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Abstract

In the olfactory system, odor percepts retain their identity despite substantial variations in 

concentration, timing, and background. We study a novel strategy for encoding intensity-invariant 

stimulus identity that is based on representing relative rather than absolute values of stimulus 

features. For example, in what is known as the primacy coding model, odorant identities are 

represented by the conditions that some odorant receptors are activated stronger than others. 

Because, in this scheme, the odorant identity depends only on the relative amplitudes of olfactory 

receptor responses, identity is invariant to both changes in intensity and monotonic non-linear 

transformations of its neuronal responses. Here we show that sparse vectors representing odorant 

mixtures can be recovered in a compressed sensing framework via elastic net loss minimization. In 

primacy model, this minimization is to be performed under the constraint that some receptors 

respond to a given odorant stronger than others. Using duality transformation, we show that such a 

constrained optimization problem can be solved by a neural network whose Lyapunov function 

represents the dual Lagrangian and whose neural responses represent the Lagrange coefficients of 

primacy and other constraints. The structure of connectivity in such a dual network resembles 

known features of connectivity in the olfactory circuits. We thus propose that networks in the 

piriform cortex implement dual computations to compute odorant identity with the sparse 

activities of individual neurons representing Lagrange coefficients. More generally, we propose 

that sparse neuronal firing rates may represent Lagrange multipliers, which we call the dual brain 

hypothesis. We show such a formulation is well-suited to solve problems with multiple interacting 

relative constraints.

1 INTRODUCTION

Sensory systems face the problem of identifying stimulus features that are invariant to 

various transformations. The olfactory system, for example, has to identify stimuli despite 

substantial variations in odorant concentration. Computing concentration invariant odor 

identity is necessary to enable a stable perception in chemical gradients and turbulent 

odorant plumes. How can the olfactory system robustly represent odorant identity despite 

variable stimulus intensity? The first step of olfactory processing involves odorants binding 

to and activating a set of molecular sensors known as olfactory receptors (ORs). ORs are 

proteins expressed by olfactory sensory neurons (OSNs) located in the nose. Most 

mammalian olfactory systems contain ~1000 types ORs, while humans rely on the responses 

of only 350 (Firestein, 2001; Koulakov et al., 2007; Zhang and Firestein, 2002). Importantly, 

every OSN expresses only a single type of OR chosen randomly out of the large ensemble. 
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Odorant identity is then interpreted from the patterns of activation of OR and, by extension, 

OSNs. Here we examine the hypothesis that stimulus identity is inferred by the relative 

amplitudes of OSN responses. In particular, we propose that odorant identity can be 

determined using only the information that a subset of receptors individually respond more 

strongly than all other receptors. We call this type of representation the primacy model. The 

primacy model is inspired by a recent experimental observation that odorant identity is 

recognized on the basis of inputs present within the first 100 milliseconds of the animal’s 

sniff cycle (Wilson et al., 2017). We will show that the coding scheme based on the primacy 

model yields odorant representations that are independent of absolute odorant concentration. 

We will formulate this identity decoding scheme using a dual Lagrange-Karush-Kuhn-

Tucker problem and argue that this dual problem can be solved by a neural network that we 

call a dual network. Dual networks that implement the primacy model share many features 

with real olfactory networks. Our goal is therefore to derive the structure of olfactory circuits 

from first principles, based on the primacy model.

2 RESULTS

2.1 Representing odorants by sparse vectors.

Ethologically important odorant stimuli are mixtures of monomolecular components. Such 

stimuli can be represented by a vector of concentrations x . Each component of this vector xj 

is equal to the concentration of an individual monomolecular component numbered by index 

j. The number of potential monomolecular components, which is equal to the dimensionality 

of vector x , will be denoted here by M. This number can be estimated to be around several 

million, M ~ 106, based on the count of potentially volatile molecules with molecular weight 

less than 300 Dalton in the popular database PubChem (Kim et al., 2016). However, 

ethological odorant mixtures do not contain all of these molecules at the same time, and are 

therefore represented by sparse vectors x . For the purposes of olfactory system, sparseness 

of the concentration vector is further increased by inability of the system to detect or 

recognize individual components. Indeed, psychophysical studies suggest that the number of 

monomolecular components of the vector x  detectable by a human observer K is close to 12 

(Jinks and Laing, 1999). Overall, we suggest that ethologically relevant odorants can be 

defined by highly dimensional (M ~ 106), sparse concentration vectors x  with very few non-

zero elements (K ~ 10).

Odorant mixtures then enter the olfactory system through the responses of ORs r . These 

responses, to the first approximation, can be represented by a linear nonlinear function of the 

concentration vector x . In the simplest model, using receptors with only one binding site 

and no cooperativity, the law of mass action yields:

ri = F (yi) (2.1)

yi = ∑
j

Aijxj (2.2)
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Here index i = 1…N enumerates OR types. The total number of functional OR types, N, 

varies between 350 in humans and 1100 in rodents. Matrix element Aij can be interpreted as 

the affinity of molecule type j to receptors of type i. F(y) = y/(1+y) is the nonlinear function 

describing activation of a receptor (Appendix A).

The problem solved by the olfactory system can then be formulated as follows: find the 

identity of the odorant stimulus xj given the set of responses of olfactory sensory neurons ri.

2.2 Sparse olfactory stimulus recovery.

In many concentration regimes, it is reasonable to approximate the receptor response ri using 

only its linear input yi. In this case, the problem solved by olfactory system (how to find x
given y ) can be reduced to solving the system of linear equations (2.2). This problem is not 

entirely trivial, because the number of unknowns (components of x , M ~ 106) is 

substantially larger than the number of equations (components of y , N ~ 103). Some help 

comes from the fact that the vector of unknowns is sparse. The problem of recovering a 

sparse vector from a system of linear equations has been addressed in compressed sensing 

(Baraniuk, 2007; Donoho and Tanner, 2005, 2006). In this framework, vector x  can be 

found exactly, despite the fact that it contains more components than equations. This is 

because the vector x  is sparse and the number of non-zero components is small. To be able 

to find x  exactly, a certain condition has to be met relating parameters M, N, and K. This 

condition can be understood by comparing the amounts of information contained in the input 

and output space. One can accurately determine the unknowns, if the information capacity of 

y  exceeds that of x . These two amounts can be estimated by using the statistical physics 

definition of the amount of information:

H = logΓ (2.3)

