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ABSTRACT To understand the epidemiology and susceptibility patterns of yeast in-
fections in Ontario, Canada, we examined 4,715 clinical yeast isolates submitted to
our laboratory for antifungal susceptibility testing from 2014 to 2018. Candida albi-
cans was the most frequently submitted species (43.0%), followed by C. glabrata
(21.1%), C. parapsilosis (15.0%), and C. tropicalis (6.2%). Twenty-three other Candida
spp. (11.6%) and 4 non-Candida species (3.1%) were also identified. Few changes in
species distribution were observed from 2014 to 2018, but the total numbers of
yeast isolates sent for testing increased, with an annual 7.4% change. According to
CLSI clinical breakpoints, resistance rates remained low overall. Moderate fluconazole
resistance was noted among C. glabrata (9%), C. parapsilosis (9%), and C. tropicalis
(12%) isolates. Only 1% of C. glabrata isolates were resistant to caspofungin, mica-
fungin, and anidulafungin. Whole-genome sequence analysis confirmed 11 cases of
acquired resistance to azoles or echinocandins via in-host evolution. There were mu-
tations in the gene for the catalytic subunit of 1,3-beta-glucan synthase-mediated
echinocandin resistance in 3 of 3 C. albicans strains, 3 of 4 C. glabrata strains, and 1
strain of C. tropicalis. Azole resistance was likely caused by a homozygous ERG3 mu-
tation in 1 C. albicans strain and a previously undescribed chromosomal-duplication
event involving ERG11 and TAC1 orthologs in 1 C. tropicalis strain. While antifungal
resistance rates remain low among yeast isolates in Ontario, ongoing surveillance is
necessary to inform empirical therapy for optimal patient management and to guide
antifungal stewardship.
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echinocandin, whole-genome sequencing, yeast

Invasive fungal infections are a significant cause of morbidity and mortality (1, 2).
Among the fungi that can cause invasive fungal infections, Candida yeast species are

the primary threat, particularly in health care settings, where they are among the top
four most common nosocomial bloodstream pathogens (1, 3–5). Other yeasts, such as
Saccharomyces spp., Trichosporon spp., Malassezia spp., Geotrichum candidum, and
Rhodotorula spp., have also been implicated in invasive fungal infections but remain
relatively rare (2, 6).

Several studies have described a changing epidemiology of candidiasis. Although
species distributions of clinical yeast isolates differ based on geography and popula-
tion, there has been a notable shift away from Candida albicans to non-albicans species;
species such as C. glabrata, C. parapsilosis, and C. tropicalis are increasingly being
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encountered. Increased utilization of antifungal drugs for both treatment and prophy-
laxis in recent years has been identified as a cause of the changing epidemiology of
candidiasis through selective pressure favoring resistant species (1, 7, 8). Overall,
antifungal resistance remains relatively low; however, instances of resistance are in-
creasingly being reported worldwide (9, 10). There has been a perceptible increase in
resistance, particularly to azoles, among C. glabrata isolates in North America and C.
tropicalis isolates in Asia (1, 11–14). C. glabrata isolates are generally susceptible to the
echinocandins, but localized spikes in resistance are problematic and warrant attention
(15, 16). Finally, infections due to rare Candida spp., many of which are intrinsically
resistant, are increasingly being described (1, 9). Of these, C. auris is a major threat
globally due to its pervasive nature and frequent resistance to one or more classes of
antifungal agents (17).

Global and local surveillance studies are important to monitor antifungal resistance.
Global surveillance is particularly good at detecting and defining emerging threats,
while local studies provide useful data to inform empirical therapy and aid antifungal
stewardship efforts (8).

Increased access to whole-genome sequencing (WGS) provides an additional op-
portunity to characterize the genetic mechanisms of antifungal resistance acquired by
resistant isolates identified in antifungal surveillance studies. Echinocandin resistance in
Candida spp. is largely caused by mutations in the 2 hot-spot regions of the genes
encoding the catalytic subunit of 1,3-beta-glucan synthase, required for cell wall
growth. These mutations render 1,3-beta-glucan synthase impervious to echinocandin
activity (7, 18, 19). The genetic alterations causing azole resistance are more difficult to
define, since it can involve multiple possible mechanisms affecting ergosterol synthesis
and/or augmenting drug efflux pump activity (7). Understanding the mechanisms of
resistance encountered in resistant clinical isolates can aid drug discovery and thera-
peutic guidelines.

In this study, we describe the epidemiology and antifungal susceptibilities of 4,715
clinical yeast isolates, including Candida spp., as well as Cryptococcus neoformans,
Trichosporon asahii, Saccharomyces cerevisiae, and Rhodotorula mucilaginosa, recovered
from Ontario patients from 2014 to 2018. Additionally, we used WGS analysis to
investigate susceptible-turned-resistant (within a 6-month time frame) pairs of isolates
obtained from individual patients to confirm instances of acquired resistance and to
elucidate the genetic mechanisms underlying the resistant phenotypes. This study
complements other recent Canadian (20) and North American (8, 21) data sets to
describe antifungal resistance in Canada’s most populous province.

RESULTS

From 2014 to 2018, a total of 5,171 clinical yeast isolates were evaluated for
antifungal susceptibility. A data set of 4,715 isolates representing the first isolate of a
species received from a patient and submitted to Public Health Ontario (PHO) for
antifungal susceptibility testing (AFST) within a 6-month period (selected, for the
purposes of this paper, to define an infection episode) was used for the statistics
described below. Figure 1a and b show the range of yeast species isolated from the
specimens, with C. albicans isolated most frequently (43.0%), followed by C. glabrata
(21.1%), C. parapsilosis (15.0%), and C. tropicalis (6.2%). The relative species distributions
of C. albicans, C. glabrata, and C. parapsilosis remained constant over the study time
frame (P � 0.14, P � 0.21, and P � 0.51, respectively), but the proportion of C. tropicalis
increased from 2014 (4.3%) to 2018 (7.0%) (P � 0.004). An additional 23 Candida spp.
and 4 non-Candida yeasts, encompassing 11.6% and 3.1% of the isolates, respectively,
were identified (Fig. 1a and b). The total numbers of yeast isolates submitted for AFST
increased from 2014 to 2018, with an annual change in the number of yeast isolates per
100,000 population (22) of 7.4% (Fig. 1c). Most isolates were recovered from sterile sites
(81%), with blood the most frequent specimen source (57%) (Fig. 2; see Table S1 in the
supplemental material).

