
Systems biology approaches to measure and model phenotypic 
heterogeneity in cancer

Aaron S. Meyer1, Laura M. Heiser2,*

1Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA

2Department of Biomedical Engineering and OHSU Center for Spatial Systems Biomedicine, 
OHSU, Portland, OR, USA

Abstract

The recent wide-spread adoption of single cell profiling technologies has revealed that individual 

cancers are not homogenous collections of deregulated cells, but instead are comprised of multiple 

genetically and phenotypically distinct cell subpopulations that exhibit a wide range of responses 

to extracellular signals and therapeutic insult. Such observations point to the urgent need to 

understand cancer as a complex, adaptive system. Cancer systems biology studies seek to develop 

the experimental and theoretical methods required to understand how biological components work 

together to determine how cancer cells function. Ultimately, such approaches will lead to 

improvements in how cancer is managed and treated. In this review, we discuss recent advances in 

cancer systems biology approaches to quantify, model, and elucidate mechanisms of heterogeneity.

Introduction

Cancers are marked by substantial genetic, epigenetic, and phenotypic heterogeneity. With 

the advent of single cell technologies, our ability to quantify cell-to-cell variability is 

advancing rapidly; however, the biological interpretation of these complex data is only at a 

nascent stage. A systems biology approach, in which quantitative technologies, 

comprehensive experimental measurements, and computational analyses are carefully 

integrated, is required to understand intratumoral heterogeneity and extract biological 

meaning. Moreover, computational frameworks will aid in the elucidation of the underlying 

biological mechanisms of heterogeneity. Such integrated approaches will ultimately lead to a 

deeper understanding of cancer and how to manage it to improve patient outcomes. Here, we 

cover recent advancements in cancer systems biology that have improved our understanding 

of heterogeneity in genetic, phenotypic, signaling, and pharmacokinetic realms (Figure 1).
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Genetic heterogeneity

It is well-established that the initiation and progression of cancers depends on the acquisition 

of multiple driver mutations that activate oncogenic pathways and lead to the induction of 

cancer hallmarks1, 2. Moreover, the growth of tumors likely reflects a complex process of 

clonal evolution that ultimately results in considerable genetic heterogeneity within tumors3. 

A recent pan-cancer analysis of primary tumors revealed that the majority of cancers harbor 

multiple genetically distinct clones, and tumors with more clones harbored more driver 

mutations and showed greater nuclear heterogeneity4. Moreover, increased genetic 

heterogeneity is associated with poor outcome, indicating that measures of intratumoral 

heterogeneity may serve as useful biomarkers4. With the widespread adoption of single-cell 

sequencing technologies, we are poised to develop deeper and more precise views of 

intratumoral heterogeneity5.

Recent years have seen a substantial advancement in our understanding of genetic 

heterogeneity, particularly as it relates to therapeutic response. Using cell line model 

systems, Ramirez and colleagues studied drug-tolerant persister cells and found that they 

may provide a latent reservoir for the emergence of drug-resistance. Specifically, long-term 

drug exposure leads to survival and expansion of cells through a drug-tolerant state that can 

mediate genetically-driven resistance mechanisms6. Consistent with this idea, single-cell 

DNA and RNA sequencing of triple negative breast cancer patient samples profiled before 

and after treatment demonstrated that resistant genotypes were pre-existing and adaptively 

selected after treatment, while new transcriptional profiles were acquired by reprogramming 

in response to therapy7. Taken together, these studies further motivate the importance of 

understanding and managing intratumoral genetic heterogeneity. Laajala, et al (this issue) 

reviews systems biology approaches to study cancer genetic heterogeneity in greater depth.

