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Abstract

Genetic studies have recently highlighted the importance of fat distribution, as well as overall

adiposity, in the pathogenesis of obesity-associated diseases. Using a large study (n =

1,288) from 4 independent cohorts, we aimed to investigate the relationship between mean

adipocyte area and obesity-related traits, and identify genetic factors associated with adipo-

cyte cell size. To perform the first large-scale study of automatic adipocyte phenotyping

using both histological and genetic data, we developed a deep learning-based method, the

Adipocyte U-Net, to rapidly derive mean adipocyte area estimates from histology images.

We validate our method using three state-of-the-art approaches; CellProfiler, Adiposoft and

floating adipocytes fractions, all run blindly on two external cohorts. We observe high con-

cordance between our method and the state-of-the-art approaches (Adipocyte U-net vs.

CellProfiler: R2
visceral = 0.94, P < 2.2 × 10−16, R2

subcutaneous = 0.91, P < 2.2 × 10−16), and

faster run times (10,000 images: 6mins vs 3.5hrs). We applied the Adipocyte U-Net to 4

cohorts with histology, genetic, and phenotypic data (total N = 820). After meta-analysis, we

found that mean adipocyte area positively correlated with body mass index (BMI) (Psubq =

8.13 × 10−69, βsubq = 0.45; Pvisc = 2.5 × 10−55, βvisc = 0.49; average R2 across cohorts =
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0.49) and that adipocytes in subcutaneous depots are larger than their visceral counterparts

(Pmeta = 9.8 × 10−7). Lastly, we performed the largest GWAS and subsequent meta-analysis

of mean adipocyte area and intra-individual adipocyte variation (N = 820). Despite having

twice the number of samples than any similar study, we found no genome-wide significant

associations, suggesting that larger sample sizes and a homogenous collection of adipose

tissue are likely needed to identify robust genetic associations.

Author summary

Fundamental aspects of biology such as how the size or number of adipocytes relates to

obesity and cardiometabolic health are still unanswered. To answer such questions, fast,

accurate and automated measurements need to be acquired, free from human biases.

Glastonbury et al., 2020 describe a novel machine learning method to perform rapid

acquisition of adipocyte area estimates from histological imaging data. Using these imag-

ing derived phenotypes, Glastonbury et al., 2020 assess the relationship between adipocyte

size and a range of cardio-metabolic comorbidities, demonstrating that adipocyte size can

vary depending on where adipose is stored throughout the body. By tying genetics with

imaging data, Glastonbury et al., 2020 were able to demonstrate that previous findings

associating adipocyte size with Type 2 Diabetes variants, are likely to be false positives.

This study provides a means of being able to scale up GWAS type analyses to imaging

derived phenotypes.

Introduction

Although obesity is a heritable and heterogeneous cardiometabolic risk factor, little is known

about how genetic variation influences human adipocyte size across adipose depots or how

such variability may confer risk to obesity and other cardiometabolic outcomes [1–4].

A defining feature of obesity is an excess of white adipose tissue (WAT). WAT mass expan-

sion can occur in a range of adipose depots. The two most well defined depots are subcutane-

ous WAT and visceral WAT, where adipose accumulates in intra-abdominal depots present

mainly in the mesentery and omentum and which drains through the portal circulation to the

liver [5]. WAT expansion, both in normal development and in the development of obesity, is

defined by two mechanisms: (i) hyperplasia, the increase in the number of adipocyte precursor

cells, leading to an overall increase in the number of mature adipocytes; and (ii) hypertrophy,

the increase in size of adipocytes due to lipid filling [6–8]. Reduced total adipocyte number has

been associated with type 2 diabetes (T2D) [9], and increased adipocyte size has been associ-

ated with insulin resistance, dyslipidemia, hepatic steatosis, and the onset of T2D [10–11]. In

addition, similar adipocyte sizes observed in BMI-concordant twins suggests a strong genetic

background underlying adipocyte size [12]. To date, little is known about the genetic variation

or molecular pathways that regulate adipocyte morphology (e.g., size, density, and morphol-

ogy) [6,13], or how these link to biological mechanisms, whole-body obesity related traits such

as BMI and waist-hip-ratio (WHR), and subsequent cardiometabolic disease [14].

We therefore sought to explore the relationship between mean adipocyte area and anthro-

pometric traits like WHR and BMI, as well as investigate the genetic underpinnings of mean

adipocyte area by combining histology data of fat tissue with accompanying genetic variation

data from the same samples. Whilst adipocyte counting software exists [15], we chose to focus
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on adipocyte area as a more tractable problem to solve. However, as a by-product of measuring

adipocytes, we also get an approximate count (proportional to total fat mass).

To allow for rapid, automatic quantification and segmentation of mean adipocyte area in

adipose histology slides from subcutaneous and visceral tissue collected from four independent

research cohorts, we developed and applied a Convolutional Neural Network (CNN). For the

first time to our knowledge, we couple the use of image-derived adipocyte area estimates to

test for associations with BMI, WHR adjusted for BMI (WHRadjBMI), and a range of glycemic

traits. Finally, we report the first genome-wide association study (GWAS) of adipocyte surface

area to date, with the goal of identifying common genetic variants that associate with adipocyte

morphology and to investigate previously published links to adipocyte morphology. Whilst

several adipocyte measurement software exist [15–17], we demonstrate better accuracy and

runtime.

Results

Applying a convolutional neural network to obtain region of interest

proposals from thousands of histology slides and millions of cells

We ascertained histology and genotyping data from four independent cohorts (Table 1): (1)

the Genotype-Tissue Expression (GTEx) Project, comprised of a multi-ancestry sample col-

lected in the United States [18], with adipose tissue sampled from the lower leg (subcutaneous)

and greater omentum (visceral); (2) the Endometriosis Oxford (ENDOX) project from the

Endometriosis CaRe Centre, University of Oxford, with adipose tissue sampled from beneath

peri-umbilical skin (subcutaneous) and from the bowel and omentum (visceral) of women

undergoing laparoscopy for suspected endometriosis; (3) severely/morbidly obese patients

undergoing elect abdominal laparoscopic surgery in the Munich Obesity BioBank (MOBB),

with adipose tissue sampled from the upper abdominal area (subcutaneous) and the angle of

His (visceral); and (4) a healthy cohort selected for not having type 2 diabetes (fatDIVA), with

subcutaneous tissue sampled from the abdomen (see Methods for more detail).

To obtain adipocyte surface area measurements, we devised a deep learning pipeline that

performs automatic classification of putative adipose cell containing Region of Interest (ROI)

proposals in whole adipose tissue histology slides followed by segmentation of the images and

then quantification, allowing us to filter tiles of slides that do not contain adipocytes (Fig 1).

