
Screening Repurposing Libraries for Identification of Drugs
with Novel Antifungal Activity

Gina Wall,a Jose L. Lopez-Ribota

aDepartment of Biology and The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, Texas, USA

ABSTRACT Fungal organisms are ubiquitous in nature, and progress of modern
medicine is creating an expanding number of severely compromised patients sus-
ceptible to a variety of opportunistic fungal infections. These infections are difficult
to diagnose and treat, leading to high mortality rates. The limited antifungal arsenal,
the toxicity of current antifungal drugs, the development of resistance, and the
emergence of new multidrug-resistant fungi, all highlight the urgent need for new
antifungal agents. Unfortunately, the development of a novel antifungal is a rather
long and expensive proposition, and no new classes of antifungal agents have
reached the market in the last 2 decades. Drug repurposing, or finding new indica-
tions for old drugs, represents a promising alternative pathway to drug develop-
ment that is particularly appealing within the academic environment. In the last few
years, there has been a growing interest in repurposing approaches in the antifun-
gal arena, with multiple groups of investigators having performed screenings of dif-
ferent repurposing libraries against different pathogenic fungi in search for drugs
with previously unrecognized antifungal effects. Overall, these repurposing ef-
forts may lead to the fast deployment of drugs with novel antifungal activity, which
can rapidly bring benefits to patients, while at the same time reducing health care
costs.

KEYWORDS antifungal agents, antifungal drug development, drug repurposing,
fungal infections, repositioning

FUNGI, FUNGAL INFECTIONS, AND CURRENT ANTIFUNGAL DRUGS

Fungi are capable of causing a variety of infections ranging from superficial to
disseminated invasive infections and do so with increasing frequency in an expanding
population of immunocompromised and medically compromised patients. These in-
fections are difficult to treat, and some of them carry unacceptably high levels of
morbidity and mortality. The current antifungal arsenal is very limited due to the
paucity of selective targets. Clinically used antifungals for the treatment of invasive
fungal infections are restricted to the polyenes (i.e., amphotericin B), the azoles (i.e.,
fluconazole, voriconazole), and the echinocandins (i.e., caspofungin and micafungin)
(1). However, problems with toxicity and the emergence of resistance limit the useful-
ness of current antifungals, and some of the emerging pathogens display intrinsic
resistance to all classes of antifungals. Therefore, there is an urgent need for the
development of novel antifungal agents, particularly those with new chemical classes
and novel mechanisms of activity.

DRUG REPURPOSING VERSUS DE NOVO DRUG DISCOVERY

The process of de novo drug discovery and development, although currently the
most common choice for drug development, is time-consuming and expensive, with
high attrition rates (2). In general, it can take up to 20 years to bring a drug from its
initial discovery to its release on the market after U.S. Food and Drug Administration
(FDA) approval, and this development can cost up to $2 billion with only a 5% chance

Citation Wall G, Lopez-Ribot JL. 2020.
Screening repurposing libraries for
identification of drugs with novel antifungal
activity. Antimicrob Agents Chemother
64:e00924-20. https://doi.org/10.1128/AAC
.00924-20.

Copyright © 2020 American Society for
Microbiology. All Rights Reserved.

Address correspondence to Jose L. Lopez-
Ribot, jose.lopezribot@utsa.edu.

Accepted manuscript posted online 13 July
2020
Published

MINIREVIEW

crossm

September 2020 Volume 64 Issue 9 e00924-20 aac.asm.org 1Antimicrobial Agents and Chemotherapy

20 August 2020

https://orcid.org/0000-0003-1992-3270
https://doi.org/10.1128/AAC.00924-20
https://doi.org/10.1128/AAC.00924-20
https://doi.org/10.1128/ASMCopyrightv2
mailto:jose.lopezribot@utsa.edu
https://crossmark.crossref.org/dialog/?doi=10.1128/AAC.00924-20&domain=pdf&date_stamp=2020-7-13
https://aac.asm.org


of successful clinical trial completion and therefore successful entrance into the market
(3–6). Unfortunately, antifungal research and development has been mostly discontin-
ued at most large pharmaceutical companies, and the development of new antifungals
relies heavily on the efforts of a few much smaller biotechnology companies, with a few
investigational agents at different stages of the development pipeline (for comprehen-
sive reviews on this topic, readers are referred to references 7 and 8).