MICs based on broth microdilution (BMD) results for susceptibility to echinocandins,
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azoles, and amphotericin B are summarized in Table 1 for the more commonly
encountered yeast species, i.e., C. albicans, C. glabrata, C. parapsilosis, C. tropicalis, C.
dubliniensis, C. krusei, C. lusitaniae, C. neoformans, and C. guilliermondii. Where CLSI
breakpoints or Sensititre YeastOne (ThermoFisher, Waltham, MA) epidemiological cut-

FIG 1 (a and b) Species distribution of common (a) and less common (b) yeast isolates from patient specimens representing the first isolate per patient
per infection episode submitted for AFST in Ontario. (c) Species distribution per year from 2014 to 2018, including all isolates and the first isolate per patient
per infection episode.

FIG 2 Specimen sources of yeast isolates representing the first isolate per patient per infection episode
submitted for AFST in Ontario. (a) Distribution of sterile, nonsterile, and unknown specimens. (b)
Distribution of specimens categorized into major organ systems.
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TABLE 1 Activities of antifungal drugs against common yeast species according to CLSI clinical breakpoints (23) and/or recently
determined Sensititre YeastOne ECVs (24, 25)

Organism, no. of
isolates tested,
and antifungal agent

Breakpoints (S, I, R)a

(�g/ml)
ECV
(�g/ml) Range (�g/ml)

MIC50

(�g/ml)
MIC90

(�g/ml)

% of isolatesb

CLSI
method ECV

S R WT NWT

C. albicans, n � 2,029
Fluconazole �2, SDD � 4, �8 0.5 0.12 to �256 0.5 0.5 98 1 97 3
Voriconazole �0.12, 0.25–0.5, �1 0.03 0.008 to �8 0.008 0.015 98 1 93 7
Posaconazole 0.06 0.008 to �8 0.03 0.03 98 2
Itraconazole 0.008 to 16 0.06 0.06 98 2
Amphotericin B 2 0.12 to 2 0.5 1
Caspofungin �0.25, 0.5, �1 0.008 to 8 0.06 0.06 100 0 100 0
Micafungin �0.25, 0.5, �1 0.03 0.008 to 2 0.008 0.015 100 0 100 0
Anidulafungin �0.25, 0.5, �1 0.12 0.015 to 1 0.015 0.06 100 0 100 0

C. glabrata, n � 994
Fluconazole SDD � 32, �64 8 0.12 to �256 16 32 91c 9 93 7
Voriconazole 0.25 0.015 to 8 0.5 1 96 4
Posaconazole 1 0.008 to �8 1 2 92 8
Itraconazole 4 0.015 to �16 0.5 1 93 7
Amphotericin B 2 0.12 to 2 1 1
Caspofungin �0.12, 0.25, �0.5 0.008 to 8 0.06 0.12 93 1 99 1
Micafungin �0.06, 0.12, �0.25 0.03 0.008 to 4 0.015 0.015 99 1 99 1
Anidulafungin �0.12, 0.25, �0.5 0.25 0.015 to 2 0.03 0.06 99 1 99 1

C. parapsilosis, n � 708
Fluconazole �2, SDD � 4, �8 1 0.12 to 128 0.5 4 83 9 83d 17d

Voriconazole �0.12, 0.25–0.5, �1 0.03 0.008 to 2 0.015 0.06 99 0 85d 15d

Posaconazole 0.25 0.008 to 0.25 0.03 0.06 100d 0d

Itraconazole 0.5 0.015 to 0.5 0.06 0.12 100d 0d

Amphotericin B 1 0.12 to 2 0.5 0.5
Caspofungin �2, 4, �8 0.06 to 1 0.5 1 100 0 100e 0e

Micafungin �2, 4, �8 4 0.03 to 4 1 2 100 0 100e 0e

Anidulafungin �2, 4, �8 8 0.03 to 4 1 2 100 0 100e 0e

C. tropicalis, n � 294
Fluconazole �2, SDD � 4, �8 1 0.25 to �256 2 8 79 12 88 12
Voriconazole �0.12, 0.25–0.5, �1 0.12 0.008 to �8 0.12 0.5 61 8 92 8
Posaconazole 0.12 0.03 to �8 0.25 0.5 97 3
Itraconazole 0.5 0.03 to 16 0.25 0.5 94 6
Amphotericin B 2 0.25 to 2 1 1
Caspofungin �0.25, 0.5, �1 0.008 to 2 0.06 0.12 100 0 100 0
Micafungin �0.25, 0.5, �1 0.06 0.008 to 0.06 0.03 0.03 100 0 100 0
Anidulafungin �0.25, 0.5, �1 0.12 0.015 to 0.25 0.06 0.12 100 0 100 0

C. dubliniensis, n � 145
Fluconazole 0.5 0.12 to 1 0.25 0.5 100 0
Voriconazole 0.008 to 0.03 0.008 0.008 99 1
Posaconazole 0.125 0.008 to 0.12 0.03 0.06 100 0
Itraconazole 0.25 0.015 to 0.12 0.03 0.06 100 0
Amphotericin B 0.5 0.12 to 1 0.5 0.5
Caspofungin 0.015 to 2 0.06 0.12 99 1
Micafungin 0.12 0.008 to 1 0.03 0.03 99 1
Anidulafungin 0.12 0.015 to 0.12 0.12 0.12 100 0

C. krusei, n � 103
Fluconazole 0.25 to 128 32 64 100 0
Voriconazole �0.5, 1, �2 0.5 0.008 to 8 0.25 0.5 92 4 96 4
Posaconazole 0.5 0.03 to 1 0.25 0.5 100 0
Itraconazole 1 0.06 to 1 0.25 0.5 100 0
Amphotericin B 2 0.25 to 2 1 1
Caspofungin �0.25, 0.5, �1 0.03 to 2 0.25 0.5 85 1 99 1
Micafungin �0.25, 0.5, �1 0.25 0.008 to 1 0.12 0.12 99 1 99 1
Anidulafungin �0.25, 0.5, �1 0.25 0.015 to 0.5 0.06 0.06 99 0 99 1

(Continued on next page)
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off values (ECVs) exist, the percent susceptible and resistant or wild-type and non-wild
type were calculated (23–25).