Whole Slide Images are split into 1024 X 1024 pixel “tiles”. A Convolutional Neural Net-

work (CNN), InceptionV3, pretrained on ImageNet and fine-tuned on adipose histology tiles,

is used to assign probabilities to tiles containing adipocytes. Using high confidence adipocyte

containing tiles (Posterior Probability> 0.9) alongside manually created binary segmentation

masks, we implemented a U-net CNN to segment adipocytes. We then apply a probability

threshold to each segmentation probability map [19] (see Data Availability and Code for

Table 1. Description of cohorts included in adipocyte morphology phenotyping and meta-analysis. | Histology sample sizes denote the number of tissue samples avail-

able in either the subcutaneous (subq) or visceral (visc) depots, after image quality control was complete (see Methods).

Cohort N, histology (SC/VC)† % female Mean age Mean BMI % with T2D N, both genetic and

histology data

subq visc subq visc
GTEx 715 562 34% 53.4 27.5 22% 504 410

ENDOX 308 42 100% 32.9 26.5 not available 105 23

MOBB 142 171 67% 46.5 44.4 30% 113 131

fatDIVA 123 0 58% 58.0 24.9 0% 98 0

https://doi.org/10.1371/journal.pcbi.1008044.t001
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details), regions are proposed using scikit-learn and areas calculated. Pixel areas are converted

into um2 using the appropriate micron per pixel conversion factor per image.

First, we tiled each histology image slide using a sliding window of 1024 × 1024 pixels. We

applied this tiling strategy across GTEx and ENDOX samples; the MOBB and fatDIVA cohorts

already consisted of images containing adipocytes, and therefore required no tiling or filtering.

Next, we manually selected tiles to form a training dataset of three distinct classes: (i) tiles con-

taining adipocytes, (ii) tiles containing no adipocytes, and (iii) empty tiles. Example images of

these three tile classes are shown in Fig A in S1 Text. To obtain only tiles containing adipo-

cytes, we fine-tuned an InceptionV3 deep convolutional neural network (CNN) [20]; our

CNN achieved 97% accuracy on our held out validation set (Methods). For each tile, we

obtained the posterior probability that the tile belonged to one of the three defined tile classes

(Methods) and defined the set of tiles containing adipocytes as those tiles exceeding a posterior

probability threshold of P> 0.90 for being in that particular class. Choosing such a large poste-

rior probability ensured we obtained images of just adipocytes and no other contaminant tis-

sue (resulting in a low false positive rate and a high false negative rate). Examples of image tiles

classified as adipocyte, non-adipocyte or empty at P> 0.90 are presented in Fig B in S1 Text.

Using deep adipocyte U-net to robustly segment cells and estimate cell area

To measure adipocyte surface area, we treated the task as a segmentation problem. We created

a training dataset of 175 high resolution, hand drawn, manually segmented (1024 pixels × 1024

pixels) binary segmentation masks across all four cohorts (Methods). Binary segmentation

masks are images in which adipocyte/foreground are represented by white pixels taking on

Fig 1. Overview of the pipeline to obtain adipocyte areas.

https://doi.org/10.1371/journal.pcbi.1008044.g001
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value 1 and the background pixels are black, represented as 0 (normalised from pixel space [0–

255] to [0–1]) (Methods). While automated segmentation methods such as watershed and

adaptive thresholding methods (as implemented in Adiposoft and CellProfiler [17,21]) can be

effective for some image analysis, deep learning has shown state-of-the-art performance in

semantic segmentation, object recognition and biomedical segmentation tasks [22–25]. Addi-

tionally, our approach benefits from GPU-acceleration, as it is currently not feasible to analyse

tens of hundreds to millions of images with traditional methods relying on serial CPU com-

pute, Graphical User Interfaces (GUI), or both. Therefore, we trained a U-net architecture,

which we call the Adipocyte U-net (Methods), to produce binary segmentation masks of adi-

pocytes that are then trivial to count and measure computationally. Our Adipocyte U-net

achieved a held-out performance dice coefficient of 0.84 (Methods), indicating a high degree

of overlap between our predicted segmentation and the ground truth known segmentation in

the heldout test set (see Methods).

To benchmark and validate our Adipocyte U-net, we used two cohorts that had previously

independently (blindly) estimated adipocyte surface area for all individuals using Adiposoft

(fatDIVA) and CellProfiler (MOBB), alongside significant manual gating and expert correc-

tion of area predictions. These two methods are the current state of the art approaches for seg-

menting both adipocyte histology images (Adiposoft) and images of a wider array of cells

more generally (CellProfiler) [16,26,27]. We show significant concordance between indepen-

dent adipocyte area estimates between either FatDIVA (rsubq = 0.91, P = 8.3 × 10−45) or MOBB

(rvisc = 0.94, P< 2.2 × 10−16, rsubq = 0.91, P 2.2 × 10−16) and our novel adipocyte estimation

method, Adipocyte U-net (Fig 2). Adipocyte area estimates from the Adipocyte U-net were,

on average smaller, compared to the area estimates obtained by other methods. This can be

attributed to a difference in cutoff values of cell size being used to exclude small, improperly

gated objects between methods.

As a second, non-histology based validation strategy, we compared fat cell size from colla-

genase digestion to adipose U-net area estimates in the MOBB cohort. Independent of the

depot, and similar to the histological validation above, we observed agreement between both

methods (nsubq = 46, rsubq = 0.41, Psubq = 5.0 × 10−3; nvisc = 65, rvisc = 0.59, Pvisc = 2 × 10−7) (Fig

O in S1 Text). As previously reported, we find that whilst adipocyte area estimates vary sub-

stantially dependent on the method used for quantification, the correlation of adipocyte size

and obesity is robust to these differences [28].

Fig 2. Comparison of Adipocyte U-net-estimated adipocyte area with Adiposoft and CellProfiler-estimated

adipocyte area across fatDIVA and MOBB cohort. Estimates from our Adipocyte U-Net and from Adiposoft or

CellProfiler are highly correlated, indicating concordance between our method and the two current gold standards for

measuring cell morphology. The time necessary to compute these estimates with Adipocyte U-net was several orders of

magnitude faster than the time required by Adiposoft/CellProfiler to generate the same measures.

https://doi.org/10.1371/journal.pcbi.1008044.g002
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Our Adipocyte U-net required less than 6 minutes to predict adipocyte surface area across

the ~10,000 images included in fatDIVA and MOBB. In comparison, Adiposoft took ~3.5

hours. GTEx and ENDOX, our largest cohorts, each consisting of approximately 250,000

images, took ~1 hour using the Adipocyte U-net, whilst we estimate Adiposoft would take 19

days for a single run. Additionally, our method captured adipocytes that are absent in Adipo-

soft produced segmentation masks (Fig C and Fig D in S1 Text). Examples of the test segmen-

tation quality are presented in Fig E in S1 Text (all data and code available, see Data

Availability & Code).