In contrast, drug repurposing (or repositioning), referring to the identification of
new uses for established medications and abandoned or failed compounds, has
emerged as an expedited alternative approach to find new indications for existing
drugs (6, 9). This approach can substantially decrease the time, effort, and cost that it
takes to find a new therapeutic indication and bring rapid benefit to the patients (6, 10)
(Fig. 1). Repurposing candidates are FDA approved or at the very least have been
through several stages of clinical development and therefore have well-known safety
and pharmacological profiles. Candidate therapies can be rapidly advanced through
the drug development process and be ready for clinical trials quickly, speeding their
review by the FDA and, if approved, their integration into health care (11), thereby
potentially providing for the quickest possible transition from bench to bedside and
potentially saving the lives of thousands of patients. For these reasons, repurposing
represents a highly attractive and pragmatic alternative to drug development and has
enormous potential for rapid clinical impact, including in the antifungal arena (12, 13).
Several FDA-approved drugs have been repurposed from their original indications for
treatment of other diseases. For example, thalidomide was originally used to treat
morning sickness in pregnant women in 1957; however, after the discovery of its
terrible side effects, the drug was banned (6, 14). Despite these problems, it was
discovered in 1964 that this drug was effective for treatment of erythema nodosum
laprosum (leprae), and it is currently the primary treatment for this disease (14). Besides
this use, thalidomide and its analogs have also been approved for the treatment of
multiple myeloma (15). Another example of a successfully repurposed drug is sildenafil.
It was originally developed as an angina medication, and it is now marketed as Viagra
for the treatment of erectile dysfunction (16, 17). Azidothymidine was originally devel-
oped as a chemotherapy drug, but it failed; in spite of this failure, it became the first
successful drug for the treatment of HIV infection (16, 18). All of these examples show
that drug repurposing can be successful in identifying new indications for previously
approved drugs.

There are also important considerations about patenting and commercialization of
repurposed drugs that need to be taken into account. For off-patent drugs, a new
method-of-use patent can be secured for a new repurposed use of an old generic drug,
as long as the novel indication is both new and inventive (i.e., nonobvious) (19).
However, because drug repurposing primarily concerns previously known drugs, ob-

FIG 1 Drug repurposing versus de novo drug discovery. This figure shows the time (A), cost (B), and comparative success rates (C) of drug repurposing and de
novo discovery.
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taining patent protection can be challenging, and there are important caveats to be
taken into account regarding intellectual property protection and patent submission
for repurposed drugs (19, 20). First of all, the U.S. courts have concluded that safe-
harbor protections apply to an expanding array of repurposing research activities (21).
It is argued that allowing repurposing research, particularly in academia and not-for-
profit organizations, serves the broader interests of society by advancing science and
the medical practice, particularly in the case of diseases that afflict smaller populations
of people or those with limited financial resources (22). Second, in the United States,
drug repurposing can employ the 505(b)(2) drug development strategy (23). This is an
alternative type of submission to regulatory agencies that can be used to obtain the
approval of a new drug if the product in question contains active ingredients similar to
those of a previously approved drug, with the data included in the submission relying
on safety and effectiveness characteristics related to the existing product (20, 23).
Importantly, this alternative pathway can be expedited and requires significantly less
resources than the typical regulatory pathway.

REPURPOSING FOR THE IDENTIFICATION OF DRUGS WITH NOVEL ANTIFUNGAL
ACTIVITY

Although drug repurposing is a promising option, there have yet to be any medi-
cations that have been fully repurposed for new antifungal indications at this time (13).
It is worth noting that 5-flucytosine was first developed as a potential anticancer drug.
However, since 5-flucytosine was not sufficiently active against tumors, it was eventu-
ally investigated and repositioned as an antifungal agent (24).

