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Abstract

The kinetics and localization of the reactions of metabolism are coordinated by the enzymes that catalyze them.
These enzymes are controlled via a myriad of mechanisms including inhibition/activation by metabolites,
compartmentalization, thermodynamics, and nutrient sensing-based transcriptional or post-translational regulation;
all of which are influenced as a network by the activities of metabolic enzymes and have downstream potential to
exert direct or indirect control over protein abundances. Considering many of these enzymes are active only when
one or more vitamin cofactors are present; the availability of vitamin cofactors likely yields a systems-influence over
tissue proteomes. Furthermore, vitamins may influence protein abundances as nuclear receptor agonists,
antioxidants, substrates for post-translational modifications, molecular signal transducers, and regulators of
electrolyte homeostasis. Herein, studies of vitamin intake are explored for their contribution to unraveling vitamin
influence over protein expression. As a body of work, these studies establish vitamin intake as a regulator of protein
abundance; with the most powerful demonstrations reporting regulation of proteins directly related to the vitamin
of interest. However, as a whole, the field has not kept pace with advances in proteomic platforms and analytical
methodologies, and has not moved to validate mechanisms of regulation or potential for clinical application.

Keywords: Proteomics, Big data, Vitamin, Metabolism, Precision nutrition, Molecular nutrition

Introduction
Regulatory Mechanisms
Cellular metabolism is a system of chemical reactions in
which cells harness the energy stored in the chemical
bonds of substrate molecules to perform their biological
functions, maintain homeostasis, or to synthesize building
blocks for structural maintenance or cellular division. The
kinetics of these reactions are dependent on the activity of
the proteins which catalyze them; thus proteins are key
modulators of metabolism.
Metabolic activity also exerts network control over itself

by a diverse array of mechanisms which finely tune protein
expression responses via nutrient sensing machineries [1].
Products or intermediates of a metabolic pathway can
inhibit or activate metabolic enzymes; e.g. malate inhibits
the succinate dehydrogenase complex [2] and fructose-

2,6-bisphosphate activates phosphofructokinase [3]. The
oxidative status of a cell can drive the directionality of
redox reactions and impact abundances of redox reaction-
catalyzing proteins; e.g. the KEAP1/NRF2 network re-
sponds to oxidative stress by upregulating expression of
antioxidant-functioning proteins [4]. Splice-variant or iso-
zyme expression can impact relative pathway utilization at
metabolic network nodes; e.g. splice variants and isozymes
of pyruvate and lactate dehydrogenase respectively impact
the bridge between glycolysis and the tricarboxylic acid
(TCA) cycle [5, 6]. Additionally, local metabolite concen-
trations and thermodynamics can dictate the directionality
of reactions catalyzed by compartment-specific isozymes;
e.g. reductive activity of isocitrate dehydrogenase can be
confined to the cytosol-specific isozyme [7]. The impacts
of the above-mentioned regulations are closely monitored
by nutrient sensing proteins which initiate molecular
events altering protein activation and expression; e.g.
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serine/threonine kinase 11, AMP-activated protein kinase,
mammalian target of rapamycin 1, and sterol regulatory
element-binding protein 1 are part of overlapping protein
networks that orchestrate protein-expression and post-
translational modification responses to nutrient availability
[8, 9]. Considering that many metabolic enzymes do not
function in isolation and, as detailed in the sections that
follow, require vitamin cofactors to stabilize intermediates,
donate/accept electrons, shuttle substrates, and hold reac-
tants in close proximity; vitamin status is a critical consid-
eration when examining protein-mediated regulation of
metabolism and the impacts of metabolism on protein
expression.
In addition to their potential regulatory roles as

cofactors, vitamins orchestrate other direct or indirect
mechanisms influencing protein abundance. Retinoic
acid (vitamin A) interacts with nuclear receptors impact-
ing gene transcription [10], ascorbic acid (vitamin C)
impacts oxidative status and associated protein networks
[11] and is reported to exhibit epigenetic regulation over
protein expression [12], vitamin D regulates calcium sig-
naling machinery, activates nuclear receptors, and exerts
hormonal regulation over protein expression [13, 14],
and niacin (vitamin B3) and biotin (vitamin B7) can be
incorporated as post-translational modifications impact-
ing protein function [15, 16].
Herein, studies on systemic intake (dietary, injection,

oral gavage) of vitamins and their impacts on tissue
proteomes are examined, and their contributions to
unraveling vitamin-based regulation of protein expres-
sion and tissue function are explored. The current

work is intended to provide background information
to understand each vitamin’s (Figs. 1 and 2) molecular
functions and highlight its role as a cofactor or sub-
strate in the reactions of central metabolism (Fig. 3,
Tables S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12
and S13). Finally, this work is intended as a resource
for identifying regulation of proteins related to vitamin
metabolism in published works. The public domain of
proteomic data sets is ever expanding, but is rarely
searched for effects related to vitamin metabolism. To
that end, all proteins are specified by their HUGO
Gene Nomenclature Committee (HGNC) gene symbol,
or the HGNC gene symbol of the human ortholog
when identified in another species, and proteins re-
quiring a vitamin as a cofactor or substrate are tabu-
lated (Tables S1, S2, S3, S4, S5, S6, S7, S8, S9, S10,
S11, S12 and S13).

Proteomics Platforms
Proteomics platforms of the discussed studies are
provided to place them on a technological timeline.
Platforms are described with the terms: orbitrap, QTOF
(quadrupole time-of-flight), triple-TOF (triple – time of
flight), QQQ (triple-quadrupole), 2DGE-MS (two-di-
mensional gel electrophoresis – mass spectrometry), and
2DGE. In brief, orbitrap platforms are the workhorses of
modern proteomics because their high achievable mass
resolutions combined with high sensitivity are best
suited for maximizing the number of proteins identified
in a complex sample [17, 18]; though QTOF and triple-
TOF instruments, capable of maintaining mass resolution

Fig. 1 Fat soluble vitamin structures
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at higher scan speeds [19], hold a substantial influence in
this arena. Within the categories of orbitrap, QTOF, and
triple-TOF, there are major technological advances not
discussed here. QQQ platforms are best suited for quanti-
fying a pre-determined list of proteins. Lower scan speeds
and mass resolution render them less capable than
orbitrap, QTOF, or triple-TOF systems for non-targeted
applications [17]. Advances in nano-flow liquid chroma-
tography coupled directly to mass spectrometry have
improved proteomic depth by orders of magnitude over
that achievable by 2DGE-MS, where the upstream selec-
tion of protein spots predates the modern definition of
non-targeted proteomics. Similarly, identifying differen-
tially intense protein spots using 2DGE alone is consid-
ered an important milestone in the development of
proteomics; but is rarely discussed outside the topic of the
field’s history.

