. tb specific inter-
feron-gamma (IFN-y) release assays (IGRAs) are still
the main tools used for the diagnosis of TB infection.
Although the newer IGRAs show some improvements
over TST [7,8], neither of these diagnostic tests can
identify M. tb. - exposed individuals that could be
LTB cases, nor differentiate between asymptomatic
cases and active TB [9]. Indeed, the World Health
organization (WHO) strongly recommends that
neither IGRAs nor TST should be used in high TB-
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burden, low - and middle-income countries for screen-
ing of LTB cases or for the identification of individuals
at risk of developing active TB [10]. Furthermore,
WHO strongly recommends that IGRAs should not
replace TST in these countries for the screening of
LTB cases. Since the reactivation of TB can be pre-
vented by pharmacological treatment [11], accurate
discrimination of TB exposed population and early
treatment of asymptomatic subjects exposed to TB
germ (LTB) and patients with active TB infection are
necessary to limit TB. Thus, identifying individuals at
risk of developing active TB would have a tremendous
impact in TB control [12,13].

In this context, metabolomics approaches have
shown great potential for the identification on new
clinically relevant potential biomarkers. Metabolic sig-
natures have proven their value in several diseases,
such as cancer [14-17], gynaecological diseases [18],
hypertension [19] and insulin resistance [20]. In con-
trast, fewer studies have specifically addressed the meta-
bolomic alterations that occur in infectious diseases
[21-23]. Metabolomics provides a promising tool par-
ticularly suited for the identification of non-invasive
biomarkers for diagnosing and monitoring patients.
In this study, we hypothesized that active TB patients,
asymptomatic M.tb.-exposed potential LTB cases and
healthy individuals exhibit distinct serum metabolic sig-
natures that can be characterized by high-resolution
nuclear magnetic resonance (‘"H-NMR) spectroscopy.
Thus, the aim of this study was to investigate the feasi-
bility of identifying a metabolic signature in serum of
TB patients that could facilitate a better understanding
of the biochemical changes involved in the progression
from possible LTB to active TB.

Methods
Study cohort

In this study, a total of 80 subjects were recruited
after taking ethical committee clearances (ECR/450/
Inst/AP2013, ECR/450/Inst/AP/20131RR-16 and
UH/IEC/2014/33) and written consents from the
subjects. The subjects were classified as clinically
healthy volunteers (HC, n=35), active TB patients
(A-TB, n=15) or TB patients’ household contacts
(HHC-TB, n=30). TB patients and household con-
tacts were recruited at Mahavir Hospital and
Research Centre (MHRC), Hyderabad, India.
Healthy volunteers were recruited at Health Centre,
University of Hyderabad. A-TB patients were ident-
ified as per Revised National Tuberculosis Control
Programme (RNTCP) guidelines, Government of
India, with confirmed diagnosis from sputum, cul-
ture, Mantoux test and chest X-ray in patients.
Although A-TB patients included in the study had
different acid-fast bacillus (AFB) smear status, all of

them were confirmed to be M. tb. culture positive.
Household contacts of the respective A-TB patients
were those who resided in-house of the patient
during a 3 months period for at least seven consecu-
tive days prior to the diagnosis of TB. Household
contacts with no symptoms of TB or any other dis-
ease at the time of sample collection were subjected
to tuberculin skin test. These subjects, with ensured
exposure to M. tb from A-TB patients (HHC-TB),
yet asymptomatic were considered as potential LTB
cases. Following WHO’s recommendations for high
TB-burden low - and middle-income countries,
IGRAs was not performed on these individuals as it
is not recommended neither for screening nor pre-
diction of LTB to active TB infection. In these
countries, it is recommended that IGRAs should
not replace TST for the screening of LTB infection
[10]. Healthy controls (HC) constituted of clinically
healthy volunteers with no reported history of TB
or evidence of TB exposure in near past. HC were
also subjected to IGRA using QuantiFERON°-TB
Gold (QFT®) ELISA kit. For QuantiFERON-TB
Gold, results were analysed by QuantiFERON-TB
Gold Analysis software (Version 2.62) as per the
manufacturer’s instructions. Clinical details of the
subjects included in the study are summarized in
Supplementary Table S1 and S2.