Here H and Γ are the amount of information and the number of states a variable can take, 

respectively. For example, a string of N binary numbers contains H = N bits of information, 

which follows from equation (2.3) if the number of possible values of the binary string is Γ 
= 2N. The number of values taken by the receptor response vector y  can then be estimated 

as Γy ~ 2N (for the purposes of our order-of-magnitude estimate, we assume here that the 

elements of y  are binary). The number of possible combinations contained in the 

concentration vector x  can be estimated as the number of ways to place K non-zero 

elements into M bins, i.e. Γx CM
K MK. Similar to the estimate for receptor responses, we 

assume here that concentrations are binary. This assumption is reasonable if the number of 

distinguishable concentrations for an element of x  is much less than the total number of 

elements in x , M. Thus, equation (2.2) can be solved exactly if the number of combinations 

contained in vector y  is larger than the number of possible states of the concentration vector 

x , i.e. Γy > Γx, which, given our estimates, yields the following condition:

N > KlogM (2.4)

This condition can be recognized as the necessary condition for sparse signal recovery using 

l1 norm minimization obtained by Donoho and Tanner (Donoho and Tanner, 2005, 2006). 
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For K ~ 10 and M ~ 106 we obtain the following constraint for the number of OR types 

necessary for the recovery of the sparse stimulus: N > 200, which is satisfied for both 

humans (N ≈ 350) and mice (N ≈ 1100). Thus, equation (2.2) can in principle be solved with 

the existing machinery in the olfactory system. This means that, with linear responses, the 

olfactory system can reconstruct K ~ 10 monomolecular components given the responses of 

N ≈ 1100 ORs.

To determine x  given y  within compressed sensing, one can use sparse signal recovery via 

minimization of the l1 norm (Baraniuk, 2007; Donoho and Tanner, 2005, 2006):

x = argmin
y = Ax
xj ≥ 0

∑
j

xj
(2.5)

Here, because molecular concentrations x  are constrained to be non-negative, minimization 

of l1 norm is equivalent to minimization of the sum of the components of x . Because the 

system is overcomplete, there are many vectors x  for which yi = ∑jAijxj is satisfied exactly. 

Minimization of l1 norm ensures that the solution is sparse.

Solving the decoding problem using equation (2.5) is somewhat unrealistic because receptor 

responses are non-linear. Furthermore, the solution of equation (2.5) is not concentration 

invariant. That is, doubling the mixture concentration results in doubling of each component 

of the concentration vector x , and, as a result, the doubling of the vector of receptor 

responses y = Ax . Solving equation (2.5) under the constraint of doubled vector y  results 

in a doubled reconstructed vector of concentrations x . Our goal, however, is to build a 

representation that is concentration invariant, and not to be limited to regimes where receptor 

response is linear. More specifically, we want a representation of an odor which is invariant 

to multiplication of the concentration vector of that odor by a scalar. This means that we 

would like to obtain a framework in which doubling receptor responses y  or the presence of 

non-linearities, such as given by equation (2.1), does not impact the reconstructed stimulus. 

Such a model would yield a concentration invariant odorant identity. Next, we show how a 

primacy-based decoding model can implement such a computation.

2.3 Concentration invariant decoding algorithm via primacy.

To achieve an odorant representation which is invariant to both concentration fluctuations 

and monotonic nonlinearities of receptor responses, we reformulate the sparse recovery 

problem to use only relative constraints. Conceptually, the relative constraints we introduce 

isolate a set of receptor types, each of which respond more strongly than all other receptor 

types. We call this strongly-responding set of receptors the primacy set P, while all other 

receptors are denoted by P . The primacy set is expected to include p ≪ 1000 receptor types. 

For these two sets we can state:

rP ≥ rP (2.6)
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Here, rP is the set of components of vector r  that belong to the primacy group P of the given 

odorant. The expanded version of equation (2.6) is therefore ri ≥ rj for any i ∈ P and j ∈ P . 

Because the non-linearity relating ri and yi is monotonic, equation (2.6) results in the same 

constraint on components of vector y :

yP ≥ yP (2.7)

Importantly, the inequality (2.7) is invariant to changes in concentration, because 

concentration changes (x αx ) multiply both sides of equation (2.7) by the same factor. 

Also, the identities of the ORs forming the primacy set, P, are unaffected by the non-

linearity relating r to y, so long as this non-linearity is monotonically increasing. Thus, 

reconstructions of x  using these inequalities inherently have the desired invariances. We 

therefore reformulate the sparse recovery problem (2.5) as follows:

x = argmin
yP ≥ yP
xj ≥ 0

∑
j

xj
(2.8)

We implement this minimization and show that it converges to reconstruct the stimulus 

vector x  in Figure 1. For this simulation and all subsequent simulations in this paper, we use 

N=400 receptors and M=1000 molecules. We generate affinities Aij from a zero-mean 

Gaussian distribution truncated at zero such that all affinities are non-negative. In 

Supplemental Figure 2 we show that this assumption on the distribution of Aij is 

unnecessary and that our algorithm works for uniform or lognormally distributed Aij 

matrices for a wide range of the number of receptors N and molecules M.

The nonlinearity on each receptor (2.1) is likely to be similar but not identical. The primacy 

model would not yield invariant odorant representations when nonlinearities are highly 

variant for each component of y . In this case, large changes in concentration for certain 

odorants would illicit a different perception as sometimes seen in human perception 

(Arctander, 1969).

Overall, using the relative rather than the absolute values of sensor responses to recover 

odorant identity results in invariance with respect stimulus intensity. Using relative 

responses of sensors has a long history in neuroscience, and includes color constancy 

(Foster, 2011), responses of differentiating (ON/OFF-center) cells in retina, edge detection 

in the visual cortex (Rodieck, 1998), and relying on the relative responses of OSNs in the 

olfactory bulb implemented by normalization (Cleland et al., 2011; Cleland et al., 2007). 

Although we demonstrated this idea for the particular example of primacy coding, we 

propose that this neural relativity rule is used to produce perceptual invariance and invariant 

signal recovery with respect to other stimulus transformations.

In addition to invariance to changes in concentration and monotonic transformations of 

receptor signals, primacy codes are inherently robust to noise. Not only are the strongest 

responding receptors the most reliable, but many neighboring concentration vectors share 

the same primacy set. Furthermore, neighboring primacy sets can produce similar 
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reconstructions. The result is a code unaltered by even high levels of noise, as shown in 

Figure 1.

Instead of minimizing the pure l1 norm to find sparse solutions, one can minimize the elastic 

net functional:

x = argmin
yP ≥ yP
xj ≥ 0

∑
j

xj + εxj2

2 (2.9)

The equation (2.9) is the same as the l1 norm minimization (2.8) when the parameter ε → 0. 