There are a few notable early examples of attempts by different groups of investi-
gators to repurpose several types of drugs as new antifungals. Clinically used cyclo-
sporine targeting calcineurin, as well rapamycin and its analogues (“rapalogues”) and
other targets of rapamycin (TOR) inhibitors, displays antifungal activity and acts syn-
ergistically with azole derivatives (25–30). Geldanamycin and other HSP90 inhibitors,
originally developed as potential anticancer medications, also potentiate the activity of
antifungal drugs when used in combination (31, 32). The activity of sertraline, a
well-established antidepressant, against Cryptococcus has been described and improves
fluconazole treatment potentially by benefiting from its excellent penetration into the
central nervous system (33, 34). Sertraline (see also below) reached phase III clinical
trials for treatment of cryptococcal meningitis; however, the drug did not demonstrate
superiority compared to current treatment options in preventing morbidity and mor-
tality (35, 36). Other notable reports on repurposing drugs as antifungals include AR-12,
a derivative of celecoxib which demonstrated broad-spectrum antifungal activity (37,
38); tamoxifen, an estrogen receptor antagonist used primarily to treat breast cancer
(39, 40); and derivatives of the antimalarial drug mefloquine (41).

SCREENING REPURPOSING LIBRARIES TO IDENTIFY COMPOUNDS WITH
PREVIOUSLY UNIDENTIFIED ANTIFUNGAL ACTIVITY

Most recently, adopting a common and powerful strategy from the drug discovery
field, different academic laboratories have initiated repurposing programs by screening
approved compound libraries representing large collections (hundreds to thousands) of
existing drugs in search for those with novel antifungal activity. These efforts have been
facilitated by the availability of repurposing libraries from different sources, including
some that are commercially available, as well as others that can be procured from
governmental and not-for-profit entities. More often, these efforts have used pheno-
typic screens which can identify compounds that demonstrate a relevant effect without
the need for prior knowledge of the specific target affected. The majority of screens
have been performed to identify drugs that inhibit growth of a given fungal species,
although others have focused on the inhibition of a particular trait associated with
virulence (i.e., biofilm formation). Regardless, most in vitro phenotypic screens have
used some type of cell-based assays in a multiwell format, thereby allowing for the
implementation of highly efficient high-throughput screening (HTS) techniques. The
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following is a summary of such repurposing screening efforts, which are also listed in
Table 1.

In pioneering screening studies, the Lin group screened the Johns Hopkins Clinical
Compound Library (JHCCL, v1.0), a collection of over 1,500 FDA- and foreign-approved
drugs, in search for those that can inhibit growth of Aspergillus nidulans. This screening
identified the antifungal activity of the cationic peptide antibiotic polymyxin B and the
antidepressant sertraline, with follow-up studies demonstrating the broad-spectrum
activity of both drugs against a variety of medically important fungi, including Candida
spp. (33, 42). The same library was screened by another group for drugs with an
inhibitory effect on Candida albicans, resulting in the identification of four compounds
with no previously known antifungal properties that could be repurposed in the future:
mycophenolic acid, disulfiram, fluvastatin, and octodrine, with octodrine demonstrating
the most effective killing of serum-grown C. albicans (43).

The Prestwick library, a collection of approximately 1,200 mostly FDA-approved,
off-patent drugs with a diverse range of functions, mechanisms of action, and well-
characterized pharmacological and toxicological properties, has been screened by
multiple groups of investigators to identify drugs that could potentially be repositioned
as antifungals. Using a novel HTS assay of yeast cell lysis (44), a pioneering screen of this
library by the Krysan group identified 31 drugs/molecules with fungicidal activity
against Cryptococcus neoformans, including 15 drugs for which direct antifungal activity
had not previously been reported (45). The authors of that study subsequently focused
on the drugs capable of crossing the blood-brain barrier and accessing the phagoly-
sosome, which represent two major hallmarks of the pathogenesis of cryptococcosis,
and identified amiodarone as their top candidate. Interestingly, this antiarrhythmic had
been previously reported to have activity against yeasts, including C. albicans (46).