Sample preparation and "H-NMR acquisition

Serum samples were immediately stored at —80°C after
collection. At the time of NMR analysis, samples were
thawed on ice. 150 uL of 100% D,O buffer (40 mM
TSP, 75 mM Na,HPO,, pH 7.4) were added to
500 pL of serum. Samples were filtered through a cen-
trifugal filter (cut off 10 kDa) to remove macromol-
ecules. After this, 550 uL of the mixture were
transferred to a 5-mm NMR tube for analysis. 'H-
NMR spectra were acquired using a Bruker Avance II
600 MHz spectrometer equipped with a room tempera-
ture HCN inverse Z-gradient probe. at 37°C. A stan-
dard nuclear overhauser effect spectroscopy (NOESY)
experiment [24] was acquired for each sample with a
total of 64 accumulations and 72k data points over a
spectral width of 20 ppm. A 4-second relaxation
delay was included between free induction decays.
The water presaturation pulse of 25 Hz was applied
throughout the relaxation delays to improve solvent
suppression. In addition, for assignment purposes,
homonuclear 2D 'H-"H total correlation spectroscopy
and 2D 'H, *C heteronuclear single quantum corre-
lation spectra were acquired for selected samples. All
spectra were multiplied by a line-broadening factor of
1 Hz and Fourier transformed. Spectra were automati-
cally phased and baseline corrected, chemical shift
referenced internally to the methyl group signal of ala-
nine at 1.47 ppm using TOPSPIN 3.0 (Bruker Biospin).



Multivariate statistical analysis

"H-NMR spectra were binned using Amix 3.9.7 (Bruker
Biospin) into 0.01-ppm-wide rectangular buckets over
the region 6 9.33-0.06 ppm. The residual water signal
region (8 5.20-4.27 ppm) was excluded from the analy-
sis to avoid interference arising from differences in
water suppression. All bucket intensities were normal-
ized to the total area of the corresponding spectra.
Multivariate statistical analysis was carried out using
SIMCA-P v.14.1 software (Umetrics AB, Sweden).
Before multivariate analysis, data was Pareto scaled by
dividing each variable by the square root of 1/SD,
where SD represents the standard deviation value of
each variable. Principal Component Analysis (PCA), a
non-supervised statistical approach, was performed on
normalized and scaled data for identifying potential pat-
terns, intrinsic clusters and outliers. Next, orthogonal
partial least square to latent discriminant analysis
(OPLS-DA), a supervised statistical approach, was con-
ducted for identifying the variables most relevant for the
discrimination between groups compared. The default
method of 7-fold internal cross validation was applied,
from which R?Y (goodness of fit parameter) and QY
(predictive ability parameter, estimated by cross vali-
dation) values were extracted. Those parameters,
together with the corresponding permutation tests
(n=100), were used for the evaluation of the quality of
the OPLS-DA models obtained. The variable influence
on projection (VIP) list of each OPLS-DA model was
inspected and used to identify which NMR signals
were important for discriminating between groups.
Variables with a VIP value higher than 1 were con-
sidered to be relevant for group discrimination. Finally,
shared and unique structures plots (SUS-plots) were
also obtained to evaluate the shared (metabolites aligned
with the diagonals) and unique differences (metabolites
aligned with the axes) found when comparing two
OPLS-DA statistical models.

Quantitative analysis of selected metabolites

The variable size bucketing module in Amix 3.9.7 was
used to obtain the exact integral value corresponding to
the NMR signals identified as relevant for the discrimi-
nation. Metabolites of interest were assigned using
Bruker NMR Metabolic Profiling Database BBIOREF-
CODE 2.0.0 database (Bruker Biospin, Rheinstetten,
Germany), in combination with other existing public
databases [25,26]. The relative change in the levels of
metabolites of interest was measured calculating the
mean fold change between the groups in the compari-
son. The statistical significance of the differences
between the means of the two groups compared was
assessed using the Student t test. A p-value <0.05
(confidence level 95%) was considered statistically
significant.
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Metabolite set enrichment analysis

Metabolite Set Enrichment Analysis (MSEA), based on
the analysis of the main metabolites contributing to the
discrimination between the groups, was carried out
using MetaboAnalyst [27]. Metabolic pathways show-
ing a fold enrichment higher that 1 and a false discov-
ery rate (FDR) < 0.05 were considered significantly
altered.

