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Abstract: The ability to produce high-quality images of human brain function in any environment
and during unconstrained movement of the subject has long been a goal of neuroimaging research.
Diffuse optical tomography, which uses the intensity of back-scattered near-infrared light from
multiple source-detector pairs to image changes in haemoglobin concentrations in the brain, is
uniquely placed to achieve this goal. Here, we describe a new generation of modular, fibre-less,
high-density diffuse optical tomography technology that provides exceptional sensitivity, a large
dynamic range, a field-of-view sufficient to cover approximately one-third of the adult scalp,
and also incorporates dedicated motion sensing into each module. Using in-vivo measures, we
demonstrate a noise-equivalent power of 318 fW, and an effective dynamic range of 142 dB. We
describe the application of this system to a novel somatomotor neuroimaging paradigm that
involves subjects walking and texting on a smartphone. Our results demonstrate that wearable
high-density diffuse optical tomography permits three-dimensional imaging of the human brain
function during overt movement of the subject; images of somatomotor cortical activation can
be obtained while subjects move in a relatively unconstrained manner, and these images are in
good agreement with those obtained while the subjects remain stationary. The scalable nature
of the technology we described here paves the way for the routine acquisition of high-quality,
three-dimensional, whole-cortex diffuse optical tomography images of cerebral haemodynamics,
both inside and outside of the laboratory environment, which has profound implications for
neuroscience.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further
distribution of this work must maintain attribution to the author(s) and the published article’s title, journal
citation, and DOI.

1. Introduction

Over the last 25 years, the application of functional neuroimaging technologies, particularly
functional magnetic resonance imaging (fMRI), has yielded extensive and detailed insights into
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the relationships between brain structure, brain function and our interactions with the external
world [1–3]. However, the limitations of functional neuroimaging technologies have meant
that almost all of these insights are predicated on the assumption that brain function does not
fundamentally differ between the laboratory and everyday environments. The ability to reliably
image human brain function outside of the laboratory, using naturalistic stimuli and particularly
while subjects move freely, would allow neuroscientists to investigate the effects of experimental
environment and examine whole new aspects of human cognition.

Optical neuroimaging approaches such as functional near-infrared spectroscopy lend themselves
to applications that are either extremely challenging or impossible with traditional neuroimaging
technologies like fMRI [4–6]. Functional near-infrared spectroscopy (fNIRS) uses the differential
absorption of near-infrared light transmitted through the tissues of the head to monitor cerebral
haemodynamics [7–9]. In practice, fNIRS measurements are usually achieved by coupling
multiple optical fibres to the scalp. These fibres transmit light to and from the subject to allow
measurements of the changes in optical intensity between source and detector pairs (channels).
Most fNIRS systems provide somewhere in the range of 1 to 50 measurement channels [7], which
yield data that can be analysed channel-by-channel or converted into rudimentary two-dimensional
maps with a resolution of around 30 mm [10,11].

In comparison to fMRI, fNIRS is relatively robust to subject movement [12,13], fNIRS devices
are comparably small, are silent, portable, can be applied without stringent requirements on the
local environment (e.g. no electromagnetic shielding is required) and are inexpensive to acquire
and operate [7]. As a result, the fNIRS field has grown exponentially over the last decade [5,14].
Over the same period, there has been significant research effort focussed on extending the

principles of fNIRS to provide three-dimensional, high-resolution functional optical neuroimaging
[15–18]. Diffuse optical tomography (DOT) uses high numbers of near-infrared light sources
and detectors to provide overlapping spatial sampling of the target object, which permits the
acquisition of depth-resolved, three-dimensional images of human cerebral haemodynamics [19].
The advantages of increasing the density of the source and detector array are well-established and
numerous: greater channel density provides greater lateral image resolution [20]; signal-to-noise
is improved by virtue of the fact that multiple measurements are sensitive to every point within the
field of view of the instrument [21]; and the wide range of source-detector distances permitted by
high-density arrays provides depth sensitivity and specificity [22], minimizing the confounding
effects of haemodynamic signals arising from the scalp [23–25]. However, increasing the number
and density of the sources and detectors of near-infrared light that an instrument provides creates
a number of challenges. The most obvious is the sheer number of optical fibres that must
be coupled to the subject’s scalp to perform a measurement, which has approached ∼200 in
some cases [18]. The use of optical fibres in these numbers severely limits the portability and
applicability of the technique, and therefore undermines many of the key advantages of optical
neuroimaging technologies that have underpinned the growth of the fNIRS field.
In recent years, fNIRS technologies have begun to advance away from optical-fibre-based

systems that tether the subject to the bench and towards wearable devices [7]. There are now
several wearable continuous wave (CW) fNIRS technologies that are commercially available, and
these are already being applied to study moving subjects outside of the laboratory environment
[7]. Despite these successes, all current wearable CW fNIRS technologies are subject to many of
the same limitations as traditional, fibre-based devices: their low channel count and low sampling
density means they have poor spatial resolution, no depth sensitivity and a narrow field-of-view.