For small parameter ε, equation (2.9) yields sparse solutions similar to equation (2.8). 

Problem (2.9), however allows for an easier dual space formulation. We will therefore use 

the elastic net minimization [equation (2.9)] to recover olfactory stimuli in the rest of the 

paper with a sufficiently small parameter ε such that the elastic net and l1 solutions are 

close.

2.4 Number of receptors needed to implement primacy coding.

Since we are using relative response information to decode the sensory input, we have to 

amend our estimate (2.4) of the number of receptors necessary to fully recover a sparse 

stimulus. In the primacy model, the amount of information in y  is reduced as we are only 

concerned with the p strongest responding receptors. Therefore, the number of combinations 

in y  is given by the binomial coefficient Γy CN
p Np. By keeping the estimate for the 

number of combinations in x  the same, i.e. Γx ~ MK, and assuming that, for reconstructing 

x , the number of combinations of y  has to exceed the number of combinations in x , we 

easily arrive at the following condition:

p > K logM
logN (2.10)

For a typical mammal, such as mouse, in which the number of ORs is approximately N ≈ 
1000, we obtain p > 2K. For humans, in which the number of functional ORs is N ≈ 350, the 

primacy number (the size of the primacy receptor set) required is somewhat higher, p > 

2.4K. In both of these estimates we assumed that the number of molecule types available in 

the environment is close to M ~ 106. If one assumes that the number of discernable 

molecular components in each mixture is K ~ 12, as follows from human psychophysics 

(Jinks and Laing, 1999), we obtain the primacy number p > 30 which is substantially less 

than the total number of receptors in humans N ≈ 350.

2.5 Hard primacy conditions.

Problem (2.9) includes various inequality constraints, including the primacy constraints (2.6) 

yP ≥ yP . These conditions can be reformulated in a more convenient form. Indeed, 

conditions (2.6) have no scale in them. Therefore, minimization of the l1 norm or elastic net 

functional of x  connected to y  via a set of positive coefficients A ( y = Ax ) results in the 
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trivial solution x = 0. To obtain a non-zero solution, one has to introduce a finite scale into 

the conditions (2.6). A set of conditions with the constrained magnitude is

yP ≥ γ,  γ ≥ yP (2.11)

where γ ≥ 0 is the scale parameter. The value of this parameter is arbitrary and so we use γ 
= 1 in all simulations. In addition to providing a nonzero solution, introduction of a scale 

parameter also reduces the number of constraints in equation (2.6) from p(N − p) to N. By 

introducing a sign variable ui = +1 for i ∈ P and ui = −1 for i ∈ P , equation (2.11) can be 

rewritten as a single set of conditions

ui(yi − γ) ≥ 0 (2.12)

Here yi = ∑jAijxj where the affinity of receptor i to odorants j are given by a set of non-

negative numbers Aij. Problem (2.9) combined with constraints (2.12) represents our primal 

optimization problem. Constraints defined by equation (2.12) will be called the ‘hard 

primacy conditions’.

2.6 Soft primacy conditions.

As an alternative to (2.12), we propose a simpler set of conditions:

yi − uiγ ≥ 0 (2.13)

These conditions operate differently for primary versus non-primary receptors. For the 

primary set, i ∈ P, they are equivalent to conditions (2.12), i.e. yi ≥ γ. Therefore, these 

inequalities ensure that the responses of primary receptors are larger than parameter γ. For 

non-primary receptors, these inequalities become yi ≥ −γ. Since yi = ∑jAijxj, and both A 

and x are non-negative, this inequality is always satisfied. Therefore, conditions (2.13) 

define the lower limit for the primary set of receptors, but not for the non-primary receptors. 

We therefore call inequalities (2.13) the ‘soft primacy conditions’.

Interestingly, however, the soft primacy conditions implicitly constrain the non-primary 

receptors as well. Although conditions (2.13) for non-primary receptors become trivial, i.e. 

yi ≥ −γ, minimization of vector x  minimizes the unconstrained elements of vector y , or 

non-primary elements. In practice, we find that, after minimizing the l1 norm of x , non-

primary receptors obey yP < γ, as required by the hard primacy conditions. Thus, for 

practical purposes, the soft primacy conditions are equivalent to the hard ones. As we 

showed before (Kepple, 2016), the hard primacy conditions result in dual networks with an 

interaction matrix dependent on odor stimuli, i.e. vector ui, which is difficult to implement 

biologically. Below, we show that the soft primacy conditions can be implemented by a 

network with weights independent on the odorants presented. Thus, the network 

implementation based on the soft primacy conditions is more biologically plausible. We will 

therefore adopt the soft primacy conditions for the remainder of this paper. The approximate 

equivalence between soft and hard primacy conditions is illustrated in Figure 2. We therefore 
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formulate the following primal problem that can potentially be solved by the olfactory 

system:

x = argmin
yi − uiγ ≥ 0
xj ≥ 0

∑
j

xj + εxj2

2 (2.14)

2.7 Formulation of the dual problem.

The primal problem (2.14) cannot be easily solved by a neural network. To implement a 

neural network solution, we use its dual formulation. To transform the primal minimization 

problem (2.14) into its dual problem, we introduce a cost function (Lagrangian) with two 

sets of Lagrange multipliers, αi and βj. Each multiplier αi, with i = 1..N, enforces an 

individual soft primacy constraint (2.13), yi − uiγ ≥ 0. Each βj enforces a constraint xj ≥ 0 

for j = 1..M. The full Lagrangian for the elastic net minimization problem (2.14) is as 

follows

L(x , α , β ) = ∑
j

(xj + εxj2/2) − ∑
i

αi(∑
j

Aijxj − uiγ) − ∑
j

βjxj (2.15)

In this equation, the Lagrange multipliers αi and βj represent the importance of different 

constraints. Because the cost function (2.15) will be minimized with respect to x , Lagrange 

multipliers are constrained to have non-negative values, i.e. αi,βj ≥ 0 (Boyd and 

Vandenberghe, 2004). This ensures that at the minimum of the cost function, the target 

conditions, yi − uiγ ≥ 0 and xj ≥ 0, are satisfied. If, for example, one of the coefficients βj 

were negative in equation (2.15), decreasing the corresponding xj below zero may be found 

to be advantageous from the point of view of minimizing the cost function.