Vitamin Regulation of Tissue Proteomes
Vitamin A
Vitamin A exists in alcohol, aldehyde, acid, and ester
forms known as retinol, retinal, retinoic acid, and retinyl
esters respectively (Fig. 1) [20]. Several carotenoids are
precursors to vitamin A including α- and β-carotene

[21]. β-carotene is converted to two molecules of retinal
by beta carotene oxygenases (BCO1 or BCO2) [22]. Ret-
inal is an important component of rhodopsin (RHO), a
protein in rod cells responsible for detecting low levels
of light [23]. Thus night blindness is telltale characteris-
tic of vitamin A deficiency [24]. Retinoic acid serves as a
signaling molecule, acting through nuclear retinoic acid
(RARA, RARB, RARG) and retinoid X (RXRA, RXRB,
RXRG) receptors which regulate growth and differenti-
ation [25, 26]. Cellular and organismal trafficking of
vitamin A is dependent on retinol/retinoic acid binding
proteins (RBP family, CRABP1, CRABP2) and retinol
esterification via lecithin retinol acyltransferase (LRAT)
[27]. Retinal is oxidized to retinol via aldehyde dehydro-
genases (ALDH family) and retinol is oxidized to retinoic
acid by retinol dehydrogenases (RDH and DHRS families)
[28]. In addition to inducing night blindness, vitamin A
deficiency adversely impacts cellular growth, bone devel-
opment, and antibody-based immune responses [29].
In an orbitrap-based study of mouse embryo heads,

toxic levels of prenatal retinoic acid exposure intended
to model an established risk factor for craniofacial birth
defects are reported to induce abundance alterations in
proteins associated with craniofacial development and

Fig. 2 Water soluble vitamin structures
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Fig. 3 Schematic of vitamin involvement in reactions of central carbon metabolism. The depicted lipid bilayer represents the inner mitochondiral
membrane. Abbreviations defined in the abbreviations section. Vitamins specified by alphanumeric designations
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neural crest processes [30]. In a parallel triple-TOF-
based study of gerbil plasma and 2DGE-MS-based study
of gerbil liver and white adipose tissue, a few dozen pro-
tein abundances linked to a handful of biological processes
are reported to respond to dietary retinol, β-carotene, lu-
tein, or lycopene; though process or pathway enrichment
analyses are not reported. As the authors discuss, plasma
was not depleted of common highly abundant proteins
upstream of analysis by mass spectrometry which are
known to adversely impact data quality [31]. In an
orbitrap-based study of plasma from Nepalese children,
dozens of proteins are associated with circulating caroten-
oid abundances; potentiating development of low-cost
antibody-based tests for carotenoid deficiencies [32]. A
pair of 2DGE-MS-based studies link tissue function to
protein abundance responses to vitamin A status in mice
brains [33] and bovine muscle [34].

Vitamin B1
Thiamine (vitamin B1) is composed of linked pyrimidine
and thiazole rings decorated with methyl, amine, and
alkyl-hydroxyl functional groups (Fig. 2) [35]. Thiamine
is transported through the plasma membrane via
thiamine transporters (SLC19A2 and SLC19A3) [36] and
then twice phosphorylated on the alkyl-hydroxyl func-
tional group by thiamine pyrophosphokinase (TPK1),
rendering it active as thiamine diphosphate (TDP) [35].
TDP is a cofactor for enzymes catalyzing the oxidative
decarboxylation of ketoacids including the pyruvate
dehydrogenase complex (PDHA, PDHB, PDHX, DLAT,
DLD), the oxoglutarate dehydrogenase complex (OGDH,
DLST, DLD), and the branched chain keto acid dehydro-
genase complex (BCKDHA, DBT, DLD) [37]. It is also a
cofactor for transketolase (TKT) in the non-oxidative
branch of the pentose phosphate pathway [38]. Independ-
ent from its role as a cofactor, thiamine is believed to
regulate ion transport activity in the nervous system [39].
Vitamin B1 deficiency is marked by a broad range of

neurological, respiratory, and cardiovascular pathophysi-
ologies and is termed beriberi. Symptoms of beriberi are
difficult to directly link to the molecular functions of
vitamin B1 [40].
In a 2DGE-MS-based study of type 2 diabetic and

healthy control subjects, authors report treatment with
thiamine reduces albumin (ALB) abundance in urine; in-
dicating the vitamin serves a protective role of kidney
function [41]. In a QTOF-based study of rat thalami
under thiamine deficiency, glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) is the most up-regulated pro-
tein (50 fold) while regulated proteins are most enriched
in the synaptic vesicle cycle pathway (according to the
KEGG database). Proteomic changes are accompanied
by diminished performances on cognitive tests [42].