Adipocyte area differences from adipose depots throughout the human

body

We next utilised our Adipocyte U-net to obtain area estimates from our four cohorts. These

cohorts totaled 2,176 samples (multiple distinct adipose depots per subject) (Table 2) making

it the largest study of adipocyte morphology of its kind.

For adipocyte area estimation, we obtained estimates for the mean as well as the standard

deviation of adipocyte size for 500 unique cells/per sample/per depot (subcutaneous and vis-

ceral). We determined 500 unique cells to be a necessary minimum for stable, low variance esti-

mates of adipocyte surface area by applying Monte Carlo sampling (Fig F in S1 Text). Given

the different metabolic and physiological roles subcutaneous and visceral adipose tissue depots

play [29], we compared their mean adipocyte cell surface area and performed a random-effects

meta analysis to compare adipocytes across visceral and subcutaneous adipose depots. A depot-

specific effect was observed (Pmeta = 9.8 × 10−7, β = -0.55), with larger cells on average observed

in subcutaneous adipose depots, as previously reported [30] (Fig G in S1 Text). ENDOX cohort

samples showed no significant, but directionally consistent, differences across the two depots (t-

statistic = -1.52, P = 0.13), likely due to limited power in this cohort (N = 42 visceral samples vs.

N = 562 in GTEx; Fig 3). Finally, we observed variation within each depot, further demonstrat-

ing how adipocyte size within a single depot can vary substantially (Fig 3 and Fig I in S1 Text).

As body fat distribution and it’s genetic basis is sexually dimorphic [1,3], we tested for sex-

ual dimorphic effects in adipocyte morphology. A depot-specific meta-analysis showed that

mean adipocyte area in visceral, but not subcutaneous adipose, is sexually dimorphic (Fig G in

S1 Text). Our meta-analysis indicated that women had smaller adipocytes in visceral fat (Pmeta

= 3.05 × 10−7, β = -0.34, I2 = 0). While females have larger adipocytes in subcutaneous adipose

as compared to men, this result was not significant when meta-analysed across cohorts (Pmeta

= 0.08, β = 0.186 I2 = 53.2), adjusting for BMI, age and ancestry (Fig G and Fig J in S1 Text).

Due to the heterogeneity of subcutaneous adipose tissue being derived from various anatomi-

cal locations (I2 = 53.2), it is possible there is a sexually dimorphic effect that is specific to pre-

cise anatomical subcutaneous adipose depots. For example, an effect (β = 0.32, P = 3.0 × 10−6)

Table 2. Summary of adipocyte measurements per cohort.

Cohort Mean adipocyte area estimates (μm2)

Subcutaneous Visceral

GTEx 2,813 ± 717 2,352 ± 866

ENDOX 1,842 ± 484 1,711 ± 518

MOBB 3,239 ± 880 2,513 ± 850

fatDIVA� 1,461 ± 276 N/A

�The cohort fatDIVA were ascertained to fall within a healthy BMI range and to be free of type 2 diabetes. MOBB,

with the largest cell size estimates, are primarily morbidly obese subjects.

https://doi.org/10.1371/journal.pcbi.1008044.t002
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was present in GTEx (derived from the lower leg), one of the four cohorts analysed (Fig G in

S1 Text).

Next, we assessed the relationship between adipocyte area in each depot and a range of dis-

ease relevant covariates. Previous studies have observed that obese individuals have larger adi-

pocytes, but the vast majority of these analyses have been carried out using small sample sizes

(N< 100) [30–31]. We recapitulate the relationship between adipocyte size and BMI in both

subcutaneous and visceral depots across all four cohorts with an effective BMI range of 17–80,

a range of collection methods and disease states. We observed an association between mean

adipocyte area and BMI. We find that the mean adipocyte surface area in visceral fat correlates

more strongly with BMI than adipocyte size in subcutaneous depots (rsubq = 0.47, rvisc = 0.50;

Fig 4, Pmeta = 8.13 × 10−69, β = 0.45), significant after adjustment for sex, age, T2D status, and

Fig 3. Mean adipocyte area across adipose depots (subcutaneous: blue, visceral: green) per sample. Visceral adipose tissue tends to

have a bimodal distribution of mean adipocyte areas as compared to subcutaneous adipose tissue.

https://doi.org/10.1371/journal.pcbi.1008044.g003

Fig 4. Association between mean adipocyte area and BMI across subcutaneous and visceral adipose tissue depots. We observe a

strong correlation between BMI and mean adipocyte size across both subcutaneous and visceral depots in all cohorts.

https://doi.org/10.1371/journal.pcbi.1008044.g004
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self-reported ethnicity (Fig G in S1 Text). We also find a significant positive association

between adipocyte area and subject age in visceral, but not subcutaneous adipose tissue, when

meta-analysed across all available cohorts (Psubq meta = 0.09, β = 0.09; Pvisc meta = 0.01, β = 0.12)

(Fig G in S1 Text).

As GTEx samples are collected post-mortem, and numerous publications have shown a

range of significant associations between sample ischemic time and assays performed on

GTEx subjects [32–33], we assessed the relationship between our adipocyte area estimates, and

sample ischemic time across depots. We find a positive association between mean adipocyte

area and sample ischemic time (Psubq = 1.7 × 10−4, βsubq = 0.14 ± 0.037; Pvisc = 6.8 × 10−4, β =

0.14 ± 0.042) suggesting a relationship between longer ischemic time and larger cells, most

likely due to cell degradation and/or bursting, leading to overestimation of cell surface area

from broken or joining cell membranes or due to failed staining. Additionally, we found no

association between cell estimates and self-reported ethnicity for both depots (P = 0.59).

Finally, studies have found conflicting evidence regarding a relationship (or lack thereof)

between adipocyte size and insulin resistance or T2D status [31,34,35]. We meta-analyzed

GTEx and MOBB, as T2D status was available for both, and did not observe a significant rela-

tionship between adipocyte size and T2D for either depot (Pvisc meta = 0.11, β = 0.12; Psubq meta

= 0.37, β = -0.19) (Fig G and Fig K in S1 Text). As a range of glycemic state variables (HbA1C

and fasting blood glucose) were available for the MOBB cohort, we ran a multiple linear

regression adjusting for BMI and age to investigate the relationship between adipocyte size

and glucose homeostasis. Independent of the depot, no significant associations between glu-

cose or HbA1C and adipocyte size were found (Glucose: nSubq = 110, pSubq = 0.71, nvisc = 124,

pvisc = 0.061; HbA1c: nSubq = 79, pSubq = 0.75, nvisc = 86, pvisc = 0.059). While this suggests that

BMI might act as the primary modifier of adipocyte size in these depots, further studies in

larger cohorts including clinical biochemistry parameters of glucose homeostasis are necessary

to clearly elucidate the role between diabetic state and adipocyte size.