To derive the dual formulation of the primal optimization problem (2.14), we minimize 

Lagrangian (2.15) with respect to x  as if no constraints were present. We therefore find the 

optimal value of x  denoted here as x *. We then rewrite the Lagrangian with this optimal 

value of x  which depends only on α  and β . The resulting function is called the dual 

Lagrangian θ( α , β ):

∂L(x , α , β )
∂ x

= 0     xj* = 1
ε ∑

i
αiAij + βj − 1 (2.16)

θ( α , β ) ≡ L(x *, α , β ) = − 1
2ε ∑

ik
αiGikαk − 1

ε ∑
ij

αiAijβj −

− 1
2ε ∑

j
(βj

2 − 2βj) + γ∑
i

αiui + 1
ε ∑

i
αi∑

j
Aij

(2.17)

Here Gik = ∑jAijAkj is the Gramm matrix (the matrix of pairwise scalar products) for rows 

of affinity matrix A.
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According to optimization theory (Boyd and Vandenberghe, 2004; Dantzig, 1963) the dual 

Lagrangian θ( α , β ) is to be maximized to find the optimal values of α  and β . These values 

can then be used to find the solution of the primal problem using equation (2.16). One can 

think of dual Lagrangian, a function of the constraint multipliers α  and β , as a lower bound 

for the primal problem. Thus we maximize the dual Lagrangian because we want to find the 

greatest lower bound for our minimization problem. The dual problem can therefore be 

formulated as follows

( α *, β *) = argmax
αi ≥ 0
βj ≥ 0

θ( α , β )
(2.18)

The dual problem is formulated in terms of Lagrange multipliers α  and β . This makes it 

different from the primal optimization problem (2.14), which is formulated in terms of x . 

The solution to the dual problem, however, is also the solution to the primal problem, since 

they are connected via equation (2.16).

The reason why the dual problem (2.18) is sometimes preferred to the primal problem (2.14) 

is in the simplicity of its constraints. In many cases, the constraints αi,βj ≥ 0 are easier to 

implement than the primal problems inequalities. The important observation that we make 

here is that neural systems are well suited for implementing dual optimizations. For 

example, it is especially easy to impose non-negativity constraints, because neural responses 

are described by firing rates that cannot fall below zero. Motivated by this observation, we 

argue that the Lagrange multipliers α  and β  could be represented by responses of different 

types of olfactory neurons that solve the dual rather than the primal representation problem.

Another motivation for linking neural activity with Lagrange multipliers can be derived from 

the Karush-Kuhn-Tucker theorem (KKTT) (Boyd and Vandenberghe, 2004; Kuhn and 

Tucker, 1951). According to KKTT, at the maximum of a dual Lagrangian, such as (2.17), 

the Lagrangian contributions in equation (2.15) vanish, i.e.

αi(∑
j

Aijxj − uiγ) = 0 (2.19)

βjxj = 0 (2.20)

These equations are valid for all values of i and j. The former equation implies that either αi 

= 0, in which case ∑jAijxj − uiγ can assume any non-negative value (inactive constraint), or 

∑jAijxj − uiγ = 0, which allows αi to be non-zero (active constraint). The Lagrange 

coefficients αi = 0 describe constraints that have no impact on the solution of the 

optimization problem, explaining why they are called inactive. This observation implies that 

many αi are expected to be zero, making the vector of responses α  sparse. This observation 

could provide rationale to the observed sparsity of neural activities in the olfactory system 

(Kay and Laurent, 1999; Koulakov and Rinberg, 2011; Rinberg et al., 2006; Stettler and 

Axel, 2009) and beyond (DeWeese and Zador, 2006; Hromadka et al., 2008; Lehky et al., 
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2005; Vinje and Gallant, 2000). A mapping between the dual problem and neural responses 

could thus explain sparsity of neural responses as a corollary of KKTT.

2.8 Dual networks.

We will now describe neural networks that can solve the dual problem (2.18). We associate 

vectors α  and β  with the firing rates of two groups of neurons (cell types). The conditions 

αi ≥ 0 and βj ≥ 0 are then satisfied automatically as the firing rates of neurons cannot be 

negative. We assume that the neurons are connected into a network and the Lyapunov 

function of that network H( α , β ) is proportional to the negative of the dual Lagrangian. We 

use the negative dual Lagrangian in order to follow the convention of constructing networks 

which minimize a Lyapunov function (whereas the dual Lagrangian is to be maximized). For 

simplicity, we will assume that the Lyapunov function of the network is 

H( α , β ) = − εθ( α , β ). For the Lyapunov function, from equation (2.17), we obtain

H( α , β ) = 1
2 ∑

ik
αiGikαk + ∑

ij
αiAijβj +

+ ∑
j

(βj
2/2 − βj) − εγ∑

i
αiui − ∑

i
αi∑

j
Aij

(2.21)

To be able to interpret equation (2.21) as a Lyapunov function, we have to propose a network 

whose dynamics minimizes it. To generate network equations for each neuron in the 

network, we define internal variables that can be viewed as the total synaptic input current 

for each neuron. For αi and βj neurons, these currents will be denoted ai and bj respectively. 

Consider the following equations for ai and bj

ȧi + ai = − ∑
k

W ikαk − ∑
j

Aijβj + εγui + ∑
j

Aij (2.22)

ḃj + bj = − ∑
i

αiAij + 1 (2.23)

W ik = Gik − δik (2.24)

αi = [ai]+,  βj = [bj]+ (2.25)

Here and throughout this paper we use ẋ ≡ dx/dt. The first equation describes inputs into 

neurons with firing rates αi connected to each other by weights −Wik. Connectivity between 

α-neurons is symmetric. These cells are also connected to βj neurons with synaptic weights 

−Aij, i.e. the affinity matrix. α-neurons receive an external excitatory drive equal to 

εγui + ∑jAij. Equation (2.23) describes βj neurons that are connected symmetrically to α-

neurons. For both cell types, their firing rates (αi and βj) are related to their inputs (ai and bj) 

by rectifying threshold-linear relationships (ReLU) (2.25) ([x]+ = x for x ≥ 0 and [x]+ = 0 for 

x < 0). The circuit diagram for the network described here is presented in Figure 3.
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It is straightforward to verify that these equations can be rewritten as a gradient descent.