Since biofilm formation is associated with different manifestations of candidiasis and
cells in biofilms display high levels of resistance against most clinically used antifungals
(47, 48), Siles et al. screened the Prestwick library in search for inhibitors of C. albicans
biofilm formation (49). This screen led to the identification of a total of 38 bioactive
drugs capable of inhibiting biofilm formation in this pathogenic fungus. These re-
searchers classified the initial hit compounds as antifungal drugs, general antimicrobi-
als/antiseptics, or miscellaneous drugs, which were considered to be those with no
previously described antifungal activity. Among these, Auranofin, a gold thiol com-
pound used to treat rheumatoid arthritis, represented the most attractive drug from a
repurposing point of view, with potent activity even against preformed C. albicans
biofilms. Interestingly, a follow-up study described its antifungal activity against a
variety of medically important fungi, including different yeasts (Candida and Crypto-
coccus spp.), as well as molds, including some highly resistant emerging pathogens
such as those in the genera Scedosporium and Lomentospora (50). Another screen of the
Prestwick Chemical Library against two C. albicans strains, one being fluconazole and
echinocandin resistant, identified ribavirin as the best option for repurposing (51).
Ribavirin was shown to have activity against several Candida species, including those
with drug resistance, but further elucidation is needed. The same Prestwick library
was screened for efficacy against Candida auris, an emerging and rapidly spreading
multidrug-resistant pathogen for which there is an urgent need to develop new
antifungal agents (52, 53), leading to the identification of ebselen, a synthetic organose-
lenium compound that is part of the NIH clinical collection, as the most effective
compound inhibiting both planktonic growth and biofilm formation (54). Furthermore,
ebselen displayed a broad spectrum of antifungal activity against a variety of medically
important fungi, including yeasts (with activity against multiple other Candida species)
and molds. Confirming these results, the Zaragoza group also screened the Prestwick
library in search of off-patent drugs with antifungal activity against three different
strains of C. auris (55), resulting in the identification of ebselen and suloctidil as the
most promising repositionable candidates, especially given their synergism with cur-
rent antifungals (55). A novel cell-based in vitro screen was developed and used to
screen the Prestwick library to identify inhibitors of C. neoformans intracellular replica-
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tion inside macrophages (56). The primary screen identified a total of 19 drugs that
could significantly reduce intracellular growth of the pathogen with follow-up studies
revealing fendiline hydrochloride as a potential repositionable candidate for future
anticryptococcal therapies. A new version of the Prestwick Chemical Library of 1,233
FDA-approved compounds was screened by the Ibrahim and Uppuluri labs against C.
albicans, C. auris, and Aspergillus fumigatus (57). These researchers identified six com-
pounds that could inhibit all three organisms, and they chose alexidine dihydrochlo-
ride, an antibacterial and antiplaque agent with limited side effects, as the best
candidate for further investigation, mostly based on its ability to kill 80% of a mature
biofilm at a concentration lower than 10 �M, although thimerosal also met this criteria
(57). They also tested alexidine dihydrochloride against several different species of
fungi, including filamentous fungi such as Lomentospora corymbifer and Mucorales spp.,
as well as yeasts such as C. neoformans. These researchers found that this drug was able
to inhibit 50% of growth of the yeasts at �1.5 �g/ml and of filamentous fungi at
between 1.5 and 3 �g/ml. Alexidine dihydrochloride was also shown to have activity
against azole-resistant isolates and displayed relatively low cytotoxicity against
human cells (57). These results indicate that this drug may be a good candidate for
repurposing in the future. Confirming these results, most recently alexidine dihy-
drochloride, together with hexachlorophene, clioquinol, and thonzonium bromide,
was also identified in a screen of the Prestwick library against six highly resistant
filamentous fungi, including Aspergillus, Fusarium, Scedosporium, Rhizopus, and
Lichtheimia spp. (58).

Two collections from Medicines for Malaria Ventures (MMV) have been screened for
drug-like compounds with antifungal activity. The Pathogen Box, a collection of 400
drug-like compounds, has been screened against C. albicans, C. auris, and C. neoformans
(59–61). Vila et al. originally screened this library in search for inhibitors of C. albicans
biofilm formation, reporting on the increased anti-biofilm activity of compound
MMV688768 compared to its activity against planktonic cultures. This finding points to
the fact that this drug-like compound may affect processes with a predominant role
during the biofilm mode of growth (59). Almost concomitantly, Mayer and Kronstad
screened the Pathogen Box compounds for inhibitors of C. neoformans and C. albicans
planktonic growth, leading to the identification of MMV688271, which displays potent
fungicidal activity mostly under nutrient-limited conditions, with a novel mechanism
targeting the fungal response to stress at the plasma membrane and cell wall (61). Most
recently, the Pathogen Box was also screened in search for inhibitors of C. auris, both
under planktonic and biofilm growing conditions, with the identification of iodoquinol
and miltefosine as the most promising compounds, with follow-up studies indicating
antifungal activity against several multidrug-resistant C. auris strains and other Candida
spp. (60). We note that the antifungal activity of miltefosine has been described
previously (62, 63). A different library from MMV, the Malaria Box containing 400
antimalarial compounds, was also screened by the Casadevall group (64). The best
candidate from this screen, MMV665943 (referred to as DM262), showed a 16- to 32-fold
increase in potency compared to fluconazole against C. neoformans and also demon-
strated potent antifungal activity against C. albicans and other multidrug-resistant
fungal species such as Lomentospora prolificans and Cryptococcus gattii.