Vitamin B2
Riboflavin (vitamin B2) is composed of an isoalloxazine
ring and a bound ribitol (Fig. 2) [43]. It is activated by
riboflavin kinase (RFK), forming flavin mononucleotide
(FMN); and by flavin adenine dinucleotide synthase 1
(FLAD1), forming flavin adenine dinucleotide (FAD)
[44]. Bound FMN or FAD serves as an electron carrier
for redox-reaction-catalyzing proteins (flavoproteins)
including the succinate dehydrogenase complex
(SDHA, SDHB, SDHC, SDHD), the pyruvate dehydro-
genase complex (PDHA, PDHB, PDHX, DLAT, DLD),
acyl-CoA dehydrogenases (ACADs), and methylene
tetrahydrofolate reductase (MTHFR) [45].
Riboflavin deficiency in humans predominantly occurs

in combination with that of other nutrients. However
animal studies link it to impaired fetal and intestinal
development [46, 47], iron absorption [48], and lipid
metabolism [49, 50].
In a QTOF-based study of duck livers, riboflavin defi-

ciency is accompanied by a reduced abundance of small-
chain-specific acyl-coenzyme A dehydrogenases (ACADs),
for which riboflavin serves as a cofactor, and concordant
elevation of hepatic small chain fatty-acid lipid content.
Dramatic decreases in protein abundance are reported for
INPP1 (involved in inositol signaling), THRSP (purported
regulator of lipid metabolism), BDH2 (a regulator of lipid
metabolism), FXN (involved in mitochondrial iron-sulfur
complex assembly), and NDUFS1 (a subunit of electron
transport chain complex I) [51]. In a QTOF-based study of
maternal riboflavin deficiency, reductions in fetal duck hep-
atic TCA cycle, beta-oxidation, and electron transport chain
proteins are reported, with IDH3A being the lone member
of these pathways whose abundance increases [52].

Vitamin B3
Niacin (vitamin B3) is inclusive of nicotinic acid and nico-
tinamide (Fig. 2) which are converted to their mononucleo-
tide forms by nicotinate phosphoribosyltransferase (NAPR
T) and nicotinamide phosphoribosyltransferase (NAMPT)
respectively [53]. Both forms of the mononucleotide are
subsequently converted to their adenosine dinucleotide
forms by nicotinamide/nicotinic acid mononucleotide
adenylyltransferases (NMNAT1, NMNAT2, NMNAT3).
Nicotinamide adenine dinucleotide (NAD) is a cofactor
form of the vitamin whereas nicotinic acid dinucleotide is
subsequently converted to NAD by NAD synthase (NADS
YN1) [54]. NAD is reduced to NADH by oxidative reac-
tions of glycolysis, the TCA cycle, and β-oxidation; and
subsequently serves as a redox equivalent carrier to the
electron transport chain [55] and to regenerate reduced
ascorbic acid (vitamin C) [56], glutathione [57], and thiore-
doxin [58]. NAD can also be phosphorylated by NAD
kinases (NADK, NADK2) to form a distinct redox shuttling
cofactor, NADP [59]. NADP is reduced by reactions in the
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oxidative pentose phosphate pathway (G6PD, PGD) and
other enzymes (e.g. ME1, ME3, IDH1, IDH2) to NADPH.
NADPH provides reducing equivalents for biosynthetic re-
actions in fatty acid, cholesterol, and deoxyribonucleotide
synthesis [60]. Outside its role as a reducing equivalent
shuttle, NAD provides adenine dinucleotide phosphate
(ADP) ribose for synthesis of the second messenger, cyclic
adenosine monophosphate (cAMP), via the activity of ad-
enylate cyclases (ADCY family) [61]. NAD also provides
ADP-ribose and poly-ADP-ribose for post translational
modifications of proteins via activity of ADP-ribosyl trans-
ferases (ART family) and ADP ribose polymerases (PARP
family) [62, 63]. cAMP and protein (poly)ADP-ribosylation
are important mediators of cell signaling and protein
expression [64]. Niacin is synthesized from trypto-
phan, but in small quantities relative to a healthy
dietary intake [65]. Deficiency, known as pellagra, is
marked by dermatitis and severe gastrointestinal/
neurological pathophysiologies which are fatal if un-
treated [66]. No proteomic studies on systemic intake
of vitamin B3 were found at the time of writing this
review.

Vitamin B5
Pantothenic acid (vitamin B5) is composed of a molecule
of pantoic acid bound to β-alanine (Fig. 2) [67]. Its
primary metabolic function is as an acyl-carrier [68].
Pantothenic acid is a substrate in the first reaction of co-
enzyme A (CoA) biosynthesis catalyzed by pantothenate
kinases (PANK1, PANK2, PANK3, PANK4) [69]. CoA is
a substrate for enzymes catalyzing the oxidative decarb-
oxylation of ketoacids including the pyruvate dehydro-
genase complex (PDHA, PDHB, PDHX, DLAT, DLD),
the oxoglutarate dehydrogenase complex (OGDH, DLST,
DLD), and the branched chain keto acid dehydrogenase
complex (BCKDHA, DBT, DLD) [70–72]. Acyl species
are activated by conjugation with CoA and are substrates
in or products of glycolysis, the TCA cycle, fatty-acid
synthesis/β-oxidation, cholesterol synthesis, ketogenesis,
branched-chain amino acid catabolism, and protein
acetylation/O-GlcNAcylation [73]. Finally, 4’-phospho-
panthetheine (product of PANK proteins’ activities) is a
cofactor of the acyl carrier protein domain of fatty acid
synthase (FASN) [74]. Vitamin B5 deficiency is rare and
usually accompanied by that of other nutrients [75].
Burning of the feet and numbness in the toes is a char-
acteristic manifestation along with variety of other symp-
toms [76]. No proteomic studies on systemic intake of
vitamin B5 were found at the time of writing this review.