ȧi = − ∂H( α , β )
∂αi

(2.26)

ḃj = − ∂H( α , β )
∂βj

(2.27)

Here H( α , β ) is the Lyapunov function given by equation (2.21). To show that H( α , β ) is 

indeed a Lyapunov function, i.e. a function that is not increasing and bounded, we follow 

conventional methods. To prove monotonicity of time evolution, we observe that

dH( α , β )
dt = ∑

i

∂H( α , β )
∂αi

α̇i + ∑
j

∂H( α , β )
∂βj

β̇j =

= − ∑
i

ȧiα̇i − ∑
j

ḃjβ̇j = − ∑
i

f′(ai)ȧi
2 − ∑

j
f′(bj)ḃj

2 ≤ 0
(2.28)

Here f(x) = [x]+, f′(x) ≥ 0. Because, according to equation (2.28), dH( α , β )/dt ≤ 0, and 

because equation (2.21) is bounded from below, our network will minimize the Lyapunov 

function (2.21). Due to the physically imposed non-negativity of firing rates, the variables in 

(2.25) will stay non-negative throughout course of this optimization-- automatically 

satisfying the inequalities needed to solve the dual problem. We conclude therefore that our 

two cell type network can solve the dual optimization problem (2.17) and thereby compute 

accurately molecular composition of a mixture in dual space.

2.9 Implementing the primacy variables ui.

The purpose of the variables ui is to identify the set of primary variables yi, i.e. the set of p 
components of vector y  that are larger than all others. For primary/non-primary yi, variables 

ui are expected to be equal to +1/−1 respectively. To compute these variables, we introduce a 

p-winners-take-it-all network that identifies p strongest inputs and suppresses the 

representations of the remainder of inputs. This network contains a population of inhibitory 

neurons, g, which are activated by the firing of p of the primacy neurons u. The equations 

specifying the dynamics of such a network are:

g = ℎ ∑
k

ℎ(uk) − p (2.29)

ui = s ri − T − cg . (2.30)

Here h(x) is the Heaviside function, while s(x) is a hysteretic sign function. The latter 

function is activated (changes activity from −1 to +1) when x > 0 and is deactivated at very 

low levels of input. Other parameters include c, the strength of inhibition from neurons of 
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type g, and T, a detection threshold of the u neurons. Odorants that do not activate receptors 

above T will not be perceived. Because the activities of each ui is controlled by its input 

from receptor ri, u- cells with the strongest inputs (primary) win over the cells with weaker 

inputs (non-primary). This dynamic will select a certain number of cells that have the 

strongest receptor input (Supplementary Figure 1).

We found that this network finds robust solutions if s(x) function, the activation function for 

the u- cells in equation (2.30), is hysteretic, similarly to previous studies (Sanders et al., 

2013; Sanders et al., 2014; Wilson, 2017). This is because activities of receptors are often 

transient, and therefore the sustained activity of hysteretic neurons following an initial 

activation makes representations stable until the end of the sniff cycle. Such behavior 

ensures that primary cells identified early in a sniff cycle remain primary even though 

receptor responses undergo adaptation or are affected by other network dynamics. This 

behavior is consistent with presence of non-linear voltage-dependent synaptic currents in the 

piriform cortex (Poo and Isaacson, 2011).

2.10 Networks implementing primacy.

Figure 3 displays the network implementing the dual problem (2.17). It contains five cell 

types, each designated by a letter. Receptor neurons (y- cells) are connected to u- cells via 

feedforward excitatory connections. u- cells then connect to g cells and α neurons. g cells 

enforce the primacy conditions and α neurons compute the dual representations of the 

stimulus. α- neurons interact with each other by structured inhibitory connections as 

indicated. They also form inhibitory connections to β- neurons described by the affinity 

matrix A. In turn, β- neurons inhibit α- cells with the same strength. α- cells enforce the soft 

primacy constraints (2.13). β- cells represent Lagrange-KKT coefficients that enforce non-

negativity of concentrations of individual monomolecular components of the stimulus vector 

x .

Overall, we propose a network that can solve dual constrained optimization problems with 

time-dependent firing rates. These networks capitalize on the ease with which neural firing 

rates can implement the dual problem’s non-negativity conditions compared to much more 

complex conditions in the primal problem. We therefore call these circuits dual networks.

2.11 Simplicial dual networks.

In the previous network architecture (Figure 3), the dual variables ui receive inputs from the 

receptor neurons yi via an identity weight matrix. This implies that the number of dual 

variables ui = ±1 is equal to the number of ORs. This assumption is not biologically justified 

and is unnecessary. Instead, we could amend our soft primacy conditions (2.13) to include 

weighted combinations of activities of ORs, i.e. yi ∑jSijyj. In this case, the soft primacy 

conditions read:

∑
j

Sijyj − uiγ ≥ 0 (2.31)

The number of soft primacy conditions, indexed by i, is then arbitrary and is not limited by 

the number of receptors. Matrix Sij determines the weights with which each receptor 
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contributes to a given condition. For example, if S = I , the identity matrix, the previous 

primacy conditions (2.13) are recovered. If S is a sparse matrix of zeros and ones, each 

primacy condition will constrain the sum of various receptor responses as opposed to 

individual receptor responses.

In the simplest case, each row of the matrix S contains exactly s non-zero values that are all 

equal to one. Condition (2.31) then enforces, for each ui = +1, that a sum of s receptor 

responses is larger than γ. Thus, matrix S generalizes primacy from relating the responses of 

individual receptors to relating the responses of groups of receptors. We will now explore 

the consequences of such a generalization on the architecture of our dual network. Because 

the subsets of s receptors form simplexes in the y  -space, we call this network simplicial.

Since we changed the structure of our soft primacy conditions (2.31), we must also update 

the information-theoretic argument for mixture recovery (2.10). Assume that matrix S
contains q rows, i.e. the total number of simplexes is q. In this case, the primacy conditions 

imply that p sums of receptor responses are larger than the q −p remaining sums. The 

number of distinct configurations of receptor activities can therefore be described by Γy ∝ 
qp. Since Γx ∝ MK, as before, we conclude that stimulus recovery in the simplicial model is 

possible if

p ≥ K logM
logq (2.32)

This condition is less restrictive than in the case of individual receptor-based primacy 

[equation (2.10)]. This is because the number of primacy conditions q can substantially 

exceed the number of receptors N.