Different other repurposing libraries have also been screened for compounds with
antifungal activity. A report by Stylianou et al. described the screenings of a total of 844
drugs in two compound libraries, the Enzo and the Institute for Molecular Medicine
Finland oncology collection libraries, specifically for anti-Candida activity. Besides
known antifungals and nonantifungal drugs with known antifungal activity (including
auranofin), results identified seven “off-target” drugs with no previously described
antifungal activity (65). Of these, the aminopeptidase inhibitor tosedostat, which has
undergone clinical trials for anticancer therapy, displayed notable activity against
multiple Candida spp. Another screen was done with the Enzo library of 640 FDA-
approved compounds against Candida deuterogattii, and L-type calcium channel block-
ers were identified as having broad-spectrum activity; specifically, nisoldipine showed
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efficacy against 9 fungal species from 4 genera, including Candida species (66). The
Calderone group screened a library of around 3,000 compounds, provided by the
Developmental Therapeutics Program of the NIH/NCI, against a panel of multiple fungal
species, including Candida (67). These researchers identified NSC319726, an anticancer
drug, as an effective growth inhibitor of C. albicans and other fungal species, including
A. fumigatus and C. neoformans. Moreover, this drug was shown to display synergy with
other commonly used antifungals (67). The Rodrigues laboratory screened the NIH
clinical collection of 727 compounds against C. neoformans and, among the initial hits,
identified mebendazole as the most effective repositionable drug known to be able to
penetrate the brain in animal models, pointing to its potential to be repurposed for the
treatment of cryptococcosis (68), and so selected this as the most promising candidate.
A total of 1,280 drugs in the Library of Pharmacologically Active Compounds
(LOPAC1280) was screened using an antifungal susceptibility test to identify inhibitors
of C. albicans growth (69). Initial hits from this screen had fungistatic (26 compounds)
or fungicidal (9 compounds) effects. Five main hits were then tested for their inhibitory
activity against different Candida species under both planktonic and biofilm growing
conditions, and compound CV-3988 emerged as the leading repositionable candidate
because of its potency and lack of toxicity (69). The same LOPAC library was screened
against C. neoformans by the Williamson group using an HTS technique in order to
identify fungicidal compounds under nutrient-deprived conditions, leading to the
identification of a chemical scaffold, 10058-F4, with potent fungicidal activity at low
micromolar concentrations (70). A total 1,068 compounds in the L4200 chemical library
(TargetMol) were screened in search for those displaying antifungal activity against C.
albicans in a standard growth inhibition assay (71), leading to the identification of
robenidine, an FDA-approved drug for the treatment of coccidian infections in animals,
with subsequent experiments indicating that the drug displayed promising broad
antifungal activity against other yeasts and Aspergillus.