When the first isolates submitted for AFST per patient per infection episode were
examined, 98% of C. albicans isolates were susceptible to fluconazole and voriconazole;
however, resistance to azoles was noted among non-albicans species. Nine percent of
C. glabrata isolates were resistant to fluconazole. Similarly, 9% of C. parapsilosis isolates
were resistant to fluconazole, and 83% were susceptible to the drug (8% were classified
as susceptible dose dependent [SDD]) (Table 1). Azole resistance was more pronounced
for C. tropicalis isolates, with 12% resistant (79% susceptible; 9% SDD) to fluconazole
and 8% resistant (61% susceptible; 31% SDD) to voriconazole (Table 1). Caspofungin,
micafungin, and anidulafungin exhibited good activity against Candida spp. Resistance
rates for the echinocandins ranged from 0% to 1% for C. albicans, C. glabrata, C.
parapsilosis, C. tropicalis, C. krusei, and C. guilliermondii; of note, 7% of C. glabrata
isolates and 15% of C. krusei isolates were nonsusceptible to caspofungin (Table 1).
From 2014 to 2018 no statistically significant trends were detected pertaining to an
increase or decrease in the percentage of the commonly isolated Candida spp. suscep-
tible to various antifungal agents (Table 2). Isolates that were nonsusceptible to azoles
or echinocandins were derived from a broad range of specimens (see Table S2 in the
supplemental material) but were predominately bloodstream isolates of C. parapsilosis,
C. tropicalis (azoles), and C. glabrata (echinocandins).

ECVs for use with Sensititre YeastOne panels for the detection of resistance among

TABLE 1 (Continued)

Organism, no. of
isolates tested,
and antifungal agent

Breakpoints (S, I, R)a

(�g/ml)
ECV
(�g/ml) Range (�g/ml)

MIC50

(�g/ml)
MIC90

(�g/ml)

% of isolatesb

CLSI
method ECV

S R WT NWT

C. lusitaniae, n � 94
Fluconazole 1 0.12 to 32 0.5 2 98 2
Voriconazole 0.008 to 0.25 0.008 0.03 95 5
Posaconazole 0.06 0.008 to 0.25 0.03 0.06 98 2
Itraconazole 1 0.015 to 0.5 0.06 0.12 100 0
Amphotericin B 2 0.12 to 8 0.5 0.5
Caspofungin 1 0.015 to 8 0.25 0.5 99 1
Micafungin 0.5 0.008 to 8 0.06 0.12 98 2
Anidulafungin 1 0.015 to 2 0.12 0.25 98 2

C. neoformans, n � 77
Fluconazole 8 0.5 to 8 2 4
Voriconazole 0.25 0.008 to 0.06 0.03 0.06
Posaconazole 0.25 0.008 to 0.25 0.06 0.12
Itraconazole 0.25 0.015 to 0.12 0.03 0.06
Amphotericin B 0.5 0.12 to 1 0.5 1
Caspofungin 8 8 8
Micafungin 4 to �8 8 8
Anidulafungin 2 to �8 8 8

C. guilliermondii, n � 47
Fluconazole 8 0.12 to 32 2 8 98 2
Voriconazole 0.008 to 1 0.06 0.25 98 2
Posaconazole 0.5 0.03 to 1 0.12 0.5 100 0
Itraconazole 2 0.06 to 2 0.25 0.5 98 2
Amphotericin B 2 0.12 to 2 0.25 0.5
Caspofungin �2, 4, �8 0.06 to 1 0.25 0.5 100 0 100 0
Micafungin �2, 4, �8 2 0.06 to 1 0.5 1 100 0 100 0
Anidulafungin �2, 4, �8 8 0.12 to 2 1 2 100 0 100 0

aS, susceptible; I, intermediate; R, resistant.
bIsolates described are the first isolate tested per patient per infection episode, 2014 to 2018. WT, wild type; NWT, non-wild type.
cSDD, susceptible dose dependent.
dECVs for fluconazole, voriconazole, posaconazole, and itraconazole are for C. parapsilosis sensu stricto.
eECVs for caspofungin, micafungin, and anidulafungin are for C. parapsilosis species complex.
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Candida spp. to triazoles (25) and echinocandins (24) have recently been determined.
Using these values, a higher percentage (�10%) of isolates with non-wild-type vori-
conazole MICs were noted for C. parapsilosis. Likewise, �10% of C. parapsilosis and C.
tropicalis isolates had non-wild-type fluconazole MICs (Table 1).

From 2014 to 2018, antimicrobial susceptibility testing was performed on 145
isolates of 23 less common Candida spp. and non-Candida yeasts representing the
first isolates submitted for AFST per patient per infection episode. For species with �3
isolates, MIC distributions showing the number of isolates at each MIC for each
species-drug combination are displayed in Table 3. As previously suggested, combining
these data with similarly derived data from other studies would provide a more robust
description of the MIC profiles of these rarely encountered species (21).