Including the generalized soft primacy conditions (2.31) into our approach is 

straightforward. Before, yi = ∑kAikxk and equation (2.13) lead to ∑kAikxk ≥ γui. Equation 

(2.31) states instead that ∑jkSijAjkxk ≥ γui. To include the generalized condition into our 

approach, one should replace the affinity matrix Aik with the new matrix V ik ≡ ∑jSijAjk
throughout. We thus obtain, instead of equation (2.21) the following equation for the dual 

Lyapunov function of the network:

H( α , β ) = 1
2 ∑

ik
αiΓikαk + ∑

ij
αiV ijβj +

+ ∑
j

(βj
2/2 − βj) − εγ∑

i
αiui − ∑

i
αi∑

j
V ij

(2.33)

Here Γik = ∑jV ijV kj is the interaction matrix between the coefficients α, which is also a 

Gramm matrix for the rows of matrix V . The network that minimizes function (2.33) can 

also be derived as before [equation (2.22)–(2.25)]. For completeness, we will list these 

equations here.
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ȧi + ai = − ∑
k

W ikαk − ∑
j

V ijβj + εγui + ∑
j

V ij (2.34)

ḃj + bj = − ∑
i

αiV ij + 1 (2.35)

W ik = Γik − δik (2.36)

αi = [ai]+,  βj = [bj]+ . (2.37)

These equations can be obtained from equations (2.22)–(2.25) by replacing G Γ  and 

A V .

Equations for the primacy variables ui can be obtained from equation (2.30) by replacing ri 

with ∑iSijri.

2.12 Sparse incomplete representations (SIR) in simplicial dual networks.

The Lyapunov function [equation (2.33)] is a relatively simple function on the activities of β 
-cells. This function could be explicitly optimized with respect to β cell activity, resulting in 

a substantial simplification of the network’s dynamics. Indeed, the optimal value of βj in 

equation (2.33) is

βj* = [1 − ∑
i

αiV ij]
+

(2.38)

Instead of integrating the time-dependent equations (2.35), we can evaluate the 

instantaneous optimal β-cell membrane voltage bj = 1 − ∑iαiV ij and equation (2.38) to 

obtain β-cell firing rates. Variables given by equation (2.38) are not sparse. Indeed, when the 

values of α-cell responses are small, i.e. during the early stages of network dynamics, β-cell 

firing rates would be close to 1. It would only be after some time that values of βj* approach 

zero. The dense β-cell representation comes as a consequence of the KKT theorem. Because 

the concentration vector x  is sparse, β , which enforces non-negativity on the zero 

components of x , is dense. To obtain a more biologically plausible network, we introduce a 

variable βj ≡ βj − 1 + ∑iαiV ij which provides a sparse representation of the non-negativity 

constraints. The optimal values of this variable are

βj* = βj* − 1 + ∑
i

αiV ij = [∑
i

αiV ij − 1]
+

(2.39)

By comparing this equation with equation (2.16), we observe that each βj* represents a 

component of the reconstructed concentration vector x :
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βj* = εxj (2.40)

As such, βj* are expected to inherit the sparsity of the concentration vector. In previous work, 

we suggested by independent logic that granule cells could function directly as the 

components of the concentration vector (Kepple et al., 2018; Koulakov and Rinberg, 2011). 

There, we proposed that granule cells in the olfactory bulb form a sparse representation of 

components in odor mixtures. In that work, we assumed that representations were either 

temporarily or spatially incomplete. Therefore, we called it the sparse incomplete 

representation (SIR) model. Here, we associate the variables βj* which represent the 

concentration vector x  with responses of the olfactory bulb’s granule cells which are also 

found to be sparse (Cazakoff et al., 2014). The dual network relying on responses βj* can 

therefore implement the previously proposed SIR model (Kepple et al., 2018; Koulakov and 

Rinberg, 2011).

That βj* represent components of the reconstructed concentration vector also has 

implications for later olfactory processing. In particular, as seen in equations (2.39) and 

(2.40), the stimulus can be reconstructed by a relatively simple operation on α cells. That is, 

α cells alone form a full dual representation of the stimulus, no information about the 

responses of β cells is required. α cell representation contains a unique identifier for each 

odorant which is concentration invariant and can be used by other brain regions.

Network equations describing the dual SIR network are obtained by expressing the values of 

βj from equation (2.39) and plugging these values in equations (2.34) through (2.37)

ȧi + ai = εγui − ∑
j

V ijβj* (2.41)

αi = [ai]+ (2.42)

βj* = [∑
i

αiV ij − 1]
+

. (2.43)

These equations describe a much simpler network than previously [(2.34)-(2.37)]. Indeed, as 

follows from equation (2.41), this new network lacks structured recurrent connectivity 

between α-cells (Figure 5). Interestingly, connectivity between α and β*-cells is 

antisymmetric: the connectivity is described by the same matrix V = SA in both directions, 

but has an opposite sign.

Equation (2.40) suggests that β*-cells build representations of olfactory mixtures, with 

activities of individual neurons encoding the concentrations of individual mixture 

components. As we mentioned, a similar suggestion was made for the activities of granule 

cell neurons of the olfactory bulb, within the SIR model. We thus can identify β*-cells in our 

present model with granule cells of the olfactory bulb. In agreement with this suggestion, the 
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number of granule cells (a few million) matches our estimate of the number of 

monomolecular chemical compounds.

3 DISCUSSION

Herein we propose a novel model for intensity-invariant encoding of olfactory stimuli. 

According to the primacy model, an odor can be identified from the identities of the p 
strongest responding ORs. Importantly, this does not mean that our model uses only p 
receptors to identify the stimulus. Instead, weakly responding receptors are still informative 

of which odors are not present. Because the primacy model relies only on the relative rather 

than absolute strengths of receptor responses, the recovered stimulus is independent of the 

absolute molecular concentrations of the stimulus. Although we demonstrated this idea for 

the particular example of primacy coding in olfaction, we suggest that this principle could be 

used to produce intensity invariant signal recovery for more complex conditions and in other 

modalities.

We formulated a solution of the olfactory decoding problem from first principles, using 

optimization theory with inspiration from compressed sensing. Since, within the primacy 

model, the constraints for inferring a stimulus use relative relationships between the 

responses of sensors (ORs), we attempted to formulate the problem using a Lagrangian 

approach to optimize under inequality constraints. Our solution thus involves minimizing a 

Lagrangian cost function containing two sets of Lagrange coefficients, α  and β . Lagrange 

coefficients represent weights on different constraints in the optimization problem. They 

describe the importance of individual constraints, i.e. which constraints were actually used 

in a particular inference problem. The first set of Lagrange coefficients, α , described the 

importance of individual primacy conditions, while the second set, β , described non-

negativity constraints imposed on individual molecular concentrations. Solving the sparse 

optimization problem under inequality constraints is often performed in the dual 

representation, via optimizing the dual Lagrangian. Dual optimization is performed in the 

dual space, i.e. using only the Lagrange coefficients and not the primal variables, i.e. values 

of molecular concentrations.