Vitamin B6
Vitamin B6 has aldehyde, alcohol, and amine forms (Fig. 2);
of which the phosphorylated aldehyde form (pyridoxal
phosphate) acts as a cofactor to over 100 enzymes [77]. All

three forms of vitamin B6 are phosphorylated by pyridoxal
kinase (PDXK) [78]. Both the phosphorylated alcohol and
amine forms (pyridoxine phosphate and pyridoxamine
phosphate) are converted to pyridoxal phosphate by
pyridoxine phosphate oxidase (PNPO) [79]. Pyridoxal
phosphate is a cofactor for enzymes catalyzing decarboxyl-
ase reactions in gamma-aminobutyric acid (GAD1, GAD2)
[80] and serotonin/dopamine biosynthesis (DDC) [81]; as
well as for enzymes catalyzing transamination reactions
(e.g. GOT1, GOT2, GPT, GPT2) [82], cysteine synthesis
(CTH) [83], heme synthesis (ALAS1, ALAS2) [84], carnitine
synthesis (3-hydroxy-6-N-trimethyllysine aldolase, gene
unidentified) [85], niacin synthesis (KYNU) [86], and
sphingolipid synthesis (SPTLC1, SPTLC2) [87]. Pyridoxal
phosphate is also an important cofactor for enzymes of
one-carbon metabolism (SHMT1 and SHMT2) [88] and
glycogen catabolism (PYGL and PYGM) [89]. Vitamin B6
deficiency is rare because of its availability in many foods,
and pathophysiologies can be diverse [90].
In a triple-TOF-based study of streptozotocin-induced

diabetic rat hippocampi, pyridoxamine treatment pre-
vented long-term recognition memory impairment and
regulated protein abundances in a number of diverse
pathways; notably upregulating half of the proteins in-
volved in ubiquinol biosynthesis [91]. In a 2DGE-MS-
based study of mice hippocampi, the abundances of
phosphoglycerate mutase (PGAM1) and cannabinoid
receptor-interacting protein 1 (CNRIP1) are reported to
be elevated/reduced, respectively, upon administration of
pyridoxine. Proteomic changes are accompanied by im-
proved novel object recognition [92].

Vitamin B7
Biotin (vitamin B7) is composed of a fused-ring structure
bound to a valeric acid side chain (Fig. 2) [93]. It is
transported across the plasma membrane by the
sodium-dependent solute carriers SLC5A6 and SLC19A3
[94, 95]. As a cofactor/post-translational modification,
biotin covalently binds lysine residues [96]. It is a cofac-
tor for pyruvate carboxylase (PC), acetyl-CoA carboxyl-
ase (ACACA), propionyl-CoA carboxylase (PCCA), and
the methylcrotonyl-CoA carboxylase complex (MCCC1,
MCCC2) [97]. Histones are also biotinylated, regulating
gene expression [98]. The post-translational modifica-
tion occurs via the activity of holocarboxylase synthetase
(HLCS) [99].
Biotin deficiency is rare and has wide ranging patho-

physiologies. Eating raw egg whites can prevent its
absorption (leading to deficiency) because of its affinity
for avidin, a chemical in egg whites that is denatured
upon cooking. This observation led to the vitamin’s
eventual discovery [100]. No proteomic studies on
systemic intake of vitamin B7 were found at the time of
writing this review.
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Vitamin B9
The term folate (vitamin B9) is inclusive of a group of
compounds composed of a pteridine ring linked to para-
aminobenzoic acid with a mono- or polyglutamate tail
(Fig. 2) [101]. In its reduced form (tetrahydrofolate), a
one-carbon unit cross-links (as CH or CH2) amine
groups on the ring structure and aminobenzoic acid, or
binds the secondary amine (as a formyl group) on the
aminobenzoic acid group [102, 103]. This one-carbon
unit is utilized in the synthesis of purines and thymidine,
conversion of homocysteine to methionine, interconver-
sion of serine and glycine, and catabolism of histidine;
reactions collectively termed one-carbon metabolism
[104, 105]. At the cellular level, one-carbon metabolism
is tightly regulated by compartmentalization [104, 106,
107] while whole-body folate homeostasis is predomin-
antly maintained by the liver through the enterohepatic
cycle [108].
Folate deficiency induces megaloblastic macrocytic

anemia and fetal neural tube defects, purportedly via its
adverse impact on nucleotide synthesis [109, 110]. Low
intake of folate is also linked to cardiovascular disease
[111, 112], neurodegenerative disease [113, 114], Alzhei-
mer’s disease [115, 116] and cancer [117–119].
In an orbitrap-based study of follicle fluid of women

undergoing in vitro fertilization, the folate supplemented
group is reported to have elevated abundances of apoli-
poproteins from high density lipoproteins and reduced
reactive protein c (CRP). The study is performed on
women who did not become pregnant [120]. In a
QTOF-based study of a folate-deficiency-induced intes-
tinal neoplasia mouse model, the combinatorial impacts
of folate deficiency and methylene tetrahydrofolate re-
ductase heterozygous deletion (mthfr+/-) are reported to
impact protein abundances spanning diverse cellular
functions. However 40% of samples are discarded as out-
liers and the simultaneous examination of mthfr+/- and
dietary folate deficiency does not allow proteomic adap-
tations to be attributed to either in isolation [121]. In a
2DGE-MS-based study of adult rats, aortic calmodulin
(CALM1, calcium signaling) protein abundances are
positively correlated with folate dose while abundances
of triose phosphate isomerase (TPI1, glycolysis), transge-
lin (TAGLN, cytoskeleton), and glutathione s-transferase
alpha 3 (GSTA3, reductive detoxification) respond in-
versely [122]. In an 2DGE-MS-based study of rat livers,
PRDX6 and GPX1 are reported to be elevated while
cofilin (CFL1) is reported to be depleted under folate
deficiency [123]. Other studies report protein abundance
differences due to folate intake in rat urinary exosomes
(QQQ-based) [124], human plasma (2DGE-MS) [125],
fetal brain tissue from pregnant mice fed ethanol
(2DGE-MS) [126], pregnant rat livers (2DGE-MS) [127],

fetal rat livers (2DGE-MS) [128], adult rat livers and
brains (2DGE-MS) [129], and livers of piglets born to
folate deficient mothers (2DGE-MS) [130].