Among the rarely encountered Candida spp., elevated fluconazole MICs (�4 �g/ml)
were noted for isolates of C. orthopsilosis (n � 1/10), C. pelliculosa (n � 1/8), C. lipolytica
(n � 1/4) (Table 3), C. inconspicua (n � 2/2), C. utilis (n � 2/2), C. pararugosa (n � 1/2), C.
blankii (n � 1/1), C. bracarensis (n � 1/1), C. ciferrii (n � 1/1), and C. magnoliae (n � 1/1)
(data not shown). Voriconazole and posaconazole MICs were typically �1 �g/ml, ex-
cept for 1 isolate each of C. orthopsilosis (n � 1/10), C. pelliculosa (n � 1/8), C. lipolytica
(n � 1/4) (Table 3), C. utilis (n � 1/2), C. blankii (n � 1/1), C. bracarensis (n � 1/1), and C.
magnoliae (n � 1/1) (data not shown). MICs of the echinocandins among the rarely

TABLE 2 Percentages of Candida spp. susceptible to various antifungals for which CLSI
breakpoints exist, 2014 to 2018

Organism and
antifungal agent

% susceptiblea
Cochran-Armitage
P valueb2014 2015 2016 2017 2018

C. albicans
Fluconazole 98 98 98 98 98 0.792
Voriconazole 98 99 98 99 98 0.966
Caspofungin 100 100 100 100 99 0.122
Micafungin 100 100 100 100 99 0.085
Anidulafungin 100 100 100 100 100 0.192

C. glabrata
Caspofungin 99 87 95 93 92 0.206
Micafungin 99 99 98 99 100 0.659
Anidulafungin 99 99 98 99 100 0.825

C. parapsilosis
Fluconazole 90 81 79 82 83 0.254
Voriconazole 98 98 99 99 99 0.345
Caspofungin 100 100 100 100 100 NA
Micafungin 100 99 99 100 100 0.533
Anidulafungin 100 99 100 100 100 0.425

C. tropicalis
Fluconazole 76 77 85 75 79 0.963
Voriconazole 71 50 66 57 64 0.998
Caspofungin 100 100 100 100 99 0.220
Micafungin 100 100 100 100 100 NA
Anidulafungin 100 100 100 100 100 NA

C. krusei
Fluconazole 95 95 86 95 89 0.584
Caspofungin 100 89 82 68 89 0.083
Micafungin 100 95 100 100 100 0.476
Anidulafungin 100 95 100 100 100 0.476

C. guilliermondii
Caspofungin 100 100 100 100 100 NA
Micafungin 100 100 100 100 100 NA
Anidulafungin 100 100 100 100 100 NA

aThe numbers represent the first isolate of each species per patient per infection episode.
bNA, not applicable.
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TABLE 3 Activities of antifungal drugs against uncommon yeast species with �3 isolates

Organism, no. of
isolates tested,
and antifungal agent

No. of isolatesa at MIC (�g/ml) of:
MIC50

(�g/ml)
MIC90

(�g/ml)<0.008 0.015 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 >128

S. cerevisiae, n � 34
Fluconazole 6 3 9 6 4 4 1 1 2 16
Voriconazole 1 10 12 4 3 3 1 0.06 0.5
Posaconazole 2 4 11 10 2 4 1 0.5 2
Itraconazole 3 8 13 5 2 3 0.25 2
Amphotericin B 2 8 18 6 0.5 1
Caspofungin 1 2 10 15 6 0.25 0.5
Micafungin 1 4 18 10 1 0.12 0.25
Anidulafungin 1 2 4 18 6 3 0.12 0.25

C. kefyr, n � 27
Fluconazole 8 13 6 0.25 0.5
Voriconazole 21 6 0.008 0.015
Posaconazole 2 1 6 9 7 1 1 0.06 0.12
Itraconazole 2 5 16 2 2 0.06 0.12
Amphotericin B 1 2 17 7 1 2
Caspofungin 8 11 4 2 1 1 0.03 0.12
Micafungin 1 8 12 3 1 1 1 0.06 0.25
Anidulafungin 2 3 8 8 3 1 1 1 0.12 0.5

R. mucilaginosa, n � 27
Fluconazole 1 1 1 1 5 18 256 �256
Voriconazole 1 1 1 2 1 4 7 9 1 2 4
Posaconazole 1 2 2 2 10 7 3 1 8
Itraconazole 1 1 2 2 6 12 3 1 16
Amphotericin B 1 4 16 6 0.5 1
Caspofungin 1 1 1 21 3 8 �8
Micafungin 1 1 2 20 3 8 �8
Anidulafungin 1 1 1 21 3 8 �8

C. orthopsilosis, n � 10
Fluconazole 1 5 2 2 1 1 8
Voriconazole 1 2 5 2 1 0.03 0.5
Posaconazole 1 2 2 6 0.12 0.12
Itraconazole 1 1 2 6 1 0.12 0.25
Amphotericin B 2 8 1 0.5 1
Caspofungin 1 3 6 1 0.5 1
Micafungin 2 7 2 0.5 1
Anidulafungin 1 5 4 1 0.5 2

C. intermedia, n � 8
Fluconazole 2 3 2 1 0.25 1
Voriconazole 8 0.008 0.008
Posaconazole 5 3 0.008 0.015
Itraconazole 2 4 2 0.03 0.06
Amphotericin B 3 2 3 0.25 0.5
Caspofungin 6 1 1 0.06 0.25
Micafungin 2 6 0.03 0.03
Anidulafungin 3 3 1 1 0.03 0.12

C. pelliculosa, n � 8
Fluconazole 3 4 1 4 8
Voriconazole 1 6 1 0.12 0.25
Posaconazole 1 3 3 1 0.5 1
Itraconazole 3 4 1 0.25 0.5
Amphotericin B 1 2 4 1 0.5 1
Caspofungin 1 3 3 1 0.06 0.12
Micafungin 1 3 4 0.03 0.03
Anidulafungin 8 0.015 0.015

(Continued on next page)
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encountered Candida spp. were typically quite low (�0.5 �g/ml), except for 2/27
isolates of C. kefyr and 5/10 isolates of C. orthopsilosis (Table 3). Notably, 5 isolates of C.
auris were recovered from 2014 to 2018; however, unlike what has been typically
reported previously (17), none of the MICs for the 3 main classes of antifungal drugs
were elevated. Of note, these isolates all belonged to clade IV (South American) of C.
auris as determined by WGS analysis (26).

