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CORRESPONDENCE

Correlates of critical illness‑related encephalopathy predominate 
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Infections with severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2) primarily lead to upper respiratory 
tract infection and its sequelae frequently dominate the clini-
cal course of COVID-19 [11, 25]. In addition to the lung, 
various other organs such as kidneys, gut, and heart can be 
affected [13, 20, 25]. Initially less noticed, it is now well 
documented that patients with COVID-19 can clinically pre-
sent with a variety of neurological symptoms ranging from 
anosmia and dysgeusia to headache, impaired conscious-
ness, agitation, and corticospinal tract signs [14]. Moreo-
ver, COVID-19 patient presentations with acute ischemic 
stroke, meningoencephalitis, hemorrhagic posterior revers-
ible encephalopathy syndrome, acute disseminated encepha-
lomyelitis (ADEM)-like pathology, as well as with diffuse 
leukoencephalopathy and microhemorrhages are on record 

[13, 21, 22]. Despite this wide range of neurological affec-
tions, it has so far remained unclear whether the reported 
abnormalities are pathogenetically linked to SARS-CoV-2 
or occur coincidentally or in association with critical illness.

Here, we report on autoptic neuropathological findings 
for a study cohort of seven COVID-19 patients, all of whom 
were positive for SARS-CoV-2 by nasopharyngeal swab test-
ing, and compare our observations with those made in a 
SARS-CoV-2 negative control autopsy cohort comprising 
individuals with non-septic and systemic inflammatory/sep-
tic clinical courses (Suppl. Tables 1—3). All patients of our 
study cohort except for one had multiple relevant comorbidi-
ties, consistent with the previous reports [11, 12, 16].

All COVID-19 study patients showed strong systemic 
inflammation, documented by high plasma levels of acute-
phase proteins (i.e., fibrinogen, C-reactive protein), and 
interleukin 6. Systemic immune activation affects the CNS, 
resulting in so-called sickness behavior including lethargy, 
malaise, and fatigue [8]. As microglia, resident phagocytes 
of the CNS, are believed to contribute to this phenotype 
[26], we hypothesized that their activation contributes to the 
neurological phenotype of COVID-19. We chose HLA-DR, 
an MHC class II antigen, as surrogate marker for microglia 
activation [15, 26]. We found microglia activation in the 
brainstem of COVID-19 patients to be significantly more 
pronounced than in non-septic controls (Fig. 1). However, 
when comparing the extent of activation in COVID-19 and 
control patients, who had deceased under septic conditions, 
no difference was found (Fig. 1d). Significant activation of 
microglia was also found in other brain regions, including 
olfactory bulb and medulla oblongata in COVID-19 as well 
as control brains (Suppl. Figure 1). Therefore, we conclude 
that the microglia activation observed in COVID-19 patients 
represents a histopathological correlate of a critical illness-
related encephalopathy, and is not a disease-specific finding.
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We did not find any evidence for a COVID-19-related 
meningitis/encephalitis with increased lymphocytic infiltra-
tion of the brain or the leptomeninges. Although we detected 
sparse perivascular and leptomeningeal infiltrates of CD3+ T 
lymphocytes in some COVID-19 brains, this was similarly 
encountered in controls with sepsis or systemic inflamma-
tion. Likewise, in none of the brains of our study cohort, 
intraparenchymal hemorrhages or acute/subacute ischemic 
infarcts were found. Furthermore, we did not detect micro-
thrombi or fibrinoid necrosis in intracerebral or leptome-
ningeal blood vessels, indicating that the pathomechanism 
of disseminated microthrombotic pulmonary vessel occlu-
sions [1, 18] is not generally prominent in the brain. This is 
noteworthy, as a number of COVID-19 patients have been 
reported to develop cerebrovascular complications with 
ischemic stroke [3, 5, 9], perhaps reflecting altered general 
coagulation homeostasis [6, 10] and/or endothelial involve-
ment [24] in severe disease. In two brains of our study cohort 
histopathological correlates of acute hypoxic-ischemic 
encephalopathy were noted—an expected finding given the 
prominent pulmonary impairment with consecutive hypoxia 
in severe COVID-19 [11, 25].

With regard to the widely accepted concept that CNS 
inflammation can contribute to the progression of neurode-
generative diseases [7], it is worth mentioning that one study 
cohort patient with Parkinson’s disease diagnosed at autopsy 
(case 3) did not show any exacerbation of his pre-existing 
extrapyramidal symptoms due to COVID-19.

Anosmia is a frequent early neurological sign of infection 
with SARS-CoV-2 [14]. In addition, based on observations 
in SARS-CoV and MERS animal models [19], neurotropic 
properties have been suggested for SARS-CoV-2 [4]. Recent 
studies suggested axonal transport of SARS-CoV-2 via the 
cribriform plate as a route of CNS entry [23], affecting the 
sense of smell by infecting olfactory bulb neurons and/or 
glial cells. The detection of SARS-CoV-2 RNA specifi-
cally in that particular location—but not in any other brain 
region—in 4/7 patients of our study cohort (Suppl. Table 4) 
would lend support to the postulated viral entry via the 
olfactory system.

As angiotensin-converting enzyme 2 (ACE2) has been 
identified as an entry receptor for SARS-CoV-2 [2, 17], we 

investigated its expression in olfactory bulb and brainstem. 
Whereas, by immunohistochemistry, weak ACE2 expression 
was found in endothelia of leptomeningeal and intracerebral 
blood vessels as well as in neurons of the brainstem, no 
expression at immunohistochemically detectable levels was 
found in the olfactory bulb. In contrast, spatial transcriptom-
ics using RNAscope revealed sparse ACE2 expression also 
by olfactory bulb (and brainstem) neurons, as well as by few 
astrocytes (Suppl. Figure 2). In particular, as the expression 
of ACE2 was not upregulated in COVID-19 brains when 
compared to controls, it remains unclear whether its upregu-
lation plays a role in the context of COVID-19. These find-
ings may indicate that ACE2 expression below levels detect-
able by immunohistochemistry is sufficient for SARS-CoV-2 
entry into target cells.

Our findings represent endpoints of particularly severe 
disease, with single time point qRT-PCR measurements 
precluding conclusions about a potentially dynamic brain 
viral load during the course of disease. It is possible that 
reversible brain alterations such as reactive inflammatory 
processes that had potentially occurred earlier during the 
clinical course, went unnoticed. These limitations notwith-
standing, based on our observations, it seems unlikely that 
irreversible changes such as acute demyelination or ischemic 
lesions are part of the usual spectrum of COVID-19 with 
brain involvement. Instead, several histological brain abnor-
malities previously postulated to occur in association with 
COVID-19 can likewise be seen in SARS-CoV-2 negative, 
critically ill patients. Our observations suggest that specific 
SARS-CoV-2 induced neuropathological abnormalities are 
absent in the majority of COVID-19 patients.
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Fig. 1   Microglia and astroglia activation in the pons. a–c Activa-
tion of microglia (stained for HLA-DR) and astrocytes (stained for 
GFAP). Representative sample of the COVID-19 cohort (a, case 4), 
a control with fungal sepsis and systemic inflammation (b, case 10), 
and a non-septic control (c, case 15). Histology image frame colors 
indicate individual case data points in the quantitative analysis below. 
d Automated quantification of HLA-DR immunopositive areas in the 
pons, medulla oblongata, and olfactory bulb. Each data point repre-
sents the mean of six crack artifact-free areas per slide and case of the 
COVID-19 cohort compared to controls. SARS-CoV-2 positive cases 
represented by triangles. Scale bars represent 100  μm unless other-
wise indicated
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