Logistic regression variable selection

Logistic regression analysis was performed using the for-
ward selection (Likehood Ratio) method in the SPSS
version 10.0 software (SPSS, Inc., Chicago, IL, USA).
Odds ratio (OR) values were calculated for all the vari-
ables included in the equation. A p-value < 0.05 (confi-
dence level 95%) was considered statistically significant.

Results

Differential metabolic profiles between HC and
TB subgroups of patients

Non-supervised analysis of the 'H-NMR spectra
showed a clear distribution of the samples according
to disease status (Figure 1A). To further advance in
the analysis of the metabolic alterations, discriminant
statistical models (OPLS-DA) were built based on the
comparisons between the different groups of patients
included in the study. These analyses revealed that
serum samples from A-TB patients exhibit a specific
serum metabolic profile compared with HC (Figure
1B, R* = 0.937; Q* = 0.893) and with HHC-TB (Figure
1C, R? = 0.900; Q* = 0.428). A similar analysis per-
formed to compare the serum metabolic profile of
HHC-TB and HC subjects (Figure 1D, R* = 0.965;
Q% = 0.915) showed that latent infection has also a
reflection in the metabolic profile of patients. Finally,
an inspection of the differences in the contribution of
each spectral region in the OPLS-DA models for the
comparison of HC with A-TB patients and HHC-TB
subjects, respectively (Supplementary Figure S1) was
conducted. The SUS-plot analysis showed that,
although most of the metabolic differences were com-
mon when comparing either A-TB patients or HHC-
TB subjects with HC, other specific spectral regions
were differentially contributing to each model.

Characterization of the metabolic profile
associated with active TB

In order to further analyse if the metabolic alterations
detected in the serum of A-TB patients were in accord-
ance with what is already known about the biology and
the metabolic changes associated with the active TB
disease, a MSEA for the identification of the metabolic
pathways specifically altered in patients with A-TB, as
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Figure 1. Multivariate statistical analyses of the different clinical groups included in the study. (A) Principal component analysis
(PCA) score plots of the healthy controls (HC, blue), house-hold contacts of active TB patients (HHC-TB, green) and active TB patients
(A-TB, red) serum samples. Orthogonal partial least squares-discriminate analysis (OPLS-DA) score plots for the comparison between
(B) A-TB (red) and HC (blue) (R*Y= 0.937, Q°Y= 0.893), (C) A-TB (red) and HHC-TB (green) (R°Y= 0.900, QY= 0.428) and (D) HHC-TB

(green) and HC (blue) (R?Y= 0.965, Q*Y= 0.915).

compared with HHC-TB subjects, was performed
(Figure 2). A total of 7, out of the 14 metabolic path-
ways with a fold enrichment higher than 1, were stat-
istically significant altered (FDR<0.05).

Differentially altered metabolites in active TB
serum samples

The analysis of the VIP lists derived from the OPLS-
DA models built for the groups of samples included
in the study allowed the assignment of the metabolites

Folate Metabolism

Cysteine Metabolism
Arachidonic Acid Metabolism
Lysine Degradation

Histidine Metabolism

Valine, Leucine and Isoleucine Degradation
Propanoate Metabolism

Citric Acid Cycle

Tyrosine Metabolism
Malate-Aspartate Shuttle
Beta-Alanine Metabolism
Carnitine Synthesis

Biotin Metabolism

Arginine and Proline Metabolism

0 2 4 6
Fold Change

Figure 2. Metabolite set enrichment analysis (MSEA) of differ-
entiating metabolites from A-TB patients and HHC-TB subjects.
The horizontal bar graph shows most altered metabolic path-
ways with fold enrichment higher that 1 (increasing false dis-
covery rate (FDR) values coloured from red to white).

most relevant for the discrimination between groups.
Using this approach, a total of 21 NMR signals were
integrated in the NMR spectra and the statistical sig-
nificance of these changes was evaluated between the
different groups of study (Table 1). Compared to HC,
the serum metabolic profile of A-TB patients is charac-
terized by statistically significant alterations in the
levels of 15 metabolites. Similarly, when comparing
HHC-TB with HC subjects, 13 out of these 15 altera-
tions were also statistically significant and presented
similar mean fold change values. Interestingly, only
differences in the levels of 6 metabolites were detected
when comparing the serum metabolic profiles of A-TB
patients and HHC-TB subjects. An analysis of the vari-
ations in the levels of the 6 metabolities differentiating
between A-TB patients and HHC-TB subjects was also
carried out in the three groups of the study. Figure 3
shows the relative quantification of the metabolites
that showed the most significant variations when com-
paring A-TB patients and HHC-TB subjects.