Vitamin B12
Cobalamin (vitamin B12) encompasses a group of mol-
ecules with four linked pyrrole ring derivatives (form-
ing a corrin ring) and a cobalt atom bound at the
center of the corrin ring. The cobalt atom also binds a
5,6-dimethylbenzimidazole nucleotide and a functional
group (Fig. 2) [131]. The identity of the functional
group distinguishes the vitamin B12 compounds as
cyanocobalamin, hydroxycobalamin, hydrocobalamin,
nitrocobalamin, 5’-deoxyadenosylcobalamin (also called ade-
nosylcobalamin), and methyl cobalamin [132, 133]. Methyl-
cobalamin serves as a coenzyme in the conversion of
homocysteine to methionine by methionine synthase (MTR)
in the cytosol [134] and adenosylcobalamin is required for
conversion of L-methylmalonyl-CoA to succinyl-CoA by
methylmalonyl-CoA mutase (MUT) in mitochondria [135].
Vitamin B12 deficiency is closely related to folate

deficiency and can lead to megaloblastic anemia by im-
pairment in the activity of methionine synthase (MTR)
[109]: 5-methyl tetrahydrofolate cannot be converted to
one-carbon donors required for purine and thymidine
synthesis without vitamin B12 as a cofactor, thus inter-
fering with DNA synthesis and erythrocyte production
[136]. Vitamin B12 deficiency is also linked to neuro-
logical disorders independent of anemia [137].
Ruoppolo and colleagues performed a 2DGE-MS-

based study of lymphocytes isolated from methylmalonic
acidemia with homocystinuria, cobalamin deficiency type
C (MMACHC) patients (an inborn error in metabolism
marked by inactivity of the MMACHC gene product)
receiving a standard treatment of hydroxycobalamin,
betaine, folate, and carnitine. Protein products of ME2,
GLUD1, and GPD2, genes involved in anaplerosis and
redox equivalent shuttling, are up-regulated while vari-
ant 2 of protein pyruvate kinase muscle isozyme (PKM)
and lactate dehydrogenase B (LDHB) are down-regulated
relative to lymphocytes isolated from healthy control do-
nors [138]. In a 2DGE-based study of adult rat cerebral
spinal fluid, protein abundance shifts are reported to
peak after several months on a cobalamin deficient diet
(modest shifts) or after a total gastrectomy (more severe
shifts), and return to near control values at later time
points [139]. In a 2DGE-MS-based study, glutathione s-
transferase P (GSTP1) abundances are diminished and
glutathione peroxidase 1 (GPX1) abundances are ele-
vated in rat pup kidneys under maternal vitamin B12

deficient and maternal folate deficient conditions [140];
suggesting maternal dietary intake of these vitamins im-
pacts offspring kidney redox homeostasis mechanisms.
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In a similar 2DGE-MS-based study of maternal vitamin
B12 deficiency, the same group reports that several
dozen rat kidney pup proteins revert to control levels
upon administration of vitamin B12 at birth. Addition-
ally, diminished abundance of beta-oxidation proteins
in kidneys of pups born to vitamin B12 deficient
mothers is accompanied by elevated PPARA [141], a
positive regulator of fatty acid oxidation, suggesting
attempted compensation at the cellular level.

Vitamin C
Vitamin C (ascorbic acid) is absorbed at the brush-
border and distributed to cells throughout the body by
the sodium-dependent plasma membrane solute carriers
SLC23A1 and SLC23A2 [142]. The oxidized form of vita-
min C (dehydroascorbate) is also transported via plasma
membrane glucose transporters SLC2A1, SLC2A3, and
SLC2A4 (also known as GLUT1, GLUT3, and GLUT4)
[143] and reduced intracellularly to ascorbic acid by
glutathione [144] and the activity of thioredoxin reduc-
tases (TXNRD1, TXNRD2, or TXNRD3) [145].
Vitamin C is a cofactor in the function of prolyl and

lysyl hydroxylases, which consume oxygen and alpha-
ketoglutarate to form the hydroxylated amino acid residue
and succinate [146]. The Fe2+ of these enzymes is restored
from Fe3+ by oxidation of vitamin C [147]. In the presence
of oxygen, prolyl hydroxylases (EGLN1, EGLN2, EGLN3;
also known as PHD2, PHD1, PHD3 respectively) hydroxyl-
ate the HIF1A protein; providing a necessary signal for its
degradation and preventing a hypoxic response at the cel-
lular level [148]. Prolyl and lysyl hydroxylase activities are
also necessary for post-translational modifications to form
functional collagen [149]. Lysyl hydroxylases include
PLOD1, PLOD2, and PLOD3 [150]. Vitamin C serves a
nearly identical function in reducing Fe3+ as a cofactor for
trimethyllysine dioxygenase (TMLH), which catalyzes the
first reaction in carnitine biosynthesis [151]. Carnitine is
essential for fatty acid catabolism in the mitochondria as
only fatty acyl carnitines formed via the activity of carni-
tine palmitoyl transferases CPT1A, CPT1B, and CPT1C
cross the inner mitochondrial membrane through the
solute carrier SLC25A20 [152]. Vitamin C similarly serves
as a cofactor for tyrosine hydroxylase (TH), which cata-
lyzes the first reaction in catecholamine (e.g. dopamine,
epinephrine, and norepinephrine) synthesis [153]. Add-
itionally, vitamin C serves and as a general antioxidant
[154]. Vitamin C deficiency leads to the condition known
as scurvy with symptoms largely attributed to malformed
connective tissue due to improperly folded collagen [155].
In a orbitrap-based study on a pig model of hemorrhagic

shock, vitamin C administration is reported to impact
plasma protein abundances in the complement pathway

and those in poly-trauma related processes; including the
stabilization of ADAMTS13 abundance, an important
regulator of clot formation [156]. An orbitrap-based study
of endoplasmic reticulum enriched fractions of livers in
Werner syndrome mouse models identifies around a
dozen proteins whose abundances are impacted by admin-
istration of vitamin C [157]. A QTOF-based study of
zebrafish reports upregulation of glutamate dehydrogen-
ase (GLUD1) and downregulation of pyruvate kinase
muscle isozyme (PKM) upon administration of vitamin C
in a vitamin E deficient background [158]. In a QQQ-
based study of human plasma, ascorbic acid concentration
is reported to be inversely related to vitamin D binding
protein (GC) abundance [159]. 2DGE-MS-based studies
identify protein abundance regulations in mouse models
of sarcoma metastases in the liver [160] and tumor nod-
ules of adenocarcinoma due to administration of vitamin
C [161]. Another 2DGE-MS-based study reports polypep-
tide abundance shifts in hemodialysis patient plasma upon
vitamin C supplementation [162].