For the MOBB cohort, we had additional extensive clinical measurements, including C-

reactive protein, glucose, triglycerides and 12 additional clinical chemistry-derived phenotypes

(Fig H in S1 Text). We observed several relationships between increased adipocyte size and

WHR (rsubq = 0.28, rvisc = 0.33), C-reactive protein (rsubq = 0.17, rvisc = 0.26), prealbumin (rvisc

= 0.21), gGT (rsubq = 0.17 rvisc = 0.21), thyroxine T3 (rvisc = 0.3) and triglycerides (rvisc = 0.18),

demonstrating a wide range of depot-specific associations. Of these associations, only BMI

(Psubq = 3.6 × 10−10; Pvisc = 5.6 × 10−11) remained significant after adjustment for multiple test-

ing in 19 phenotypes (P = 2.6 × 10−3). Together, these analyses suggest that obesity, as mea-

sured through BMI, is the dominant phenotype associated with adipocyte size, with mean

adipocyte size in visceral fat accounting for, on average, 25% of the variance of BMI (Fig 4).

GWAS meta-analysis of depot-specific adipocyte surface area estimates

We sought to use our histology-derived phenotype data to identify common genetic variants (sin-

gle nucleotide polymorphisms, SNPs) that associate with mean adipocyte size or variance of adipo-

cyte size in subcutaneous and visceral tissue. After data quality control and imputation using the

Haplotype Reference Consortium [36] for those cohorts with SNP array data (Methods), we used

the histology phenotypes to perform genome-wide association testing in each depot and for each

cohort. We then meta-analysed the results in an inverse variance fixed effects meta-analysis. In

addition to performing the meta-analysis across the combined sample, we performed sex-specific

analyses for each depot and each phenotype (mean adipocyte size and variance of adipocyte size).

Our meta-analysis in the combined sample in the subcutaneous depot examined 820 sam-

ples (424 women and 396 men) with available subcutaneous histology data, while our meta-
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analysis in the visceral depot tested 564 samples (259 women and 305 men) with relevant avail-

able histology data. We performed all GWAS analyses using Plink 1.9 and adjusted analyses

for sex, age, BMI, and the first 10 principal components (Methods). As the ENDOX cohort

was genotyped on two separate platforms, we additionally adjusted these GWAS for genotyp-

ing platform. Due to ancestral heterogeneity in GTEx, we reduced our sample to just those

individuals of European descent (Methods). We accounted for testing two separate depots by

setting genome-wide significance at P< 2.5 × 10−8.

No SNP in our meta-analysis achieved genome-wide significance (P< 2.5 × 10−8), likely

due to limited power given the small sample size. A small number of loci in our meta-analyses

contained common SNPs at P< 5 × 10−7 with consistent direction of effect across all available

cohorts (see summary-level results in Data and Code Availability), representing regions of

interest for further genome-wide association testing.

Finally, we used our largest cohort (GTEx) to estimate the SNP-based heritability of the adi-

pose histology phenotypes analysed here (Fig L in S1 Text). We used Genome-wide Complex

Trait Analysis (GCTA) [37] to perform Restricted Maximum Likelihood (REML) analysis to

estimate SNP-based heritability in each cell phenotype and across all sample groups (combined

samples, women only, and men only). Cell phenotypes in both depots appear to be heritable

traits, but error estimates were broad (h2 of mean cell size in subcutaneous tissue = 35.3%, ±
38.4%; h2 of mean cell size in visceral tissue = 22.4%, ± 48.5%; Fig A in S1 Text) reflecting that

analysis of a larger set of samples is necessary for more accurate estimates of trait heritability.

Association signals at previously published adipocyte size loci

Two adipocyte size common variant associations exist in the literature: the KLF14 locus

(rs4731702, found in 18 men and 18 women) and the FTO locus (rs1421085, found in 16 risk

and 26 non risk-allele carriers). While the KLF14 locus was characterised using adipose tissue

histology from non-obese female individuals, the FTO locus was characterized using isolated

floating mature adipocytes in subcutaneous adipose tissue from lean (20< BMI< 24), popula-

tion-level male individuals [38–39]. In our meta-analysis, we find no evidence to support asso-

ciations for either rs4731702 (Pcombined = 0.925, Pfemales = 0.662, and Pmales = 0.158 for mean

adipocyte size in subcutaneous tissue) or rs1421085 (Pcombined = 0.735, Pfemales = 0.426, Pmales =

0.609 for mean adipocyte size in subcutaneous tissue; Fig B in S1 Text & S2 Table).

KLF14 is a female-specific type 2 diabetes-imprinted locus, it is only expressed from the

maternally inherited allele. Additionally, rs4731702 has been linked to T2D risk in recent

GWAS, with the locus only significant in female samples [38]. Because of this, we took further

steps to mirror the original study design as best as possible in each of our cohorts. We excluded

heterozygotes, only considering non-risk allele and risk-allele homozygotes, only considered

genotype data from pre-menopausal women and subjects within a normal BMI range:

18< BMI<30. After this stratification we observe a nominal association similar to the original

study (P = 0.012 n = 18 risk allele carriers (CC) and n = 14 non-risk subjects (TT), having

larger subcutaneous adipocytes (Fig M in S1 Text)). However, when we repeat this analysis in

GTEx visceral fat samples and ENDOX subcutaneous fat samples, we see no evidence of asso-

ciation (GTEx, P = 0.68, nCC individuals = 9, nTT individuals = 9; ENDOX P = 0.91, nCC = 19,

nTT = 19; Fig N in S1 Text). We were unable to perform these analyses in either fatDIVA or

MOBB due to the absence of non-risk allele carriers remaining after sample filtering (fatDIVA)

or due to the nature of the study design (MOBB, which contains a majority of morbidly obese

subjects).

For FTO we were unable to similarly mirror the study design as we were able to do for the

KLF14 locus, given that the reported effect was specific to lean male individuals. Nevertheless,
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we performed analysis to test for association between FTO-rs1421085 and adipocyte size in

GTEx (n risk allele carriers (CC) = 73, n non-risk allele carriers (TT) = 246). In subcutaneous

fat, FTO-rs1421085 was not significantly associated to adipocyte surface area in joint (P = 0.39,

n = 319), female (P = 0.75, n = 125) or male-specific analysis (P = 0.08, n = 194), controlling

for the effects of age and BMI. In visceral fat, FTO-rs1421085 was also not significantly associ-

ated to adipocyte surface area in joint (P = 0.59, n = 248), female (P = 0.98, n = 98) or male-

specific analysis (P = 0.34, n = 150), controlling for age and BMI. Lastly, FTO-rs1421085 was

not significant in ENDOX (female-specific subcutaneous cohort) (P = 0.78, N = 40), MOBB

(morbidly obese) (Psubq = 0.67, nsubq = 68; Pvisc = 0.86, nvisc = 74) or fatDIVA (normal range

BMI and T2D free) (P = 0.34, n = 52).