Regression model describing TB stage

In order to further advance in the clinical potential of
the metabolite alterations identified in this study, a



EMERGING MICROBES AND INFECTIONS . 1135

Table 1. Mean fold changes and p-values for relevant metabolites based on the OPLS-DA models for the different comparisons

included in the study.

Metabolite A-TB vs HC? p-value® HHC-TB vs HC® p-value® A-TB vs HHC-TB? p-value®
Valine 0.960 0.390 1.039 0.275 0.924 0.120
Propylene glycol 1.811 0.001 1.692 0.097 1.071 0.860
Lactate 1.340 0.023 1.477 0.005 0.907 0.629
Alanine 0.999 0.989 1.212 0.001 0.825 0.028
Lysine 1.005 0.911 1.117 0.002 0.900 0.046
2-Aminobutyrate 1.110 0.026 1.154 1.87E-04 0.962 0.469
Acetate 1.358 0.017 1.496 4.47E-04 0.908 0.559
Glutamate 0.792 3.47E-08 0.926 0.010 0.855 0.005
Glutamine 0.610 2.39E-13 0.810 5.45E-07 0.753 2.03E-04
Citrate 0.932 0.203 1.129 0.023 0.825 0.018
Methionine 0.872 0.001 0.926 0.070 0.943 0.411
Choline 2.263 1.91E-14 2.928 9.41E-19 0.773 0.012
Myo-inositol 1.128 0.034 1.093 0.024 1.032 0.639
Proline 0.899 0.025 0.852 2.16E-05 1.056 0.479
Aspartate 0.903 0.0114 0.853 9.26E-06 1.059 0.396
Creatine 0.859 0.005 0.909 0.033 0.945 0.433
Asparagine 0.779 0.004 0.771 6.60E-05 1.010 0.931
Glucose 1.017 0.834 0.936 0315 1.086 0.408
Histidine 0.715 0.024 0.770 0.022 0.929 0.653
Phenylalanine 1.661 3.89E-13 1.563 2.55E-11 1.063 0.426
Tryptophan 0.932 0.134 1.034 0.480 0.901 0.217

Bold values indicate significance (p-value < 0.05).

2Underlined values indicate metabolites with higher levels in A-TB patients’ serum.
PUnderlined values indicate metabolites with higher levels in HHC-TB subjects’ serum.

‘Student t test.

logistic regression analysis of the data was performed.
To this end, metabolites whose levels experienced stat-
istically significant changes when comparing HHC-TB
and A-TB patients were evaluated to generate a logistic
regression equation. Using this approach, characteristic
lower levels of glutamine and citrate were found to be
predictive of active TB in serum samples from A-TB
and HHC-TB patients (Table 2). Internal validation
of the logistic regression equation was performed by
evaluating the area under the curve (AUC) values of

each individual metabolite included in the equation
and for the logistic regression equation (Figure 4).

Discussion

Effective TB disease management would require not
only identifying active TB cases at an early stage, but
also TB exposed asymptomatic individuals who are
potential cases of latent TB. Efforts to identify TB
specific biomarkers that could help to better under-
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Figure 3. Dot plots showing the relative quantification in the three groups of study (HC, HHC-TB and A-TB) for the metabolites
exhibiting statistically significant differences in the comparison between A-TB patients and HHC-TB subjects. NMR signal intensities
were normalized to the total area of the spectra. (*p-value < 0.05; ** p-value < 0.01; *** p-value < 0.001; **** p-value < 0.0001; n.s:

p-value > 0.05).
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Table 2. Characteristics of the logistic regression equation
obtained for the discrimination between HHC-TB subjects
and A-TB patients.