Vitamin D
Vitamins D2 and D3 are respectively distinguished by their
ergosterol and cholesterol backbones [163]. Though only
vitamin D3 is synthesized in animals, both can be con-
verted to active forms. Exposure of 7-dehydrocholesterol
(an intermediate in cholesterol synthesis) to ultra-violet
radiation in the skin and subsequent isomerization pro-
duces cholecalciferol (vitamin D3, Fig. 1) [164]. Whether 7-
dehydrocholesterol is derived from cholesterol via activity
of 7-dehydrocholesterol reductase (DHCR7) or synthesized
de novo in the skin is disputed [165]. 7-dehydrocholesterol
is successively hydroxylated by activity of cytochrome p450
enzymes (e.g. CYP2R1 and CYP27B1) in the liver and kid-
ney to its active 1,25-(OH)2 cholecalciferol [1,25(OH)2D3]
form [166]. Transport of vitamin D and its metabolites
occurs bound to vitamin D binding protein (GC) [167].
Ergocalciferol is the vitamin D2 equivalent of cholecalcif-
erol and is activated analogously [168].
1,25(OH)2D3 influences cellular function via nuclear

receptor-dependent and nuclear receptor-independent
mechanisms. The former involves 1,25(OH)2D3-bound
vitamin D receptor (VDR) forming a heterodimer com-
plex with a retinoid X receptor (RXRA, RXRB, RXRG)
and subsequently binding vitamin D response elements
regulating transcription of genes largely involved modu-
lating calcium and phosphorous transport [169] and
maintaining homeostasis by regulating their absorption
in the kidneys, intestines, and bones [170, 171]. The
rapid-onset extracellular impacts (nuclear receptor-
independent) of 1,25(OH)2D3 are mediated by a membrane-
associated rapid response steroid binding protein, identified

Jeong and Vacanti Nutrition & Metabolism           (2020) 17:73 Page 8 of 16



as PDIA3 [172], and diversely impact cell growth, survival,
and immune response [173].
Deficiency in vitamin D impairs bone mineralization

causing rickets in infants/children and osteomalacia in
adults [174]. Vitamin D deficiency is also linked to
cardiovascular diseases [175, 176], cancer [177, 178],
neurological impairments [179, 180] and autoimmune
diseases [181, 182]; though underlying mechanisms are
not completely understood.
In an orbitrap-based study of mouse fetal and postna-

tal lung tissue, maternal vitamin D deficiency is reflected
in total proteome adaptations which are unexpectedly
strongest at postnatal day 7 opposed to fetal time points.
Impacted proteins include several associated with lung
development [183]. An orbitrap-based study of a mouse
brain tissue model of remyelination in multiple sclerosis
reports calcium binding protein abundances to be upreg-
ulated upon treatment with 1,25(OH)2D3, consistent
with the vitamin's regulatory role over calcium absorp-
tion [184]. In an orbitrap-based study of serum from
overweight adults, vitamin D deficiency is reported to
differentially affect abundances of proteins related to
blood coagulation in males and females. However,
abundances of these proteins are likely impacted by the
production of serum from whole blood. The authors re-
port quantifying 1,841 proteins (Table 1); an impressive

analytical depth for serum [188]. In a 2DGE-based study,
vitamin D deficient children are reported to have dimin-
ished serum abundances of adiponectin (ADIPOQ)
[189]. In a separate 2DGE-based study, the same group
reports fetuin-b (FETUB) to be elevated in the plasma of
obese vitamin D deficient children compared with their
vitamin D sufficient counterparts [190]. However the
authors do not directly identify FETUB and rely on com-
parison of their findings to those of another study [191].
Two 2DGE-MS-based studies, of rat left ventricular and
aortic tissue, identify proteins whose abundances re-
spond upon inducing arterial calcification or atheroscler-
osis by co-administration of vitamin D3 with nicotine or
a high cholesterol diet respectively [192, 193]. Two stud-
ies (2DGE-MS and 2DGE-based respectively) examine
the impacts of vitamin D deficiency on the rat brain
proteome. The former reports the progeny of vitamin D
deficient mothers to have diminished abundances of
ATP synthase β (ATPB) and enolase 2 (ENO2) in both
the cortex and hippocampus, and diminished calmodulin
(CALM1) in the hippocampus amongst a variety of other
regulated proteins [194]. The latter finds low vitamin D
diets to be accompanied by diminished cortical abun-
dances of three glycolytic enzymes: triose phosphate
isomerase (TPI1); phosphofructokinase, platelet (PFKP);
and pyruvate kinase, muscle (PKM) [195].

Table 1 Summary of key findings

Vitamin Key Findings

Vitamin A Creation of a model of craniofacial disorders induced by prenatal retinoic acid exposure is reported to impact protein abundances
whose functions are associated with neural crest processes [30]. Plasma carotenoids abundances are reported to be associated with
plasma proteins of diverse functions in Nepalese children, potentiating development of inexpensive assays to predict carotenoids
deficiency [32].

Vitamin B1 Treatment with thiamine is presented as a potential strategy to improve kidney function in type 2 diabetic patients [41]. Thiamine
deficiency is reported to impact cognition in rats [42].

Vitamin B2 Dietary and maternal dietary riboflavin are reported to impact the machineries of lipid metabolism and fetal lipid metabolism in ducks
[51, 52].

Vitamin B6 A study of a rat model of diabetes reports treatment with pyridoxamine to impact abundances of proteins involved in synaptic plasticity
in hippocampi and to have protective effects on long-term memory [91].

Vitamin B9 Folate supplementation in women undergoing in vitro fertilization is reported to increase abundances of apolipoproteins of
high-density lipoproteins in monofollicular fluid [120].