Association signals at previously published loci associated to obesity and

fat distribution

We additionally sought to test whether known obesity and fat distribution loci were enriched

for signal in our histology GWAS. We therefore looked up the index SNPs at loci associated to

BMI and WHRadjBMI in our meta-analyses [3]. Of the 670 index SNPs associated to BMI and

the 346 index SNPs associated to WHRadjBMI, approximately 3–7% of these SNPs achieved

p< 0.05 in our histology GWAS. Similarly, of the index SNPs associated to either BMI or

WHRadjBMI in sex-specifc analyses, 2–5% achieved p< 0.05 in our sex-specific histology

GWAS. These results indicate no significant enrichment for signal at BMI- or WHRadjBMI-

associated SNPs in our histology GWAS, consistent with the limited power we see in our over-

all analysis.

We additionally looked up those SNPs in our histology GWAS achieving a ‘suggestive’ p-

value (p< 5 x 10−7) in large-scale meta-analysis of BMI or WHRadjBMI. Only one SNP,

rs72811236, achieves nominal significance (p< 0.05) in a GWAS of BMI restricted to women

only. This SNP may represent a bona fide association to adipocyte size, but additional samples

are necessary to establish whether or not a true association exists in this region.

Associations between obesity-trait genetic risk scores and adipocyte area

We tested for associations between genetic risk scores (GRSs) for BMI, WHR, and

WHRadjBMI and mean adipocyte area in both subcutaneous and visceral fat depots (Meth-

ods). We observed a nominal (P< 0.05) association between the BMI GRS and subcutaneous

mean adipocyte area. Each 1-unit higher BMI GRS (corresponding to a predicted 1-standard

deviation higher BMI) was associated with 210 μm2 (95% CI 23–397μm2, P = 0.03) larger

mean adipocyte area, with comparable results for standardized adipocyte area (S2 Table and

S3 Table). However, the association did not surpass our Bonferroni correction threshold of

P< 0.008 (adjusting for three obesity trait GRSs and two fat depots). We observed no other

associations between the obesity-trait GRSs and mean adipocyte area, but the confidence inter-

vals were large, suggesting that larger sample sizes are needed to reliably assess these

relationships.

Discussion

Imaging data provides a rich resource to perform rapid, accurate, and large-scale cellular phe-

notyping. Here, we developed the adipocyte U-net, an image segmentation machine learning

model, to rapidly and accurately obtain measurements of adipocyte area from multiple human

adipose depots across the human body. Whilst previous studies have used unsupervised learn-

ing methods to extract unknown cellular phenotypes and then performed GWAS on these

latent representations [40], this study is the first to our knowledge that ties specific
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(supervised) machine learned image phenotypes to genetic variants. We used these image-

derived phenotypes to establish relationships between obesity, age, sex, T2D, and a range of

clinical covariates. However, most associations we find are attenuated and no longer signifi-

cant after conditioning on BMI, suggesting BMI is the primary driver of adipocyte size

(r = 0.43–0.59 across cohorts and adipose depots). Using adipocyte surface area as a cellular

phenotype, we performed the first GWAS of adipocyte surface area. Genome-wide association

testing revealed no SNP exceeding genome-wide significance (P< 2.5 × 10−8 after multiple

test correction). Heritability estimates also indicated that adipocyte area is likely heritable, but

much larger sample sizes are required to obtain tight confidence bounds.

Our approach represents an additional opportunity for the application of machine learning

in genomics. The Adipocyte U-net not only enables rapid phenotyping (our method is many

orders of magnitude faster than current state-of-the-art approaches), but also demonstrates

how genetic association studies could begin to examine endophenotypes, such as histology

imaging, rather than clinically-measured phenotypes, such as BMI or waist-to-hip ratio. Being

able to interrogate high-dimensional endophenotypes in a GWAS framework may yield a

more rapid uncovering of genetic variants directly linked to the biological mechanisms that

underpin clinically-measured outcomes. Many such methods to derive phenotypes from

images are currently being developed [22,25,41,42].

A small number of studies have previously identified common genetic variants as associated

to adipocyte morphology phenotypes. We report mixed replication results at both rs4731702

(at the FTO locus) and rs1421085 (at the KLF14 locus). Our initial meta-analysis results indi-

cate no evidence for association at either SNP (S1 Table & S2 Table). It is likely given the

weakness of the initial results published and their lack of power (n < 50) that these loci do not

reflect true adipocyte size associated loci. Additionally, whilst our study has variable sample

ascertainment between cohorts (for example, ENDOX is an endometriosis cohort while GTEx

are population-level ascertained postmortem samples), any single cohort described here is at

least twice the size of the original publications. The potential signals at these loci will require

further validation in much larger meta-analyses.

We have performed the largest study of automated histology measurements using a GWAS

approach. Despite this being the largest study of its kind, our total sample size is < 1,000 sam-

ples and we find no genome-wide associated SNPs. Our findings suggest that larger samples

will be necessary to uncover associated genetic variants and more accurately estimate heritabil-

ity and polygenic risk of these phenotypes. Whilst we were underpowered to obtain meta-anal-

ysis heterogeneity statistics with tight confidence intervals, and by using random-effects to

account for additional per-cohort variability, we do indeed see significant heterogeneity (I2)

for phenotype-adipocyte size analyses, likely reflecting the heterogeneous collection of subcu-

taneous and visceral adipose tissue depots across cohorts, including differences in anatomical

locations from which tissues were collected. Larger, more homogeneous samples will be espe-

cially useful to investigate sex-specific effects [1,3]. Finally, our study focuses exclusively on

samples of European-ancestry, a well-described bias in human genomics, [43–44] and studies

in diverse ancestral populations will be necessary to fully understand the biology of adipocyte

morphology and how this links to obesity, a condition that affects populations worldwide.

Adipose tissue represents quite a homogenous and therefore easy tissue for segmentation,

with many other tissues, such as the placenta, being a much more complicated mix of cells and

structures [25]. Adipocyte U-net could be rapidly adapted to other cell types using as few as 50

annotations and the principles of transfer learning [45]. We envisaged future work to take

advantage of the recent successes of meta-learning, in which many similar tasks, such as classi-

fying or segmenting cells across a range of image types, are solved at the same time and any

future task can be adapted to work with very few gradient updates [46].
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We have developed a method to enable rapid and accurate phenotyping from histology

data, enabling integration of larger histology and GWAS datasets with highly-scalable compu-

tational phenotyping methods for future studies. Such an approach can accelerate the explora-

tion of the genetic underpinnings of cell phenotypes or other endophenotypes measured via

imaging data, thus paving the way for further insights into how genetic variation may contrib-

ute to adipocyte morphology and how these mechanisms may contribute to downstream car-

diometabolic disease.