The driving observation that we make in this study is that neural systems are well suited for 

implementing dual optimizations. The nonnegativity of Lagrange coefficients is especially 

easy to enforce in neural responses described by firing rates that cannot physically fall below 

zero. Furthermore, a well-known theorem in optimization theory states that the Lagrange 

coefficient acting on an unused constraints is zero. For a dual neural network, we showed 

that this can result in sparse neural activity. These observations led us to propose the dual 

brain theory – that firing rates of individual neurons represent the Lagrange coefficients for a 

set of conditions of varying complexity.

It has been known for a while that recurrent neural nets can minimize cost functions of firing 

rates, known as Lyapunov functions (Hertz et al., 1991). Mapping a dual Lagrangian onto a 

Lyapunov function of a recurrent neural network shows that this network solves the dual 

problem. Using this approach, we found the structure of the neural network whose Lyapunov 

function matches the dual Lagrangian for the problem of olfactory stimulus recovery.
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Although we presented a conceptual model in which our initial approach was to implement a 

mathematical concept rather than to describe the biology of the olfactory system, we found 

that some features of our network bear resemblance to the real olfactory networks. In the 

dual network, the sets of Lagrange multipliers α  and β  are represented by the firing rates of 

two cell types, α and β cells. The firing rates of β cells represent individual molecular 

components of the olfactory stimulus mixture. In our previous work, we proposed that 

granule cells form a representation of odorant components (Kepple et al., 2018; Koulakov 

and Rinberg, 2011). Since, in our present study, β cells perform a similar function, we 

argued that the β cells of our network [more precisely, β* neurons, equation (2.39)] are 

analogous to the granule cells in the real olfactory bulb. The number of β cells in our 

network is equal to the number of potential molecular components in the environment. 

Encouragingly, the number of granule cells (several million) (Shepherd, 1972) is also similar 

to the number of potential volatile monomolecular compounds present in PubChem (Kim et 

al., 2016).

Because of the downstream position of α neurons from receptor input y  and their excitatory 

effect on putative granule cells β, we suggest that α cells could reside in the piriform cortex 

which is known to feedback to the olfactory bulb. The inhibition from putative granule cells 

β to putative cortical cells α is then possible through an indirect pathway, via inhibition of 

mitral cells projecting to the piriform cortex. For this reason, we suggest that receptor input 

instead travels through the distinct tufted cell channel. As a result, we place u cells in the 

anterior olfactory nucleus (AON) which receives most projections from tufted cells (Haberly 

and Price, 1977). Due to the ab initio nature of our approach, the mapping of our dual 

network onto the real biological network needs further refinement. Overall, we suggest that, 

within the dual network approach, each neuronal cell type can be associated with a set of 

Lagrange coefficients implementing individual constraints.

In our study, we presented networks that are capable of inferring concentration-invariant 

odorant representations by performing a sparse norm minimization (l1 norm or elastic net). 

We proposed therefore that ORs implement compression of the odorant concentration vector 

and relied on elements of compressed sensing in olfactory decoding. Several recent studies 

have argued that decoding algorithm in the olfactory system may use compressed sensing 

(Grabska-Barwinska et al., 2017; Krishnamurthy et al., 2017; Tootoonian and Lengyel, 

2014; Zhang and Sharpee, 2016). These studies usually assume a linear encoding scheme 

similar to equation (2.2) and a decoding mechanism based on a sparse norm minimization. 

Some of these studies place the representation of individual component concentrations into 

the piriform cortex or, equivalently, insect mushroom body (Tootoonian and Lengyel, 2014; 

Zhang and Sharpee, 2016). Similarly, a study of (Grabska-Barwinska et al., 2017) suggests a 

Bayesian inference-based approach that relies on representing odors in the activity of 

cortical cells.

A significant distinction of our study from the previous approaches is that we assume that 

the activity of cortical neurons (α cells) is representative of, but distinct from, the vector of 

molecular concentrations. Thus, the vector of molecular concentrations can be decoded 

uniquely from the activities of α cells but activities of individual neurons cannot be 
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interpreted as molecular concentrations. In this regard our model is similar to the recent 

study by (Krishnamurthy et al., 2017). We place the vector of molecular concentrations into 

the olfactory bulb (β cells, Figure 6). In doing so, we propose that the information of 

molecular composition of the odorant mixture is retained within olfactory bulb, while 

cortical neurons contain a dual representation of the mixture that is synthetic, i.e. 

constructed rather than reconstructed. Thus, in our model, the activity of cortical cells 

displays similar statistics in case of both mixtures and monomolecular stimuli. The 

reconstruction of the stimulus into monomolecular components performed by the granule 

cells in the olfactory bulb (β cells) that receive inputs from the cortex (α cells, Figure 6). 

The purpose of this reconstruction is to check whether the synthetic cortical representation is 

consistent with any possible mixture of monomolecular compounds. In a separate work, we 

suggest that this reconstruction could be useful during olfactory learning (Kepple et al., 

2018).

In formally linking the neurons of our dual network to biological neuronal cell types, we are 

able to make specific predictions about connectivity in the olfactory system. In particular, 

our theory suggests that feedback and feedforward connections between the bulb and cortex 

are dependent. Thus, the feedback connection matrix from cortex (SA, Figure 6) is a product 

of feedforward connectivity (S) and granule-to-mitral cell connectivity (A). We also suggest 

that granule cells represent the olfactory system’s reconstruction of the stimulus, 

consequently predicting that more complex stimuli (mixtures) should evoke more complex 

activity in granule cells than monomolecular odorants. More generally, using our dual brain 

theory to connect the activity of a specific cell types to a class of Lagrange coefficients 

enables one to determine connectivity on both mesoscopic and single-neuron scales.

Biologically it is known that OSN responses to an odor are roughly exponential distributed. 

This fact has been used to motivate maximum entropy models of olfactory coding (Stevens, 

2016). For these models, the exponential distribution of OSN firing rates is important as it 

provides a maximal entropy code under certain assumptions. For our primacy-based model, 

however, there is very little constraint on the distribution of firing rates. Indeed, we show 

that we can construct the affinity matrix A with elements that have Gaussian, lognormal, or 

even uniform distributions [Supplementary Figure 2]. This finding results from the primacy 

model’s invariance to any uniform, monotonic nonlinearity relating r to y.