Among the non-Candida yeasts representing first isolates submitted for AFST per
patient per infection episode, MICs of the echinocandins were very high for all isolates
of C. neoformans, R. mucilaginosa, and T. asahii, although they remained low (�0.5 �g/
ml) for S. cerevisiae (Tables 1 and 3). Fluconazole MICs were also elevated (�4 �g/ml)

TABLE 3 (Continued)

Organism, no. of
isolates tested,
and antifungal agent

No. of isolatesa at MIC (�g/ml) of:
MIC50

(�g/ml)
MIC90

(�g/ml)<0.008 0.015 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 >128

C. metapsilosis, n � 6
Fluconazole 1 4 1 1 4
Voriconazole 1 4 1 0.015 0.06
Posaconazole 1 4 1 0.03 0.06
Itraconazole 3 2 1 0.06 0.12
Amphotericin B 1 5 0.5 0.5
Caspofungin 3 2 1 0.25 0.5
Micafungin 2 4 0.5 0.5
Anidulafungin 1 4 1 0.12 0.5

T. asahii, n � 6
Fluconazole 3 2 1 4 8
Voriconazole 1 3 2 0.06 0.12
Posaconazole 4 2 0.25 0.5
Itraconazole 1 5 0.25 0.25
Amphotericin B 1 5 0.5 0.5
Caspofungin 6 8 8
Micafungin 6 8 8
Anidulafungin 6 8 8

C. auris, n � 5
Fluconazole 1 3 1 1 2
Voriconazole 2 3 0.015 0.015
Posaconazole 1 4 0.015 0.015
Itraconazole 1 1 3 0.06 0.06
Amphotericin B 1 3 1 1 2
Caspofungin 1 1 3 0.25 0.25
Micafungin 2 3 0.03 0.06
Anidulafungin 5 0.12 0.12

C. lipolytica, n � 4
Fluconazole 2 1 1 4 �256
Voriconazole 2 1 1 0.06 8
Posaconazole 1 1 1 1 0.5 8
Itraconazole 3 1 0.12 16
Amphotericin B 2 2 1 1
Caspofungin 1 3 0.5 0.5
Micafungin 1 3 0.5 0.5
Anidulafungin 1 2 1 0.12 0.25

C. catenulata, n � 3
Fluconazole 1 1 1 2 4
Voriconazole 1 1 1 0.03 0.12
Posaconazole 1 2 0.03 0.03
Itraconazole 1 2 0.03 0.03
Amphotericin B 1 2 0.5 0.5
Caspofungin 1 1 1 0.25 0.5
Micafungin 1 2 0.03 0.03
Anidulafungin 1 2 0.06 0.5

aIsolates represent the first species per patient per infection episode, 2014 to 2018.
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among some isolates of C. neoformans (n � 3/77), S. cerevisiae (n � 10/34), and T. asahii
(n � 1/6) and most R. mucilaginosa isolates (n � 26/27), although the MICs for vori-
conazole and posaconazole were typically low (Tables 1 and 3).

When we analyzed all the submitted isolates, we noted examples of 24 sets of
sequential isolates of C. albicans (n � 5), C. glabrata (n � 12), C. parapsilosis (n � 2), C.
tropicalis (n � 4), and C. krusei (n � 1) from single patients that demonstrated a
susceptible-to-nonsusceptible shift in antifungal resistance within a 6-month period
(considered to be a single infection episode) (Table 4). Whole-genome sequencing was
performed on select sets of these isolates to determine if the isolates were the same
strain and in an attempt to identify the molecular mechanisms of resistance. In total, we
sequenced 2 pairs of C. albicans (SP0206/SP0369 and SP2512/SP2683) and 1 pair of C.
tropicalis (SP4694/SP4785) isolates that demonstrated a shift from azole susceptibility to
resistance. We also sequenced 3 pairs of C. albicans (SP1153/SP1274, SP1261/SP1350,
and SP4920/SP5012), 5 pairs of C. glabrata (SP1533/SP1643, SP2320/SP2659, SP3417/
SP3689, SP3046/SP3439, and SP2983/SP3003), and 1 pair of C. tropicalis (SP4433/
SP4501) isolates where the MICs of one or more echinocandins shifted from susceptible
to resistant (Table 4). The numbers of days between an initial susceptible isolate and a
subsequent resistant isolate ranged from 10 to 127. For 11 of the pairs (SP0206/SP0369,
SP2512/SP2683, SP1153/SP1274, SP1261/SP1350, SP4920/SP5012, SP1533/SP1643,
SP2320/SP2659, SP3417/SP3689, SP3046/SP3439, SP4694/SP4785, and SP4433/SP4501),
multilocus sequence-typing (MLST) analysis and whole-genome single-nucleotide poly-
morphism (SNP) maximum-parsimony (MP) phylogenetic analysis suggested a high
degree of genetic relatedness between the initial susceptible and subsequent resistant
isolates from the same patient; the MLST sequence types were the same, and isolate
pairs clustered together in the MP trees (Table 4; see Fig. S1 in the supplemental
material). For one pair of C. glabrata isolates (SP2982/SP3003), the MLST sequence types
were different and the isolates did not cluster together in the whole-genome SNP MP
tree (Table 4; see Fig. S1). The specimen source of the initial susceptible isolate of this
pair was peritoneal fluid, while the subsequent resistant isolate was derived from blood
10 days later (Table 4).

Comparison of the pairs of initial susceptible and subsequent resistant isolates of C.
albicans where echinocandin resistance was acquired (SP1153/SP1274, SP1261/SP1350,
and SP4920/SP5052) revealed that all 3 strains acquired an S645P mutation in hot spot
1 of GSC1 (Table 4). Similar comparisons among initial susceptible and subsequent
resistant isolates of C. glabrata revealed 3 strains (SP2320/SP2659, SP3417/SP2689, and
SP3046/SP3439) that demonstrated acquisition of S663P in hot spot 1 of FKS2 and 1
resistant isolate (SP3003) with an isoleucine instead of phenylalanine at position 625 of
hot spot 1 of FKS1 compared to the C. glabrata reference strain, CBS138. In one set of
C. glabrata isolates (SP1533/SP1643), there were no mutations detected in FKS1, FKS2,
or FKS3 (Table 4). Comparison of the single pair of susceptible and resistant isolates of
C. tropicalis from the same patient revealed the acquisition of an S30P mutation in
CTRG_04661 (Table 4), which aligns with amino acid position 663 of the hot spot 1
region of C. albicans GSC1.