Methods

Data and code availability

Relevant code and data, including images and annotations can be found at the following

GitHub repository: https://github.com/GlastonburyC/Adipocyte-U-net. Here, you can also

find links to download the summary-results from our GWAS analyses.

GWAS summary statistics used for PRS:

https://github.com/lindgrengroup/fatdistnGWAS/tree/master/SuppTable1

Cohort collection, curation, and quality control

GTEx. The Genotype Tissue and Expression (GTEx) Project was initiated to measure

gene expression and identify expression quantitative trait loci (eQTLs) in 53 tissues. The proj-

ect has been previously described [18]. Briefly, samples were collected in the United States.

The vast majority of samples were collected postmortem. Tissues were collected and stored

according to a released protocol.

We obtained 722 subcutaneous and 567 visceral/omentum adipose tissue GTEx histology

slides. All histology images were stored as whole-slide, high-resolution binary ‘svs’ files. All his-

tology slides were obtained at scale 0.4942μm per pixel and were therefore comparable across

samples. To obtain images that were of reasonable resolution for downstream processing and

analysis, we tiled across each of the histology slides, producing 1024 × 1024 pixel tiles.

All samples had missingness < 5%. We excluded samples based on the suggested sample

exclusions from GTEx. These samples include large chromosomal abnormalities (e.g., triso-

mies, large deletions) and mosaics. Principal component analysis (PCA) indicated the cohort

to be a multi-ancestry cohort (including African-, East Asian-, and European-descent sam-

ples), to be expected given that samples were collected from many different locations in the

United States. Within ancestral groups, no sample had an outlying inbreeding coefficient

(defined as� 6 standard deviations from the coefficient distribution).

To clean SNPs, we split the samples (roughly) into subsamples of reasonably homogenous

ancestral groups (for QC purposes only). We dropped all SNPs out of Hardy Weinberg equi-

librium (HWE) with P< 1 × 10−6.

Because samples were sequenced on two sequencing platforms (HiSeq 2000, HiSeq X) we

performed an association test between the SNPs on each platform and removed any SNPs with

substantially different frequencies (P< 5 × 10−8). We ran the same association test, but this

time checking for frequency differences by library preparation group and removed any associ-

ated SNP (P< 5 × 10−8).

After checking transition/transversion ratio by (i) site missingness, (ii) quality-by-depth

(QD), and (iii) depth of coverage, we removed all sites with missingness > 0.5%, sites with

QD< 5, and sites with total depth < 9000 or > 33,000. The final dataset included 635 samples

and>35M genetic variants with a minor allele count > 1.

We assessed the association of adipocyte area to a range of whole-body traits that were

available in the GTEx dataset (BMI, Weight, Ischemic time & Type 2 Diabetes status).
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Abdominal laparoscopy cohort—Munich Obesity BioBank / MOBB. We obtained sub-

cutaneous and visceral adipose tissue histology slides from a total of 188 morbidly obese male

(35%) and female (65%) patients undergoing a range of abdominal laparoscopic surgeries

(sleeve gastrectomy, fundoplication or appendectomy). The visceral adipose tissue is derived

from the proximity of the angle of His and subcutaneous adipose tissue obtained from beneath

the skin at the site of surgical incision. Images were acquired at 20× magnification with a

micron per pixel value of 0.193μm/pixel. Collagenase digestion and size determination of

mature adipocytes was performed as described previously [47]. All samples had genotypes

called using the Illumina Global Screening beadchip array.

Collaborators from MOBB—the abdominal laparoscopy cohort, sent DNA extracted from

192 samples to the Oxford Genotyping Center for genotyping on the Infinium HTS assay on

Global Screening Array bead-chips. Genotype QC was done using GenomeStudio and geno-

types were converted into PLINK format for downstream analysis. We checked sample miss-

ingness but found no sample with missingness > 5%.

To perform the remaining sample quality control (QC) steps, we reduced the genotyping

data down to a set of high-quality SNPs. These SNPs were:

a. Common (minor allele frequency > 10%)

b. Had missingness < 0.1%

c. Independent, pruned at a linkage disequilibrium (r2) threshold of 0.2

d. Autosomal only

e. Outside the lactase locus (chr2), the major histocompatibility complex (MHC, chr6), and

outside the inversions on chr8 and chr17.

f. In Hardy-Weinberg equilibrium (P> 1 × 10−3)

Relevant information, including code and region annotations, can be found in the GitHub

repository provided in the Data and Code Availability section at the beginning of the

Methods.

Using this high-quality set of ~65,000 SNPs, we checked samples for inbreeding and hetero-

zygosity (—het in PLINK), but found no samples with excess homozygosity or heterozygosity

(no sample >6 standard deviations from the mean). We also checked for relatedness (—

genome in PLINK) and found one pair of samples to be identical; we kept the sample with the

higher overall genotyping rate. Finally, we performed PCA using EIGENSTRAT and projected

the samples onto data from HapMap3, which includes samples from 11 global populations. Six

samples appeared to have some amount of non-European ancestral background, while the

majority of samples appeared to be of European descent. We removed no samples at this step,

selecting to adjust for principal components in genome-wide testing. However, adjustment for

principal components failed to eliminate population stratification, and we therefore restricted

to samples of European descent only, defined as samples falling within +/- 10 standard devia-

tions of the first and second principal component values of the CEU (Northern and Western

European-ancestry samples living in Utah) and TSI (Tuscans in Italy) samples included in the

HapMap 3 dataset [48–49]. Finally, sex information was received after initial sample QC was

complete. As a result, one sample with potentially mismatching sex information (comparing

genotypes and phenotype information) was discovered after analyses were complete and there-

fore remained in the analysis.

Beginning with all SNPs available in the MOBB dataset (~800,000), we first removed all

SNPs with missingness > 5% and out of HWE, P< 1 × 10−6. We also removed monomorphic
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SNPs. Finally, we set heterozygous haploid sites to missing, in order to enable downstream

imputation.

The final cleaned dataset included 190 samples and ~700,000 SNPs. We note that histology

data was not available for all genotyped samples.

fatDIVA. “fatDIVA” (Function of Adipose Tissue for DIabetes VAriants) is a recruit-by-

genotype study aiming to understand more about the mechanisms of differences in adipose

tissue function. Research volunteers were identified by the NIHR Exeter Clinical Research

Facility (Exeter CRF) and recruitment facilitated within the Exeter CRF. Before recruitment

into fatDIVA, approximately 6,000 anonymised DNA samples from the Exeter 10,000

(EXTEND) study were genotyped on the Global Screening Array and imputed to the Haplo-

type Reference Consortium reference panel. A genetic risk score of 11 variants was then calcu-

lated for each individual and weighted by effects on fasting insulin. These 11 variants formed

an early version of a “favourable adiposity” genetic score–where collectively the alleles associ-

ated with higher fat mass were associated with a favourable metabolic profile, and vice versa

[50].