Metabolite p? OR® 1/0R p-value
Glutamine —0.072 0.931 1.074 0.004*
Citrate —0.0232 0.793 1.261 0.016*
Constant 15.695 6.55E+06 1.53E-07 0.003*

?B: Coefficient of logistic regression.
POR: odds ratio.
*Statistically significant (p-value < 0.05).

distinguish patients from healthy and latent asympto-
matic cases remain a fundamental goal in this area
[28]. In this context, this study represents the first
application of high field "H-NMR metabolomics,
based on the analysis of a significant number of
samples, to characterize and compare the specific
serum metabolic profiles of active TB patients and
asymptomatic subjects with definite infection by
M. tb due to close proximity to active TB patients.
This metabolomics study reveals that both A-TB
patients and HHC-TB subjects show a specific serum
metabolic profile when compared to HC. Thus, statisti-
cally significant changes in a specific set of metabolites
were shared when comparing either HHC-TB subjects
or A-TB patients to clinically HC, which could point to
potential asymptomatic latent cases, based on their
confirmed recent TB exposure. Even though there
were a number of common metabolic changes between
these two comparisons, the results showed that there
also exist metabolic alterations specifically associated
with each stage of the disease.

The analysis of the variations in the intensities of all
the metabolites playing an important role in the dis-
crimination models revealed 14 pathways being signifi-
cantly altered between A-TB patients and HHC-TB
subjects. Interestingly, the three top ranked pathways
in this analysis are known TB metabolic-related path-
ways (folate, cysteine and arachidonic acid metab-
olism), thus confirming the validity of our findings
[29-31].

The potential of the folic acid biosynthesis pathway
as a target for the development of antimicrobial agents
has been acknowledged for many years [29]. In

Citrate

AUC: 0.80, 95% Cl: 0.67-0.93
p value = 0.0013

particular, the second line anti-TB drug, para-aminosa-
licylic acid (PAS), specifically blocks growth of M. tb
when its active forms inhibit dihydrofolate reductase
activity, an essential enzyme in folate metabolism
[32,33]. Cysteine biosynthesis pathway has also an
important role in defense against oxidative stress in
M. tb. The redox active sulthydryl group of mycothiol,
the functional analog to glutathione in mycobacteria, is
directly derived from L-cysteine. Mycothiol is used by
mycobacteria to maintain an intracellular reducing
environment and to protect against cellular damage
from oxidative species and xenobiotics [34-36]. In
this context, results from a recent metabolomics
study in M. tb suggested perturbations in cysteine
metabolism under microbicidal stresses [37]. Finally,
it has been reported that free unsaturated fatty acids,
including arachidonic acid, can stimulate the activation
of dormant M. tb cells in liquid medium [30]. More-
over, eicosanoids, lipid mediators derived from arachi-
donic acid, have been associated with the modulation
of the host response to M. tb infection [38,39]. In
fact, published studies have also reported increased
eicosanoid ratios in plasma in A-TB patients compared
to HHC-TB or HC subjects [40].

After having determined that the differences
observed in our study in the serum metabolic profile
of different stages TB patients were in accordance
with what is already known about metabolic changes
involved in the progression of the disease, the specific
metabolic changes between HHC-TB and A-TB
patients were further analysed. The major differences
in serum metabolite levels detected between HHC-TB
and A-TB patients included decreased levels of ami-
noacids such as alanine, lysine, glutamate and gluta-
mine, and citrate and choline in patients with active
infection. In a recently published study [41], amino
acid uptake analyses indicated that glutamine, gluta-
mate and alanine are taken up and rapidly metabolized
by M. tb as nitrogen sources. Moreover, alanine dehy-
drogenase, an enzyme playing an essential role in ala-
nine utilization as a nitrogen source, has been
implicated in adaptation of M. tb to anaerobic dormant
stage in LTB and has been reported to be a useful tool
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Figure 4. Receiver operating characteristic model of the metabolites included in the logistic regression equation: (A) Glutamine and
(B) Citrate, and (C) the logistic regression equation obtained for the discrimination between HHC-TB and A-TB patients.