Among pairs of isolates demonstrating a shift from azole susceptible to azole
resistant, we examined the following genes: ergosterol production enzyme genes ERG3
and ERG11; efflux pump genes CDR1, CDR2, CDR4, CDR5, CDR11, MDR1, FLU1, SNQ2,
TPO3, and TOR1; and transcription factor genes MMR1, Ndt80, Stb5, TAC1, and UPC2 (7,
21, 27) (see Table S3 in the supplemental material). In the first pair of C. albicans isolates
with acquired azole resistance, no detectable missense mutations in these targets were
identified in the resistant isolate SP0369 relative to the initial susceptible isolate SP0206
(see Table S3). Conversely, multiple mutations were noted between the resistant
(SP2683) and susceptible (SP2512) isolates of the second pair of C. albicans isolates,
most notably a homozygous A255T mutation in ERG3 (see Table S3). Comparison of
genome-wide copy number variation between azole-resistant C. tropicalis strain SP4785
and its diploid progenitor, SP4694, suggested that the estimated overall ploidy of
supercontig 3.8 was �4 (see Table S3 and Fig. S2 in the supplemental material), with
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the ploidy of the regions containing the ERG11 sterol 14-demethylase gene and the
TAC1 transcriptional-activator gene estimated at 6.0 and 6.2, respectively.

DISCUSSION

Surveillance of antifungal susceptibility/resistance among clinical yeast species is an
important endeavor given reports of resistance acquisition during treatment, the
clinical impact of a variety of uncommon yeasts that are refractory to antifungal agents
(9), and the potential for nosocomial spread of resistant strains (28–30). While global
surveillance can identify emerging threats, local monitoring is also useful, since it can
provide geographically focused information to aid empirical treatment and inform
antifungal stewardship work.

The current study describes susceptibility/resistance rates among Candida spp. and
non-Candida yeast species received at the provincial reference laboratory in Ontario for
antifungal susceptibility testing. As PHO performs the vast majority of AFST in the
province and Ontario is Canada’s most populous province, representing almost 40% of
the country’s population (22), these data have potential to be relevant nationally.
Isolates were submitted from both hospital and community laboratories, with the
majority cultured from blood and other sterile sites. Similar to other reports from North
America, Europe, and Australia, the majority of the isolates were C. albicans, followed by
C. glabrata and C. parapsilosis (8, 20, 31–35). In other geographic regions, including
Latin America, Asia, South Africa, the Middle East, and North Africa, C. glabrata is less
frequently isolated, with C. parapsilosis and/or C. tropicalis recovered more predomi-
nantly in the species distribution (36–40). The proportional species distribution re-
mained fairly constant from 2014 to 2018, except for a significant increase in C.
tropicalis. Other studies have also noted a shift toward non-albicans clinical yeast
isolates (1, 11, 13, 20). The total number of yeast isolates submitted each year for AFST
standardized to population size appears to be increasing, with an annual change of
approximately 7.4%. This may signal an increasing prevalence of invasive yeast infec-
tions in Ontario, possibly due to an aging population and/or an increasing immuno-
compromised patient population, as has been noted previously (1), or in the face of
reports of increased resistance rates in yeast, it may represent decreased confidence
among clinicians to treat empirically, based on species assignment and the desire to
have actual susceptibility results or MICs.

Among the set of first isolates per patient per infection episode, C. albicans isolates
were largely susceptible to both azoles and echinocandins, as in other studies (8, 20, 21,
33, 36, 39). Resistance rates for C. glabrata to all echinocandins were around 1%, which
is lower than those reported for other sets of North American isolates (8, 20, 21).
Echinocandin resistance in C. glabrata is more common in North America than in
Europe and is quite rare in Asia and Latin America (8, 21, 31, 41). Conversely, azole
resistance among C. parapsilosis (9%) and C. tropicalis (12%) isolates was higher here
than that observed in other North American studies (8, 20). Higher levels of azole
resistance among C. parapsilosis and C. tropicalis have been observed in Europe and
Asia, respectively (31, 34, 35, 39, 41, 42). Differences between antifungal susceptibility
rates in Ontario and in the other North American studies may be due to a large
foreign-born population in Ontario (�30%) (43), as well as frequent travel to and from
a diverse collection of countries of origin compared to other populations studied.
Resistance rates have remained stable in Ontario from 2014 to 2018.

In the data set of first isolates per patient per infection episode, the number of yeast
isolates other than C. albicans, C. glabrata, C. parapsilosis, and C. tropicalis was notable,
with 11.6% identified as other Candida species and 3.1% as non-Candida yeasts (C.
neoformans, S. cerevisiae, T. asahii, and R. mucilaginosa). Since many of these species
exhibited elevated MICs for one or more azole or echinocandin drugs (9), antifungal
susceptibility data for isolates of these rarely encountered species have been included
in this study to contribute to the scarce literature. This can help inform treatment and
can potentially be combined with similar data sets from other studies to provide a more
robust description of MIC profiles (21). Among the non-Candida yeasts, the isolation of
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5 C. auris isolates is noteworthy and unusual in the context of the global C. auris crisis
(17) in that all 5 appeared to be susceptible to all 3 major classes of antifungal agents.
All 5 isolates, though from individual patients over a span of several years, have been
determined through WGS analysis to be members of the South American clade (IV) and
also to be closely related to one another (26).

Within the data set, 24 pairs of isolates were identified where a patient’s first isolate
was susceptible to an antifungal agent while a subsequent isolate within 6 months,
defined here as representing a single infection episode, was nonsusceptible. Of these,
12 pairs were investigated by WGS to determine if the isolates represented the same
strain and, if so, to attempt to elucidate the potential causal molecular mechanism(s) of
acquired resistance. MLST and whole-genome SNP MP phylogenetic analysis demon-
strated that for 11 of the 12 pairs (5 C. albicans, 4 C. glabrata, and 2 C. tropicalis), the
first susceptible isolate and the subsequent resistant isolate were the same strain, thus
confirming that resistance was acquired by the strain via within-host evolution rather
than a strain replacement event. In one case (PA2419), a patient had a set of C. glabrata
strains isolated from peritoneal fluid (SP2982; susceptible) and blood (SP3003; echino-
candin nonsusceptible) 10 days apart; however, the two isolates had different sequence
types, indicating that they did not represent within-host evolution of resistance, but
instead, the patient harbored 2 different strains of C. glabrata.