Vitamin B12 Maternal cobalamin deficiency is reported to impact abundances of proteins related to lipid metabolism in the offspring kidneys of
rats [141].

Vitamin C Treatment with ascorbic acid is reported to impact plasma abundances of proteins involved in the complement pathway and regulation
of clot formation in a pig model of hemorrhagic shock [156].

Vitamin D Maternal vitamin D deficiency is reported to impact abundances of proteins involved in mouse neonatal lung development during
alveolar development stages without affecting gross lung structure [183]. Treatment with 1,25(OH)2D3 is reported to increase
abundances of proteins involved in calcium homeostasis in a mouse brain model of remyelination [184].

Vitamin E A quantitative model based on plasma protein abundances is reported to predict plasma α-tocopherol status, potentiating the
development of an inexpensive assay to detect α-tocopherol deficiency [185]. A study of a mouse model of Alzheimer’s disease reports
treatment with the tocotrienol-rich fraction of palm oil reduces the abundance of amyloid beta A4 protein, the primary component
of amyloid plaques, in hippocampi [186].

Vitamin K A quantitative model based on five plasma protein abundances is reported to predict vitamin K deficiency with moderate
accuracy [187].
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Vitamin E
Members of the vitamin E class of molecules all contain
fused phenyl and chromanol rings linked to a 16-carbon
side-chain [196]. Methyl group placement on the phenyl
ring dictates α, β, γ, and δ designation while side-chain
saturation state distinguishes tocopherols from tocotrie-
nols (Fig. 1). Furthermore, all forms of vitamin E have
three chiral centers resulting in 8 stereoisomers [197].
RRR α-tocopherol is the most biologically active form,
likely due to specificity of α-tocopherol transfer protein
(TTPA) whose binding is necessary for packaging and
transport to tissues from the liver [198]. α-tocopherol
primarily localizes to membranes (i.e. plasma, endoplasmic
reticulum, and mitochondrial) and functions as an antioxi-
dant for unsaturated, lipid-bound fatty acids [196]. Α-
tocopherol also has non-antioxidant signal-transduction
functions impacting a broad range of cellular activities [199].
Vitamin E deficiency is rare due to the availability of the

vitamin in the diet [200], though it may be caused by a
genetic defect in α-tocopherol transfer protein (TTPA)
and diseases associated with fat malabsorption [201, 202].
Severe vitamin E deficiency can result in hemolytic
anemia, neurological disorders, and ataxia [201, 203–205].
An orbitrap-based study of plasma from undernour-

ished Nepalese children reports plasma α-tocopherol
concentration to be positively correlated with abun-
dances of a number of apolipoproteins (APOs) and nega-
tively correlated with the muscle isozyme of the protein
pyruvate kinase (PKM). Authors establish a linear model
based on a handful of protein quantities that accounts
for most variance in α-tocopherol plasma concentration
and suggest an inexpensive, portable, antibody-based
methodology can be used to assay plasma α-tocopherol
abundance in low-income countries [185]. An orbitrap-
based study of hippocampi, medial prefrontal cortices,
and striata tissue in a mouse model of Alzheimer's dis-
ease reports administration of a tocotrienol-rich fraction
of palm oil down-regulates hippocampi expression of
the amyloid beta A4 protein (APP). Amyloid beta A4 is
the principle component of amyloid plaques characteris-
tic of Alzheimer's disease [186]. In a QTOF-based study
of rabbit aortae, vitamin E supplementation is reported
to impact protein abundances including the apolipopro-
tein, APOA1, and several related to oxidation/reduction
processes [206]. 2DGE-MS-based studies also report
vitamin E supplementation to impact apolipoprotein
abundances in human plasma [207, 208]. In a 2DGE-
based study of high-density reared rainbow trout livers,
vitamin E supplementation is reported to regulate the
abundances of a handful of heat shock and metabolic
proteins [209]. Finally, a 2DGE-MS-based study reports
vitamin E supplementation to regulate a number of
plasma protein abundance in patients harboring prostate
tumors [210].

Vitamin K
Vitamin K compounds all share a common fused ben-
zyl and methyl-naphthoquinone ring moiety (Fig. 1).
Naturally occurring vitamin K compounds include
phylloquinone and menaquinones [211]. Vitamin K is
a necessary cofactor of gamma-glutamyl carboxylase
(GGCX), an enzyme which catalyzes the carboxylation
of glutamate protein residues to carboxyglutamate resi-
dues [212]. This post-translational modification is ne-
cessary for the function of proteins of the coagulation
cascade (F2, F7, F9, F10), proteins inhibiting coagula-
tion (PROC, PROS1, PROZ), and those associated with
connective tissue matrix formation (BGLAP, MGP)
[213]. Newborn infants are among the most at-risk for
vitamin K deficiency because they do not have ad-
equate stores and milk is not a sufficient source. Thus
a phylloquinone injection shortly after birth is recom-
mended [214]. Elevated risk of hemorrhage is associate
with vitamin K deficiency [215].
In an orbitrap-based study of plasma from Nepalese

children, authors create a model based on five protein
abundances which can predict vitamin K deficiency with
moderate accuracy. Vitamin K status is based on a sur-
rogate measurement of an abundance of an abnormal
form of prothrombin [187].