Phenotypic heterogeneity

Cancers display substantial phenotypic heterogeneity and rapid adaptation in response to 

stimuli that occur on timescales that cannot be explained by genetic evolution or clonal 

selection, indicating a substantial contribution of the epigenome to cell-to-cell variation. A 

landmark study by Sharma and colleagues revealed that small sub-populations of cancer 

cells could mediate therapeutic resistance on time-scales too rapid to be explained by genetic 

evolution and selection8. Moreover, the acquisition of this drug-tolerant phenotype was 

found to be transient and result from chromatin changes, indicating a dynamic regulation of 

phenotypic heterogeneity which stands in contrast to long-term “hard-wired” genetic 

changes. In support of this hypothesis, a recent study of therapeutic response revealed 

substantial cell-to-cell transcriptional variability that involves infrequent, semi-coordinated 

transcription of a number of resistance markers in a small percentage of “jackpot” cells9. 

Such findings indicate that heterogeneity is mediated at multiple molecular levels and 

therefore requires integrated experimental approaches that can link across modalities at the 

single cell level.

Several groups have developed computational frameworks to shed light on the molecular 

basis and dynamic nature of phenotypic heterogeneity. Gupta and colleagues found that 

Meyer and Heiser Page 2

Curr Opin Syst Biol. Author manuscript; available in PMC 2020 September 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



subpopulations of sorted phenotypically-distinct triple-negative breast cancer cells could 

return to equilibrium proportions over time10. This observation could be explained by a 

Markov model in which cells transition stochastically between phenotypically distinct states, 

indicating phenotypic plasticity even in the absence of an external pressure such as therapy. 

Building on this idea, Risom and colleagues used an ordinary differential equation (ODE) 

model to show that drug tolerant states can arise through differentiation state transitions 

rather than Darwinian selection of preexisting subpopulations11, 12. Such switching between 

differentiation states may enable cells to rapidly evade therapy. These studies highlight the 

importance of coupling experimental observation with computational frameworks to gain 

insight into the underlying mechanisms of cell-to-cell variation and plasticity.

The wide-spread adoption of single cell sequencing methods provides insights into the 

phenotypic state of hundreds to thousands of individual cells and has spurred novel analytics 

to aid in interpretation of these complex data13–15. In particular, some of the challenges of 

single cell sequencing include both technical artifacts related to differences in read-depth, 

dropouts (i.e., stochastic false-negative gene expression measurements), and variation in 

total transcript abundance16, 17. However, many of these technical challenges are being 

overcome with novel analytical approaches. For example, Azizi and colleagues developed 

the BISCUIT algorithm, a Bayesian approach for simultaneous clustering and imputing 

single cell RNAseq data13. Seurat is a suite of tools for analysis and visualization of single 

cell RNAseq data sets based on common sources of variation, which enables identification 

of shared populations across data sets; its major strengths are ease-of-use and extensive data 

visualization tools14. As new technologies develop, so too does the interest in integrating 

data from across various modalities to develop a complete picture of the biological 

mechanisms associated with heterogeneity18.

Ultimately, effective cancer therapy regimens will need to consider heterogeneity, and 

several methods to design therapies combatting cell-to-cell variation have emerged in recent 

years19–22. For example, DRUG-NEM is an integrated experimental-computational 

approach to rationally identify drug combinations that account for intratumoral 

heterogeneity19. This approach applies cyTOF (Mass Cytometry Time-of-Flight), a variant 

of flow cytometry that replaces fluorescence detection with metal ion mass spectrometry for 

greatly improved multiplexing23. cyTOF enables the simultaneous measurement of many 

intracellular and surface markers for hundreds of thousands of single cells in a sample23. 

The authors assess single-cell proteomic responses to individual drugs and then use a nested 

effects model to prioritize drug combinations that produce the maximal desired intracellular 

effects. Such nested effects models can identify common and unique signaling changes in 

response to drug treatments and this information can be used to optimize the minimum 

number of drugs that induce desired signaling changes24. Functional approaches such as 

these are quite advanced for blood cancers, where primary cancer cells are relatively 

accessible25.