In 6 of 7 cases of acquired echinocandin resistance, nonsynonymous mutations
resulting in missense variants in a 1,3-beta-glucan synthase protein were noted be-
tween the initial susceptible and subsequent resistant isolates. This mechanism of
echinocandin resistance is well characterized, and the GSC1 S645P and FKS2 S663P
mutations are frequently observed in echinocandin-resistant clinical isolates of C.
albicans and C. glabrata, respectively (18, 19, 45, 46). One echinocandin-resistant isolate
of C. glabrata (SP3003) had an F625I mutation in FKS1 compared to the C. glabrata
reference strain, CBS138. Although in this case (PA2419) we lacked a prior paired
susceptible strain (see above) (Table 4), position 625 of FKS1 is within hot spot 1 (19, 45),
suggesting that it is the cause of echinocandin resistance in the isolate. For one
susceptible-to-resistant C. glabrata isolate pair (SP1533/SP1643), no mutations were
detected in the 1,3-beta-glucan synthase gene FKS1, FKS2, or FKS3. This has been noted
in other studies, particularly with low-level resistance, as in this case (caspofungin MIC,
0.5 �g/ml), and supports the suggestion of alternate mechanisms of echinocandin
resistance yet to be described (47–50). Comparison of the initial susceptible and
subsequent echinocandin-resistant isolates of C. tropicalis (SP4433/SP4501) revealed an
S30P mutation in CTRG_04661, which aligns with known hot spot 1 position 663 in its
ortholog, GSC1, in C. albicans and has previously been reported as a mechanism of
echinocandin resistance in this organism (51, 52).

The cause of azole resistance is more difficult to elucidate, since it can be mediated
by multiple mechanisms, including activation of a variety of efflux pumps due to
mutations in regulatory elements or transcription factors and nonsynonymous muta-
tions or upregulation of one of several genes involved in ergosterol synthesis (7). For
1 strain of C. albicans (SP0206/SP0369) that developed azole resistance, no nonsynony-
mous mutations were detected in candidate azole resistance genes despite extensive
searching. Resistance in this strain is likely mediated by a mechanism not detectable by
our analysis, i.e., gene upregulation. Although a variety of mutations were noted in the
candidate azole resistance genes for the second pair of C. albicans susceptible-resistant
isolates (SP2512/SP2683), the most significant was a homozygous A255T mutation in
ERG3. Defective or missing ERG3 renders C. albicans azole resistant (53), and mutations
in ERG3 have been noted in azole-resistant clinical isolates (45, 54), making this the
likely cause of azole resistance acquired by C. albicans in this case. For C. tropicalis
isolate pair SP4694/SP4785, which was investigated for the development of azole
resistance, the most significant alteration detected and the likely cause of azole
resistance acquisition was the increase in copy number variation of supercontig 3.8.
While the exact chromosomal configuration was not determined, YMAP analysis sug-
gested that the entire supercontig 3.8 was duplicated, progressing from diploid to a
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ploidy of �4, with a partial section located on the left side progressing to a ploidy of �6,
possibly through formation of an isochromosome (55). The ergosterol synthesis gene ERG11
and TAC1, the transcriptional activator of CDR1 and CDR2, are located on the left side of
supercontig 3.8, suggesting that aneuploidy in the strain mediated azole resistance by
ERG11 and TAC1 gene amplification. Although this is a previously undescribed resistance
mechanism in C. tropicalis, it is a known mechanism of azole resistance in C. albicans (55),
and point mutations and increased expression of ERG11 have been previously described as
mechanisms of azole resistance in C. tropicalis (56, 57).

Although this study examined a fairly large collection of clinical yeast isolates, we
acknowledge several limitations of the study. The first limitation is our lack of clinical
information on the patients from whom the yeasts were isolated. We do not know the
patient setting (e.g., inpatient or outpatient) or treatment history. Knowledge of what
antifungal agents the patients received would allow more meaningful analysis of our
results but was unavailable to us. A second limitation is the fact that, although we
performed much of our analysis using the first isolate submitted to our laboratory, this
may not truly represent the patient’s first isolate, as that may not have been forwarded
to us for AFST. Similarly, this study does not capture yeast isolates for which no
susceptibility testing was requested and the patients were managed empirically. Al-
though we perform the majority of AFST for yeast in the province, some local labora-
tories do not forward their isolates to us and perform their own testing in house. Finally,
no comparison was made between the CLSI broth microdilution and the Sensititre
YeastOne methods, although previous studies have demonstrated good agreement
between the methods (58–60), and CLSI breakpoints have previously been applied to
Sensititre YeastOne MICs (61). Also, ECVs developed for Candida spp. with Sensititre
YeastOne are typically within one 2-fold dilution of those determined by the CLSI
reference method (24, 25), demonstrating close agreement. Further research is required
to establish clinical breakpoints for use with the Sensititre YeastOne panels.

In conclusion, this study describes the species distribution, antifungal susceptibility
patterns, and molecular mechanisms of resistance of clinical yeast isolates in Ontario,
Canada’s most populous province. Our data suggest that both the species distribution
and the rates of resistance remained constant from 2014 to 2018, with the exception
of a small but significant increase in the proportion of C. tropicalis among yeast isolates.
Rates of resistance to all three classes of antifungal drugs remained relatively low in our
population. We also demonstrated the utility of whole-genome sequencing to confirm
cases of acquired resistance and to identify the molecular mechanisms associated with
resistance. Ongoing testing and surveillance of invasive and recalcitrant yeast infec-
tions, as well as public health vigilance, are recommended given the global threat of
increasing antifungal resistance (10) and the confirmed presence of C. auris among
Ontario patients.