Conclusions
Proteomic studies have established dietary vitamin sta-
tus as a regulator of tissue protein abundances. The
regulatory feedback between vitamin status and pro-
tein expression is highlighted by findings where the
abundances of proteins directly related to the vitamin
are impacted by systemic intake of that vitamin, in-
cluding: abundances of proteins related to craniofacial
development and neural crest processes are impacted
in an established maternal retinoic acid toxicity-driven
model of craniofacial birth defects [30], deficiency in
their riboflavin cofactor is accompanied by reduced
abundances of acyl-coenzyme A dehydrogenases and
accumulation of the enzymes’ substrates [51], treat-
ment with the active form of vitamin D is accompanied
by increased expression of calcium binding proteins
[184], and vitamin E supplementation impacts proteins
related to redox processes [206] (Table 1). However,
the literature in this field is sparse and, in all likeli-
hood, the vast majority of vitamin-status to protein
abundance relationships are undescribed; especially
considering the void in the literature for several vitamins.
Moreover, the field has not advanced to explore the mech-
anisms of these regulations, their biological impacts, or
their potential to shape clinical interventions.
Modern proteomic platforms are ever increasing

achievable depth, where analysis of whole mammalian
tissue [216–220] or plasma [221, 222] routinely results
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in 10,000 or 1,500 unique proteins quantified per
sample respectively. Furthermore, advances continue in
capacity to detect post-translational modifications [223,
224], determine compartmental localization [225], and
apply findings in clinical settings [226]. In a golden age
of proteomic technological advances, studies of vitamin
intake have not kept pace. Of those using orbitrap,
QTOF, or triple-TOF systems, many fall short of the
cutting edge of analytical depth (Table 2); whereas most
studies have relied on antiquated 2DGE-MS platforms.
Outdated platforms rendering fewer quantified proteins
are likely contributors to clustering [227] or enrichment
analysis techniques [228–234] not being widely employed.
These high-throughput methods of data analysis provide
systems-level stratification of proteome-wide adaptations
and can guide targeted inquiries. As the study of precision
nutrition advances in an era of big data, fundamental
questions of nutrient-protein interactions will be at the
forefront of understanding molecular mechanisms of
nutrient and substrate processing. Where the sparsity of
the literature leaves fundamental questions unanswered,
opportunity for rapid advancement lies with application of
cutting-edge technologies in well-designed and executed
studies.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12986-020-00491-7.

Additional file 1: Tables S1 - S13. Ensyme, enzyme complexes, or
enzyme families requiring vitamins as a cofactor or substrate.

Abbreviations
Roman numerals I-IV: Electron transport chain complexes I-IV; 2DGE: Two-
dimensional gel electrophoresis; 2DGE-MS: 2DGE – mass spectrometry;
3PG: 3-phosphoglycerate; 6PG: 6-phosphogluconate; 6PGL: 6-
phosphogluconolactone; AcAc: Acetoacetate; AcCoA: Acetyl-CoA;
ADP: Adenosine diphosphate; aKG: Alpha ketoglutarate; Ala: Alanine;
Asp: Aspartate; ATP: Adenosine triphosphate; CoA: Coenzyme A; Cit: Citrate;
CTP: Cytidine triphosphate; DHO: Dihydroorotate; DNA: Deoxyribonucleic
acid; dTMP: Deoxythymidine monophosphate; dUDP: Deoxyuridine
diphosphate; dUMP: Deoxyuridine monophosphate; F6P: Fructose 6-
phosphate; Fum: Fumarate; G3P: Glyceraldehyde 3-phosphate; G6P: Glucose
6-phosphate; Glc: Glucose; GlcN: Glucosamine; GlcNAc: N-acetylglucosamine;
Gln: Glutamine; Glu: Glutamate; Gly: Glycine; Hcy: Homocysteine;
HIF1a: Hypoxia inducible factor 1 subunit alpha; HMGCoA: 3-hydroxy-3-
methylglutaryl-CoA; IC: Isocitrate; Ile: Isoleucine; Leu: Leucine; Mal: Malate;
mDNA: Methylated DNA; Met: Methionine; MMCoA: Methylmalonyl-CoA;
Oac: Oxaloacetate; PEP: Phosphoenolpyruvate; PPCoA: Propionyl-CoA;
Pyr: Pyruvate; QTOF: Quadrupole time-of-flight; QQQ: Triple-quadrupole;
R5P: Ribose 5-phosphate; reps.: Replicates; Ru5P: Ribulose 5-phosphate;
SAH: S-adenosylhomocysteine; SAM: S-adenosylmethionine; Ser: Serine;
Suc: Succinate; SucCoA: Succinyl-CoA; tech.: Technical; THF: Tetrahydrofolate;
Thr: Threonine; UDP: Uridine diphosphate; UTP: Uridine triphosphate;
UQ: Ubiquinone; Val: Valine; X5P: Xylulose 5-phosphate

Table 2 Summary of Technical Depth of Orbitrap-, QTOF-, and Triple-TOF-based Studies. A protein only needs to be identified in
one sample to contribute to the total number of unique proteins (indicated as “total” below), thus the total is typically larger in
studies with greater sample numbers. An iTRAQ or TMT set is a pool of samples that are run on the LC-MS/MS concurrently.
Because the samples in a set are all analyzed simultaneously, a set's contribution to the total number of unique proteins is similar to
that of a single sample

Study Year Platform Tissue # Proteins Identified # Samples

[30] 2018 Orbitrap mouse embryo heads group 1: 313 total
group 2: 372 total

2 groups

[31] 2018 Triple-TOF gerbil plasma 109 total 30

[32, 185, 187] 2015 Orbitrap human plasma 4,705 total
589/set

72 iTRAQ sets

[42] 2018 QTOF rat thalami 1,440 total 6 x 3 tech. reps.

[51] 2017 QTOF duck livers 1,749 total 3 iTRAQ sets

[52] 2019 QTOF fetal duck livers 3,801 total 1 iTRAQ set

[91] 2019 Triple-TOF rat hippocampi 4,807 total 2 iTRAQ sets

[120] 2015 Orbitrap human follicular fluid 227 total 1 TMT set

[121] 2014 QTOF mouse intestine 2,039 total 10

[156] 2019 Orbitrap pig plasma 534 total 45

[157] 2018 Orbitrap mouse liver fraction 4,058 total 9

[158] 2014 QTOF zebrafish 2,956 total 19

[183] 2016 Orbitrap mouse lung 1,160 total,
240 common to all

34

[184] 2018 Orbitrap mouse brain 5,062 total 1 TMT set

[188] 2016 Orbitrap human serum 1,841 total 1 iTRAQ set

[186] 2019 Orbitrap mouse brain tissues group 1: 5,847 total
group 2: 6,047 total

2 groups of 6

[206] 2013 QTOF rabbit aortae 100 total 24 x 3 tech. reps.
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