Heterogeneity in cell signaling and pathway activity

While statistical models like those described above have refined our view of how cell-to-cell 

variability drives resistance, mechanistic information about relevant resistance pathways 
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enables in silico experimentation of how individual molecular events influence overall 

behavior. Cells respond dynamically to treatment, and so genetically-encoded single cell 

reporters and in vitro live-cell time-lapse imaging, paired with dynamical systems models, 

have become a mainstay of studying this variability26–30. The continued development and 

use of these experimental and theoretical tools together demonstrate the power of this 

approach. From foundational studies of variability in TRAIL-induced apoptosis, the key 

elements of studying cell heterogeneity in specific pathways have remained largely 

unchanged31–34. Common to all these studies has been that cell-to-cell variability is 

explained by variation in the abundance of a few key proteins, rather than variation across 

many pathway components or intrinsic noise. Critically, computational models identified key 

components that both predict variation in phenotypic response across cells and pinpoint how 

to control this variability.

Imaging paired with dynamical systems analysis will continue to be used in studies of 

pathway activity variability and drug resistance. However, new experimental and 

computational tools will certainly expand the impact this pairing provides. Studies of 

pathway-specific cell-to-cell heterogeneity will always depend upon detailed knowledge of 

pathways and their relevant regulatory processes. Therefore, general improvements in our 

biological knowledge will expand the range of pathways and processes that can accurately 

be modeled. While imaging provides uniquely rich, dynamic data on single cell responses, it 

remains limited in the number, types, and throughput of molecular measurements one can 

perform. Methods to interrogate molecular state, such as endogenous protein tagging, will 

widen the accessible range of pathways and resistance mechanisms35. The number of 

measurements that can be multiplexed in single living cells is unlikely to considerably 

improve, and cell-to-cell variability dictates non-destructive techniques for sampling 

multiple measurements in the same cell. However, dynamic measurements can be paired 

with destructive measurements as an endpoint, and data can then be integrated to develop an 

understanding of the biological mechanisms that may be driving differences in dynamic 

responses36. Modeling developments to parameterize dynamical models on mixtures of 

population and individual cell measurements will be critical to enhance the value of these 

mixed measurements37. Finally, individual pathways operate within a larger context of 

broader molecular changes. Methods to integrate “phenotypic” and mechanistic cell 

variability will ultimately be necessary to recognize the simultaneous contributions of 

pathway-specific and global changes. These burgeoning improvements in measurement and 

modeling show that dynamical models are poised for expanded use in studies of cell 

signaling.

Spatial heterogeneity

Properties of the in vivo tumor environment introduce sources of phenotypic and molecular 

heterogeneity beyond those outlined above. In contrast to most in vitro models of cancer, 

tissues present variation in the extracellular matrix, resident host cells, and barriers to drug 

access38. Each of these can promote resistance; indeed, pharmacokinetic/pharmacodynamics 

(PK/PD) limitations have long been known to drive resistance across disease indications, 

particularly for tissues such as the central nervous system39. Spatial variation in these 
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properties may co-exist in the same tumor and hinder drug function even in normally 

accessible tissues40.

In vivo and fixed tissue imaging modalities are uniquely powerful for capturing spatial 

variation in tumor properties. Mass spectrometry coupled to localized tissue sampling 

methods has recently enabled drug distribution imaging, alongside traditional 

immunohistochemistry techniques41. These methods also extend whole organism imaging 

methods in resolution and sensitivity to identify drug biodistribution within individual 

tissues. While limited to specific tissue sites, fluorescence intravital imaging has also 

provided a window into the spatial variation of tumors42. For example, even within a single 

patient, individual tumor nodes can have striking variation in immune infiltrates43. A 

continuing challenge will be the many length scales of spatial variation, from poor drug 

distribution across tissues to drug sequestration by neighboring cells44.