Individuals falling into the 5% lowest tail of the weighted genetic score were contacted and,

if agreeing to take part in the study, matched to age (± 4 years), sex and BMI (± 1 unit) to an

individual in the highest 20% of the weighted genetic score. Inclusion criteria were age 18–75

and exclusion criteria were: treated Diabetes (including insulin and GLP-1 analogues), history

of bariatric surgery and recent significant weight loss/gain (± 3 kgs in the last 3 months); con-

nective tissue disease, pregnancy and lactation, inflammatory or consuming conditions, and

the following medications: prescribed glucose-lowering medication, lipid-lowering treatment

(such as statins, fibrates or ezetimibe) or other medication that alters lipids (such as beta block-

ers and diuretics), oral/IV corticosteroid treatment or loop diuretics (furosemide, bumeta-

nide), antiplatelet and anticoagulation medication, methotrexate. All participants were asked

to refrain from strenuous exercise and from eating very fatty meals in the 48 hours prior to

coming into the clinic, then fast overnight prior to attending a one-off morning visit at the

Exeter CRF. A sample of abdominal fat was obtained by firstly injecting some local anaesthetic

into an accessible area of the abdomen. Using a scalpel, a small incision (approx 2-3cm) was

made to a depth of approx 15mm and a small (pea-sized) sample of fat removed. The wound

was closed with simple sutures or steristrips. Part of the fat sample was stored in formalin for

later H&E staining. For each individual, a H&E stained slide was examined under a micro-

scope and ten photographs of different parts of the slide taken, with the operator choosing sec-

tions with a clear vision of adipocytes wherever possible. Adiposoft software was used to

identify and quantify the area of adipocytes.

Samples had previously been imputed using the HRC panel and sent in best-guess genotype

format.

Phenotypic and genetic sex information was consistent for all samples with available sex

information. For all samples with sex information missing in the phenotype data, we used the

genotypic sex to infer sex of the sample. A relatedness check found two pairs of related samples

(pi-hat > 0.125). Because all samples were imputed (missingness is 0) we arbitrarily removed

one sample from each pair. One sample had an inbreeding coefficient > 6 s.d from the mean

of the inbreeding coefficient distribution, and was therefore removed. PCA indicated all sam-

ples to be of European descent.

We removed all monomorphic SNPs from the dataset and removed any SNP out of HWE

(P< 1 × 10−6). The final dataset comprised 254 samples and> 8.8M SNPs.

ENDOX Endometriosis case/control study. Samples were genotyped at the Oxford gen-

otyping center on two arrays: the Affymetrix Axiom (UK Biobank chip) (n = 56) and the Illu-

mina Infinium Global Screening Array (n = 127).

PLOS COMPUTATIONAL BIOLOGY Rapid quantification of adipocyte area using Machine Learning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008044 August 14, 2020 14 / 21

https://doi.org/10.1371/journal.pcbi.1008044


Samples were cleaned in a manner identical to those samples in the abdominal laparoscopy

(MOBB) and fatDIVA cohorts. No samples had missingness>5% and all samples were consistent

in phenotypic and genotypic sex (all female). No sample was an outlier in the inbreeding check,

and no pair of samples appeared to be related (pi-hat threshold of 0.125, equivalent to a cousin

relationship). PCA using HapMap 3 data showed that all samples were of European descent.

SNPs were cleaned in a manner identical to those samples in the abdominal laparoscopy

and fatDIVA cohorts. The final cleaned dataset included 127 samples and ~685,000 SNPs on

the Illumina Array and 56 samples and 655,000 SNPs on the Affymetrix array.

For the genotyped cohorts without imputation data (ENDOX and MOBB) we performed

imputation via the Michigan Imputation Server. We aligned SNPs to the positive strand, and

then uploaded the data (in VCF format) to the server. We imputed the data with the Haplotype

Reference Consortium (HRC) panel, to be consistent with the fatDIVA data which was already

imputed with the HRC panel. We selected EAGLE as the phasing tool to phase the data. To

impute chromosome X, we followed the server protocol for imputing this chromosome

(including using SHAPEIT to perform the phasing step).

Region of Interest proposal: InceptionV3 CNN. We defined our Regions of Interest

(ROIs) “adipocyte-only” training set tiles as having little to no vessels, smooth muscle or other

tissue/contaminate present and that were composed of well shaped, viable, non-ruptured adi-

pocytes that filled the majority of the tile (>80%). To automate this procedure, we trained an

InceptionV3 deep convolutional neural network (CNN) architecture using transfer learning

[20]. Whilst the original InceptionV3 network was trained on 1000 ImageNet classes [51], we

only wanted to classify empty, adipocyte-only and non-adipocyte containing tiles. To do this,

we removed the final dense layer and replaced it with an AveragePooling layer with (8,8) con-

volutions and a stride of 8. Our final layer consisted of a fully connected layer with outputs rep-

resenting our three classes. We used a softmax activation to obtain posterior probabilities of

any given tile belonging to one of our three classes. For a tile to be classified as containing adi-

pocytes, we use only high confidence calls (Posterior Probability > 0.9). We used Stochastic

Gradient Descent (SGD) with Nesterov momentum (0.9) and a learning rate of 1.0 × 10−4. We

trained the network on 2,729 tiles, approximately equally distributed across each class from

both subcutaneous and visceral depots. We used a 80:20 train:validation split. The model

reached a training accuracy of 95% and validation accuracy of 96.6%. Our trained classifier

and weights are available to use in a Jupyter notebook (see: Data and Code Availability) [52].

U-net architecture. To obtain robust count and area estimates of adipocytes we used a

deep convolutional neural network architecture based on a modified U-net, originally

designed to perform biomedical image segmentation in a low sample size regime [23]. We

used 175 manually created ground-truth segmentations of adipocyte tiles of resolution

1024 × 1024. We demonstrate our network learns the correct segmentation mask and predicts

adipocytes that are commonly missed by Adiposoft (S3 Fig). Each adipocyte tile and corre-

sponding mask were concatenated to create a large ‘ensemble image’ which we then sampled

1024 × 1024 input images from. For validation, we used 10% of the data ensuring that the

same image samples never overlapped for training and validation. Our loss function was a dice

binary cross-entropy loss, and a dice coefficient metric was used to assess performance. The

Dice coefficient measures the degree of overlap between two segmentations (A: ground truth,

B: predicted) and takes on a value between 0 and 1, with 1 representing a perfect score:

DiceA;B ¼
2ðA \ BÞ
ðAþ BÞ
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The final validation Dice coefficient was 0.844. As an output, we obtain a pixel-wise proba-

bility map per input image of the same dimensions with each pixel classified as an adipocyte or

not. The trained U-net model architecture, corresponding weights, and jupyter notebooks are

all publicly available (see: Data and code availability).
Adipocyte area estimation. To obtain robust adipocyte area estimates we utilised the out-

put of our Adipocyte U-net. To further refine our predictions, we thresholded the probability

maps and transformed them into grey-scale images. To obtain counts and area estimates for

every cell in the image, we used the ‘regprop’ function in the scikit-learn library. As a quality

control step, we removed cell area estimates less than 200μm2 and greater than 16,000μm2,

which typically represented cell debris and joined adipocytes where H&E staining had failed,

respectively. As the quality of the histology slides varied significantly, our ROI method and use

of a fixed number of cells per sample was essential to avoid any significant sample specific

biases.