to discriminate between active TB and LTB [42,43].
Similarly, glutamine synthetase, an enzyme that plays
a key role in both nitrogen metabolism and cell wall
biosynthesis, has been investigated as a novel antibiotic
strategy [44] Additionally, citrate lyase (CitE) activity
has also been shown to be indispensable for M. tb
pathogenesis in vivo [45]. In a 13C-based metabolomic
profiling study, it was demonstrated that M. tb slows
and remodels its tricarboxylic acid cycle to increase
production of succinate from isocitrate [46]. This
remodelling is mediated by the bifunctional enzyme
isocitrate lyase. Thus, isocitrate lyase-dependent pro-
duction of succinate affords M. tb with a unique and
bioenergetically efficient metabolic means of entry
into and exit from hypoxia-induced quiescence [46].
Interestingly, decreased citrate levels were found in
our study in the serum of TB patients, perhaps reflect-
ing the increase in citrate uptake by M. tb or M. tb
infected cells. Deviation of plasma citrate levels from
homeostatic concentrations (normal plasma levels)
has been linked to various physiological changes and
clinical consequences that may directly or indirectly
impair immunity [47].

In a previous 'H-NMR metabolomics study, Zhou
et al. [48] observed higher levels of lysine in serum
samples of A-TB patients when compared to HC. No
statistically significant differences in the levels of lysine
were found when comparing A-TB patients and HC in
our study. However, it was found that this metabolite
exhibits statistically significant decreased levels when
comparing HHC-TB and A-TB patients. These results
are in agreement with previous results obtained from
the analysis of TB-infected lung tissue samples [23].
Somashekar et al. [49] applied a "H-NMR metabolo-
mics approach using lung and serum samples collected
from guinea pigs infected with M. tb. This study,
accordingly with our results, showed that choline-con-
taining compounds were detected in reduced amounts
in the serum of the infected animals when compared
with naive controls.

Finally, in an effort to evaluate the clinical potential
of the metabolite alterations identified in this study for
the discrimination between HHC-TB and A-TB
patients, a logistic regression analysis was performed.
This equation, describing a specific combination of
two metabolites, enabled the discrimination between
HHC-TB and A-TB patients with AUC value of
0.904 (confidence interval 0.81-1.00, p-value <
0.0001). These results suggest glutamine and citrate
as potential metabolic biomarkers indicating M.tb
active infection. In a recent study, involving a cohort
of TB-exposed individuals across Subsaharan Africa
[50], Weiner et al. described a specific metabolic bio-
signature for TB enabling the identification of future
progressors. Similar to our observations, they observed
a decrease in serum levels of glutamine in TB-exposed
individuals several months prior to clinical TB.
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Together, these two studies strengthen the potential
of metabolite profiling as a sensitive tool for biomarker
search in TB control. In this context, our work rep-
resents the first example, in an Indian cohort of TB
patients, on how non-invasive serum biomarkers able
to distinguish active TB or potential LTB cases can be
identified based on the metabolic differences between
A-TB patients and HHC-TB individuals. In the last
few years, enrolment of HHC-TB individuals in TB
studies, specifically focused on the identification of
potential LTB cases is gaining importance [3,4].
Thus, with no recommended diagnostics that can
ensure M.tb.-exposure, HHC-TB included in this
study were surely M.tb.-exposed, irrespective of their
TST responses. Furthermore, as HHC-TB individuals
were close relatives of A-TB patients and resided with
them, variations in metabolic profile due to habitat
divergence were also minimized.

Although further validation of the results, in inde-
pendent cohorts and comparison with other pulmon-
ary infectious diseases, will be necessary to increase
the robustness of this analysis, our data support the
idea that the characterization of a specific metabolic
profile associated with active TB infection holds great
promise in the identification and development of new
serum biomarkers for the diagnosis of this disease.

Opverall, this study aimed at a better understanding,
both in terms of magnitude and change direction, of
the metabolic alterations responsible for the pro-
gression of TB infection. This information could be
specifically useful for immune-compromised popu-
lation, where prophylactic treatment can be initiated
if TB exposure could be diagnosed.

Finally, the strategy described in this work provides
a sensitive, specific, and minimally invasive method for
the identification of potential metabolic biomarkers
that may aid in the early diagnosis and staging of TB
and in the optimization of current risk stratification
models.
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