Pharmacokinetic models are widespread and accepted for modeling the diffusion and 

transport of molecules within cells and tissues. PK/PD models provide precise predictions 

linking molecular mechanism to cell response but are only accurate if built with a detailed 

understanding of the relevant properties to model. Randall et al recently integrated in vivo 
imaging of drug distribution and phosphoproteomic evaluation of signaling effect to reveal 

that intracranial EGFR inhibitor availability cooperates with other mechanisms of resistance 

in glioblastoma cells45. This integration is especially powerful for distinguishing between 

resistance driven by drug availability and other mechanisms.

Despite spatial effects being long-recognized as a source of intratumoral heterogeneity, more 

robust experimental tools and models are needed to help address how this variation 

influences cancer biology and treatment. In particular, the range of perturbations possible 

and the scale on which they can be performed is quite limited in the in vivo environment. In 
vitro methods to recapitulate critical features of the in vivo environment will be critical to 

enable mechanistic studies. For example, Wu et al. have applied a microfluidic device to 

study the interaction between breast cancer cell drug resistance and migration46. Others have 

demonstrated that hydrogel biomaterials can mimic the tumor extracellular matrix and 

enable detailed study of individual components47, 48. A key requirement of such mimetic 

systems is the inclusion of salient variables and features, which are not always well 

understood.

Future prospects for understanding and managing intratumoral 

heterogeneity

In reality, these distinct forms of heterogeneity likely operate to varying extents in parallel 

within a single tumor. Therefore, applying new findings from model systems will require 

methods to evaluate which forms of heterogeneity are most relevant to therapeutic response. 

Integrating methods to study these forms of heterogeneity will also reveal how they can 

impact each other. For example, Keren et al. recently showed that imaging cyTOF can 

provide both high dimensional and spatial information in breast tumors, and that the spatial 

organization of tumors can predict prognosis49. Forms of single-cell gene expression 

analysis50 that preserve spatial information are now also enabling similar analysis, along 
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with highly-multiplexed immunofluorescence51, 52. These approaches afford assessment of 

multiple biomarkers in a single cell, all while maintaining spatial information about cell-to-

cell variability and organizational structure. Of course, the studies described above have 

universally relied on a theoretical model tailored to the experimental system to understand 

the heterogeneity involved. As new experimental systems are developed, new computational 

models will need to be developed to leverage these data. Finally, a deep understanding of 

heterogeneity will ultimately require the integration of data across multiple physical and 

time scales, which can be achieved with multiscale modeling53.

Summary and conclusions

Genetic heterogeneity perhaps offers a glimpse into the future of how we will understand 

and manage other forms of intratumoral heterogeneity. Observation and characterization 

have given way to broad behavioral principles, such as that of clonal selection and 

expansion. Ultimately, all these forms of heterogeneity dynamically respond to treatment 

and therefore clinical management will require strategies to monitor patient’s tumors over 

time and in response to therapy 7, 54. An integrated cancer systems biology approach will 

provide the framework for understanding the molecular basis of heterogeneity and how to 

manage it clinically.
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Highlights

• Cell-cell variation manifests at multiple levels and scales in cancer

• New profiling technologies are enabling quantitative assessment of 

heterogeneity

• Integrated cancer systems biology approaches provide a mechanistic 

understanding of heterogeneity

Meyer and Heiser Page 10

Curr Opin Syst Biol. Author manuscript; available in PMC 2020 September 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Classes of therapeutically-relevant heterogeneity. Variation may arise from cell-to-cell 

differences in mutational spectra, phenotype, cell signaling pathway activity, or 

pharmacokinetics. Measurement technologies and modeling approaches to study these 

various forms of heterogeneity are indicated.
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Table 1.

Experimental approaches for studying cancer heterogeneity

Technique Cost Number of read-outs per cell Spatial information Temporal information

Single-cell sequencing High 10,000’s No No

seqFISH+ Mid 1,000’s Yes No

cyclicIF, mIHC Low 10’s Yes No

Intravital imaging High 10’s Yes Yes

Reporter molecules Low 1 Yes Yes
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