Network training hardware and software specification. U-net training took approxi-

mately 20 hours and the InceptionV3 fine tuning ran in under one hour. Inception tile classifi-

cation for all samples took 13 hours (classification of more than 2 Million images) and

Inference/Prediction on 1024 × 1024 images for the U-net took 22 hours (240,000 images). All

models were implemented in Keras/Tensorflow. All networks were trained on a single server

with a one Titan X pascal NVIDIA card, 12Gb of GPU memory and 64GB of RAM.

Phenotype-Adipocyte size meta-analysis. All phenotype-adipocyte meta-analyses were

conducted using the R package ‘meta’ and ‘metafor’ [53]. As our cohorts come from heteroge-

nous populations and both subcutaneous and visceral adipose depots are taken from various

anatomical locations, we chose to use a random effects meta-analysis to capture the distribu-

tional differences in adipocyte size across cohorts. Whilst underpowered to estimate heteroge-

neity accurately, we calculated I2, a statistic that quantifies the proportion of the variance in

the meta-analysis attributable to heterogeneity.

Genome-wide association testing and meta-analysis. In each cohort, we implemented a

genome-wide association study (GWAS) of the available histology phenotypes. The GWAS in

the GTEx data was performed directly on the genotypes generated from whole-genome

sequencing [18]. For the other three cohorts, we performed GWAS on the best-guess geno-

types resulting from imputation with the Haplotype Reference Consortium (HRC) [36]. Impu-

tation dosages were converted to best-guess genotypes using Plink 2.0 [54]. Due to limited

data availability for the X chromosome, we restricted our GWAS to the autosomal

chromosomes.

We performed GWAS in each cohort using linear regression implemented in Plink 2.0 (—

glm). We adjusted all GWAS for sex, age, BMI and the top ten principal components calcu-

lated from common genetic variation in the cohort using a high-quality set of markers (see

Cohort collection, curation and quality control). For the imputed genotype cohorts, we

restricted regression to those SNPs with an imputation quality (INFO) score> 0.3. We applied

no minor allele frequency threshold at this step and opted instead to filter on allele frequency

once the meta-analysis was complete.

After performing GWAS within each cohort for each group of samples (all samples, women

only, men only) and each phenotype (mean cell size, cell size variance) we generated quantile-

quantile (QQ) plots stratified by both imputation quality score and minor allele count (Data

and Code Availability for details) to check for excessive genomic inflation in particular bins

of SNPs. We observed no evidence for stratification in any GWAS, and therefore proceeded

with meta-analysis.

Once GWAS within each cohort were complete, we performed an inverse-variance fixed

effects meta-analysis for each phenotype (in the combined and sex-stratified samples). We
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implemented the meta-analysis in METAL [55]. Once the meta-analyses were complete, we

again plotted stratified QQ plots (Data and Code Availability for details) to check for evi-

dence of population stratification or other sources of confounding. We set genome-wide sig-

nificance at P< 2.5 × 10−8, reflecting a Bonferroni correction for testing tissue from two

adipose depots. As adipocyte mean size and adipocyte variance are highly correlated to one

another (rsubq = 0.914 and rvisc = 0.963), we did not count the two phenotypes as independent

tests.

Genetic risk scores for obesity-related traits and adipocyte area. We constructed GRSs

for BMI, WHR, and WHRadjBMI using independent (r2 < 0.05) primary (“index”, associated

with each obesity trait P< 5 × 10−9) SNPs in the combined-sexes analyses in a recent GWAS

[3] (see data availability). We excluded SNPs with duplicated positions, missingness > 0.05,

HWE P< 1 × 10−6, and minor allele frequency < 0.05 in the imputed data, after filtering on

imputation info > 0.3 in the imputed cohorts and restricting the GTEx cohort to those of

European ancestry and excluding one individual due to relatedness. For these analyses, the

individual in MOBB with potential sex mismatch between genotypic and phenotypic sex was

removed. Only SNPs available in all cohorts after quality control was included, resulting in a

final set of 530, 259, and 274 SNPs for BMI, WHR and WHRadjBMI, respectively. The SNPs

were aligned so that the effect allele corresponded to the obesity-trait increasing allele. GRSs

were then computed for each participant by taking the sum of the participant’s obesity-

increasing alleles weighted by the SNPs effect estimate, using plink v1.90b3 [56].

We then investigated associations with subcutaneous and visceral mean adipocyte area per

1-unit higher obesity GRS, corresponding to a predicted one standard deviation higher obesity

trait, using linear regression in R version 3.4. [57]. All analyses were performed both with adi-

pocyte area in μm2 and in standard deviation units, computed through rank inverse normal

transformation of the residuals and adjusting for any covariates at this stage. We adjusted for

age, sex, and ten principal components, and with and without adjusting for BMI in the GTEx,

MOBB, and fatDIVA cohorts. As we did not have access to data about age and BMI in the all-

female ENDOX cohort, we only adjusted for ten principal components in that cohort and with

and without adjusting for chip type. We then meta-analysed the cohorts, assuming a fixed-

effects model. In the main meta-analysis model, ENDOX was included using the adjusted for

chip type estimates. As a sensitivity analysis, we also reran the meta-analyses using the

ENDOX estimates unadjusted for chip type and completely excluding the ENDOX cohort,

yielding highly similar results.

Supporting information

S1 Text. Contains Fig A-O and Table A.
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S1 Table. Look-up of KLF14 SNP reported to associate with adipocyte morphology pheno-
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ogy phenotypes, in our own genome-wide association results. We find no evidence for

association at this SNP (p> 0.05 for all phenotypes and all sample groups).
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S2 Table. Look-up of FTO SNP reported to associate with adipocyte morphology pheno-

types. We looked up rs1421085, a SNP previously reported to be associated with adipocyte

morphology phenotypes, in our own genome-wide association results. We find no evidence

for association at this SNP (p> 0.05 for all phenotypes and all sample groups).
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with estimates of adipocyte area in μm2 per 1-unit higher genetic risk score, corresponding to

a predicted 1 standard deviation higher obesity trait and adjusting for 10 principal components

in all cohorts. In GTEx, fatDIVA and MOBB, adjustments were also made for age and sex, and
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