Our model uses relative rather than absolute responses of ORs to solve the decoding 

problem. This allowed us to encode the stimulus in a concertation invariant manner, even if 

the responses of receptors are non-linear. One mechanism for concentration invariance that 

has been proposed previously is based on normalization of bulbar output (Banerjee et al., 

2015; Cleland et al., 2011; Cleland et al., 2007; Kato et al., 2013; Miyamichi et al., 2013; 

Olsen et al., 2010). This mechanism uses global inhibition to change the gain of receptor 

responses. The primacy model proposed here is distinct from the normalization model, 

although they share similar circuit features, such as broadly projecting inhibitory elements. 

Although we also implement inhibition to achieve concentration invariance, we place the 

inhibitory circuits in cortex with the goal of identifying the strongest responding receptors. 

Our mechanism may therefore account for fast odor guided decisions that are dependent on 
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receptors with high-affinity to odorants. We thus propose that normalization and primacy 

models may operate in series on different levels of olfactory processing.

Tootoonian and Lengyel (Tootoonian and Lengyel, 2014) have proposed that the maximum a 
posteriori (MAP) solution to the inference problem of recovering a sparse N-dimensional 

odor vector x  can be achieved in a low-dimensional measurement space, reflecting the 

known biology of olfactory processing (Tootoonian and Lengyel, 2014). In their study, the 

compressed sensing problem was formulated as an l1 norm minimization of the odor 

concentration vector x  subject to the linear equality encoding constraint y = Ax  and solved 

by considering the problem in dual space. The resulting generalized energy function for their 

network reflects the equality constraints and, as such, their proposed network 

implementation differs significantly from our solution. Our networks rely on Karush-Kuhn-

Tucker-type inequality conditions that implement primacy. Our formulation of the decoding 

problem is therefore distinct from the work of Tootoonian et al. In particular, our 

formulation allows to decode an odorant composition even if the encoding problem is non-

linear [equation (2.6) and the following discussion]. In addition, due to our inclusion of 

inequality constraints and the Karush-Kuhn-Tucker theorem, the responses of neurons in our 

dual network are expected to be sparse.

Two features of dual networks are worth mentioning. First, according to the Karush-Kuhn-

Tucker theorem (KKTT), dual Lagrangians are optimized under the constraint of the non-

negativity of Lagrange coefficients. Neuronal responses can naturally enforce these 

constraints, because they are described by firing rates that cannot fall below zero. Thus, dual 

neural networks could be viewed as analog computers that convert complex conditions, such 

as those imposed by primacy theory, into non-negativity constraints. The latter constraints 

can be relatively easily implemented by neuronal firing rates. Second, due to KKTT (Boyd 

and Vandenberghe, 2004), a large number of the Lagrange coefficients are likely to be zero. 

This observation is consistent with the observed sparsity of neuronal responses, both in 

olfaction (Kay and Laurent, 1999; Koulakov and Rinberg, 2011; Rinberg et al., 2006; 

Stettler and Axel, 2009) and beyond (DeWeese and Zador, 2006; Hromadka et al., 2008; 

Lehky et al., 2005; Vinje and Gallant, 2000), further strengthening the possible association 

between neuronal responses and Lagrange coefficients. We therefore propose that neural 

networks may implement optimization of dual Lagrangians with the responses of individual 

neurons representing Lagrange multipliers corresponding to a set of individual constraints.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX A

Derivation of equation (2.1) and (2.2):

Consider the mass-action law for an OR number i binding odorant number j. For the number 

of receptor molecules bound by the odorant, Rij, we have

dRij/dt = − γijRij + αijxjRi* (A.1)

Here αij and γij are binding and unbinding rates, and the number of available (unbound) 

available receptors, Ri*, is given by

Ri* = Ri0 − ∑
j

Rij (A.2)

Here Ri0 is the total number of OR molecules of type i exposed to odorant binding. Because 

in the equilibrium dRij/dt = 0 and Rij = αijxjRi*/γij ≡ AijxjRi*, the total number of unbound 

receptors can be found from equation

Ri* = Ri0 − Ri*∑
j

Aijxj

We thus obtain Ri* = Ri0/(1 + ∑jAijxj) and the number of active receptors

Ri = ∑
j

Rij = Ri0∑
j

Aijxj/(1 + ∑
j

Aijxj)

Assuming that activity of the cell reflects its relative OR activation we obtain

ri ≡ Ri/Ri0 = yi/(1 + yi) (A.3)

With yi = ∑jAijxj.
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Figure 1. 
Using relative values of receptor responses can solve the problem of recovering sparse 

concentration vector x . (A) An example concentration vector x alongside its reconstruction 

(blue) using only relative information that a group of receptors P respond more strongly than 

the rest. (B) Correlation between the reconstructed and true concentration vectors for 

different sparsity (K) values and number of primary receptors (p). (C) Correlation between 

reconstruction and stimulus with various levels of noise injected on input signal y (blue) and 

input neuron response r (red).
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Figure 2. 
The solutions provided by soft and hard primacy conditions are similar. (A) An example 

concentration vector x  alongside its hard primacy reconstruction (blue) and the soft primacy 

reconstruction (orange). (B) The correlation between the hard and soft primacy solutions for 

various sparsity K and primacy number p.
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Figure 3. 
The dual network model described by equations (2.22) through (2.25). (A) The structure of 

the network. α cells (light green) implement the dual representation of the concentration 

vector. β cells (dark green) implement the non-negativity constraints on the concentration 

vector. (B) Example firing rates of alpha cells. (C) Example firing rates of beta cells. (D) 

Example of the firing rate model’s reconstruction (orange) of the concentration vector 

compared with the original concentration vector (black). (E) Correlation between the firing 

rate reconstruction of the concentration vector and the true concentration vector for a range 

of stimulus and network parameters, K and p.
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Figure 4. 
Network diagram of the simplicial dual network.
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Figure 5. 
(A) The structure of the dual network implementing SIR model. α cells (light green) 

implement the dual representation of the concentration vector. β* cells (dark green) represent 

the reconstruction of the concentration vector. (B) Example firing rates of α cells. (C) 

Example of the sparse firing rates of β* cells. (D) Comparison of the simplicial SIR model’s 

reconstruction (orange) and the concentration vector. (E) Correlation between simplicial SIR 

model’s reconstruction of the concentration vector and the true concentration vector for a 

range of stimulus and network parameters, K and p.
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Figure 6. 
Possible mapping of our simplicial dual network implementing the primacy model to the 

known olfactory circuitry. The neurons of our network are depicted with circles and the 

corresponding brain region we suggest for those neurons are shown in the surrounding box. 

The suggested analogy with specific cell types are given outside each circle. AON, PC, and 

OSNs stand for anterior olfactory nucleus, piriform cortex, and olfactory sensory neurons 

respectively.
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