MATERIALS AND METHODS
Organisms and susceptibility testing. The Public Health Ontario Laboratory (PHOL) is the provincial

reference microbiology laboratory for Canada’s most populous province, encompassing 39% of the
country’s population (14.5 million of 37.6 million people in 2019) (22). PHOL performs the majority of
AFST in Ontario for hospitals and community laboratories. ASFT is performed on request from the
treating physician and is typically restricted to invasive isolates from normally sterile sites. Acceptance
criteria are relaxed for immunocompromised individuals, patients in intensive care units (ICU), and those
failing empirical therapy, in which cases isolates from nonsterile sites may also be tested. Antifungal
susceptibility data were retrospectively collected for a total of 5,171 clinical yeast isolates, including
Candida spp., C. neoformans, T. asahii, S. cerevisiae, and R. mucilaginosa, submitted to PHOL from 2014 to
2018 for AFST.

Yeast identification was performed by a combination of morphological; biochemical; matrix-assisted
laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS), using a Bruker MALDI
Biotyper (Bruker Daltonics, Billerica, MA); and ITS2 sequence analyses (62–64).

In vitro AFST for fluconazole, voriconazole, posaconazole, itraconazole, amphotericin B, caspofungin,
micafungin, and anidulafungin was performed using the BMD-based Sensititre YeastOne Y09 panels
(ThermoFisher, Waltham, MA), with MIC results read at 24 h for Candida spp. and up to 72 h for other
yeast species, when adequate growth in the positive-control well was observed (65, 66). CLSI breakpoints
were applied according to the guidelines of CLSI M60 (23). C. krusei ATCC 6258 and C. parapsilosis ATCC
22019 were routinely included as quality control organisms (23), with results within acceptable ranges.
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The rate of increase of yeast isolates submitted for AFST from 2014 to 2018 was estimated as the
slope of the line of the natural logarithm of the incidence rate per 100,000 population from 2014 to 2018.
The Cochran-Armitage test was used to determine the statistical significance (P � 0.05) of temporal
trends of proportional changes in species distribution and percent susceptibility. Analyses were per-
formed in R v3.6.2 (67), using the DescTools package (68).

The initial data set of 5,171 clinical yeast isolates was culled to remove duplicate isolates of the same
species received from the same patient within a 6-month period, with the assumption that they
represented multiple isolates from single infection episodes. Specimen source distribution, species
distribution, MIC statistics, susceptible/nonsusceptible percentages, and wild-type/non-wild-type per-
centages were calculated from the culled data set containing 4,715 isolates using CLSI MIC breakpoints
and published Sensititre YeastOne ECVs (23–25).

The initial data set was also examined for sets of sequential isolates from single infection episodes
for single patients that demonstrated a susceptible-to-nonsusceptible shift in antimicrobial resistance.
These isolates were selected for further analysis, including WGS.

Whole-genome sequencing analysis. Whole-genome sequencing was performed on select sets of
C. albicans, C. glabrata, and C. tropicalis isolates that represented pairs of sequential isolates obtained
from the same patient less than 6 months apart, representing single infection episodes, where the AFST
profile shifted from susceptible to resistant. Total genomic DNA prepared using a ZymoBiomics DNA
Miniprep kit (Zymo Research, Irvine, CA, USA) was used as input for library preparation using a Nextera
XT DNA Library Prep kit (Illumina, San Diego, CA, USA) according to the manufacturer’s instructions.
Sequencing was performed on a MiSeq using a MiSeq reagent kit v3 (Illumina).

Genome assembly and SNP calling were performed according to the GATK Best Practices (79–81).
Briefly, paired-end reads of each isolate were mapped against its respective reference genome (C.
albicans SC5314 haplotype A version A22, C. glabrata CBS138, or C. tropicalis MYA-3404) downloaded
from the Candida Genome Database (69) using the Burrows-Wheeler alignment tool (BWA) version 0.7.17
(70) with the BWA-MEM algorithm and Picard tools v 2.9.0 (http://broadinstitute.github.io/picard). Indel
realignment and base recalibration were performed with GATK v 3.8 using known indel and polymor-
phisms files (71) for C. albicans or indels and polymorphisms obtained from an initial round of
HaplotypeCaller (44) for C. glabrata and C. tropicalis. HaplotypeCaller was employed in GVCF mode,
followed by joint genotyping of all isolates of each species. SNPs were hard filtered based on the
following parameters: QD, �2.0; FS, �60.0; MQ, �40.0; SOR, �3.0; MQRankSum, less than �12.5; and
ReadPosRankSum, less than �8.0. The hard-filtering parameters for indels were as follows: QD, �2.0;
FS, �200.0; SOR, �10.0; ReadPosRankSum, less than �20.0. For each isolate, SNPs and indels with read
depths (DP) of �10 were filtered.

MLST profiles were generated by uploading genomes created using the GATK FastaAlternateReference-
Maker tool (72–74; https://pubmlst.org). Maximum-parsimony phylogenetic analysis of whole-genome
SNPs with 500 bootstrap replications was performed in Mega v 10.1.6 (75) following Clustal W (76)
alignment. All positions containing gaps and missing data were eliminated (complete deletion option).

Finally, select genes known to be involved in azole or echinocandin resistance were examined to
detect genotypic differences between isolate pairs from the same patient that demonstrated a shift from
susceptible to resistant. The genes associated with azole resistance and their corresponding locus tags
are listed in Table S3. The locus tags of the 1,3-beta-glucan synthase genes associated with echinochan-
din resistance were as follows: C. albicans GSC1 (CAALFM_C102420CA), GSL2 (CAALFM_CR00850CA), and
GSL1 (CAALFM_C105600WA); C. glabrata FKS1 (CAGL0G01034g), FKS2 (CAGL0K04037g), and FKS3
(CAGL0M13827g); and C. tropicalis CTRG-04661, CTRG_04806, and CTRG_00996. SnpEff v 4.3t (77) was
used to annotate the SNP differences to identify those that produced missense variants. Finally, genome
maps of resistant strains were visualized using YMAP (78), where the corresponding susceptible strain
was selected as the parental strain comparator in order to visualize genome-wide ploidy estimates, copy
number variation, and loss of heterozygosity events.

This work was reviewed and approved by PHO’s Research Review Board, as well as Research Ethics.
A privacy impact assessment was also completed.

Accession number(s). Raw sequences of the isolates have been deposited in the NCBI BioProject
database under accession number PRJNA610214.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 1.1 MB.
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