A complementary approach has been the screening of repurposing libraries in
search for compounds that potentiate the activity of current, clinically used antifungal
agents. One such screen, using the Prestwick Chemical library, was performed by the
Wright group to identify drugs that could be combined with fluconazole to improve its
antifungal activity against Candida and Cryptococcus strains and the model yeast
Saccharomyces (72). These researchers found that trifluoperazine, terbinafine, sertraline,
ketoconazole, and caspofungin had a synergistic effect when combined with flucona-
zole against C. albicans. The Wright group also found that combining sertraline with
terbinafine, trifluoperazine with ketoconazole, and ketoconazole with sertraline re-
sulted in synergistic effects, and they demonstrated that sertraline increased the
susceptibility of C. albicans and C. parapsilosis fluconazole-resistant strains to flucona-
zole (72). The same group screened the McMaster Bioactives collection of around 3,600
compounds derived from commercial sources against Saccharomyces cerevisiae, Schizo-
saccharomyces pombe, C. albicans, and C. neoformans in search for potentiators of the
activity of six different antifungals (fluconazole, caspofungin, amphotericin B, terbin-
afine, benomyl, and cyprodinil) (73). Altogether, results from this HTS generated a deep
reservoir of interactions in the antifungal space termed by these authors as the
“antifungal combinations matrix.” For example, the screen identified amiodarone hy-
drochloride, asiatic acid, clofazimine, and cyclosporine as having synergy with caspo-
fungin for C. albicans, whereas tomatidine was identified as having synergy with
fluconazole. After performing further drug combination tests against C. albicans clinical
isolates, these researchers identified chlorhexidine, tomatidine, and hypocrellin A as
being able to increase the susceptibility of these isolates to fluconazole. In the end, they
chose clofazimine, an antimycobacterial drug that had not yet been described as
having antifungal activity, as their main hit because of its broad-spectrum antifungal
activity when used in combination with fluconazole and caspofungin (73). Another
screen was performed by the Thevissen laboratory, using the Pharmakon 1600 repo-
sitioning library, to identify compounds that act synergistically with miconazole in the
treatment of mature C. albicans biofilms. The screen resulted in the identification of

Minireview Antimicrobial Agents and Chemotherapy

September 2020 Volume 64 Issue 9 e00924-20 aac.asm.org 7

https://aac.asm.org


artesunate (belonging to the family of artemisinins, clinically used in the treatment of
malaria) as the most promising drug acting as a potentiator of azole activity against
highly resistant preformed C. albicans biofilms (74).

FUTURE DIRECTIONS AND CONCLUSIONS

There is no question that we need new antifungal agents. Drug repurposing is less
costly, less time-consuming, and more likely to succeed than de novo drug discovery,
and this approach can expedite the transition from the bench to the bedside. This
review has focused mostly on the physiologically relevant phenotypic screening of
different repurposing collections in order to find known drugs with previously unde-
tected antifungal activity. As mentioned above, the different screens conducted to date
have led to the identification of several drugs with novel antifungal activity, some of
which display a very promising spectrum of antifungal activity. However, we note that
most of this work represents the initial steps in repurposing programs started by
different groups of investigators. As such, relatively little information on antifungal
activity is still available for the majority of hit compounds identified during these
screenings, and their repositioning as antifungal agents will require further work to
confirm their promise. We anticipate that some of the currently identified reposition-
able compounds will be subjected to follow-up studies, including further characteriza-
tion of their in vitro antifungal activities, preclinical studies such as in vivo activity in
clinically relevant animal models of fungal infection, and hopefully clinical trials in the
not so distant future. Critical questions that will need to be addressed are those related
to in vitro/in vivo correlation, for which the efficacy of leading repositionable com-
pounds will need to be tested in clinically relevant models of fungal infections, as well
as those addressing key toxicological and pharmacokinetic/pharmacodynamic princi-
ples of exposure at the site of action, target binding, and expression of functional
pharmacological activity—the so-called “three pillars” of drug development (75). For
example, if a medicine is going to be repurposed for the treatment of cryptococcal
meningitis, the molecule must be capable of crossing the blood-brain barrier. Also, the
new activity identified for a repurposed drug may not be potent enough for the
intended clinical new antifungal indication, resulting in lower subinhibitory concentra-
tions that may even lead to the development of resistance. In addition, potentially
adverse side effects associated with the original therapeutic indication of the repur-
posed drug need to be taken into account. Thus, despite the theoretically facilitated
pathway for repurposed drugs, it is imperative that the efficacy of the drugs is
demonstrated in their newly discovered indications, in this case as antifungals. We also
anticipate that more repurposing screens will be performed in the near future, includ-
ing against different fungal species besides Candida and Cryptococcus, and hopefully
expand to those emerging fungi for which current antifungal drugs are not effective. In
addition to all these scientific considerations, repurposing represents an ideal milieu for
collaboration and for the establishment of new partnerships between academia, non-
profit organizations, governments, and international organizations to fill the existing
void in the antifungal drug development space, with emphasis on the accelerated
development of antifungals that we so desperately need.
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