In 2016, our group published the first three-dimensional, functional images of the human brain
to be obtained with a fibre-less, high-density diffuse optical tomography (HD-DOT) system, which
we refer to as the ‘microNTS’ (µNTS) system [26]. While this system exhibited field-leading
sensitivity, it had a relatively narrow field-of-view, and a limited dynamic range that resulted
in issues with detector saturation. In this paper, we describe the design of a new generation
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of modular HD-DOT technology, which overcomes these limitations. We also describe the
application of this technology to a novel motor neuroimaging paradigm that was specifically
designed to test the capabilities of our system, and its capacity for imaging human brain function
during overt movement of the subject.

2. Methods

2.1. Module design

2.1.1. Board layout and control unit

The full system consists of 12 independent DOT sensor modules (Fig. 1). Each module consists
of a 30 mm × 30 mm 4-layer printed circuit board (PCB) (Fig. 1(a)). Two pairs of LEDs
(OIS-170-740-XT, OIS-170-IT855-XT, OSA-Opto, Germany) with wavelengths of 740 nm and
855 nm were selected to act as the optical sources, and were positioned at opposite corners of each
board [27,28]. Four silicon photodiodes (photosensitive area: 2.77 × 2.77 mm2, S12158-01CT,
Hamamatsu, Japan) were used as detectors. Two photodiodes are positioned at the remaining two
corners of the PCB, and two are positioned at 10 mm from the centre of each pair of LEDs to form
a short-separation channel [29]. Each module therefore provides within-board source-detector
separations of 10mm (2 channels), 23mm (4 channels) and 28mm (2 channels). In total the
system incorporates 24 source and 48 detector locations and yields 12 × 2 × 12 × 4= 1152 NIRS
channels per wavelength. Twelve modules provide coverage of approximately 220 cm2, which
equates to around one third of the accessible scalp surface of a typical adult [27,30]. When
positioned on the scalp over the midline (Fig. 1(e),(f)), a 2 × 6 formation of modules allowed
us to acquire data from across the somatosensory and motor cortices of both hemispheres in
our adult subjects. Figure 1(g) shows the regions of the cortex to which the 12-module system
was sensitive, as determined via photon transport modelling in subject-specific anatomical finite
element meshes.
Each photodiode was connected to one of the four-channels of a charge-to-digital converter

(DDC114, Texas Instrument, USA), consisting of a charge integration amplifier and a 20-bit
Sigma-Delta analogue-to-digital converter. The integration of the charge amplifier and the
analogue-to-digital converter into the same silicon substrate within a monolithic package allows
theDDC114 to provide higher signal-to-noise performance than conventional discrete components.
Each channel of the DDC114 has two independent integrators with a common input. When
the integrated charge is converted to a digitized measurement from one integrator, the other
integrator simultaneously accumulates new charge from the photodiode. This strategy avoids
dead-time and permits continuous data acquisition.

A 32-bit ARM Cortex-M0 based micro-controller unit provides local control for each module.
It regulates LED source illumination, retrieves optical measurements from the DDC114 and
motion sensing data from the motion processing unit (MPU) and writes that data to an Inter-
Integrated Circuit (I2C) bus. An 8-pin connector on the rear of each board allows the connection
of a ribbon cable for power and data transmission. During operation, the power consumption
of each module is 160 mW. A control unit based on a Field Programmable Gate Array (FPGA)
provides power and control for all modules via the single ribbon cable (Fig. 1).

2.1.2. Shielding and encapsulation

While the adoption of the DDC114 allows for a high detection sensitivity, it is vulnerable to
external sources of noise that include electro-magnetic interference and capacitive coupling. The
principal source of electro-magnetic interference is mains power line noise. If the integration
cycle does not match the power line frequency (i.e. 50 Hz in the UK), charge will be induced
during each integration cycle. Due to unpredictable variations in the power line frequency, it
is not possible to correct for these effects retrospectively. Capacitive coupling can also induce
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Fig. 1. The completed 12-module HD-DOT imaging system. a) Photographs of both
sides of the module PCB with key components indicated; b) an exploded view of the module
encapsulation layers; c) a photograph of 12 modules in a 2 × 6 formation; d) a system-level
diagram showing the 12 modules, control unit, PC, and cabling; e) the system in place
on a subject, with neoprene cap; f) diagrams illustrating the anatomical positioning of the
12-module array on the head of our subjects; and g) the group-average sensitivity map
calculated via photon transport modelling indicating the regions of the cortex to which the
array was sensitive.

extra charge as a result of electrostatic build-up due to the low permittivity of the encapsulation
materials. In order to eliminate the impact of these noise sources, we applied two stages of
electromagnetic shielding. A dedicated copper shield was placed around each photodiode. Each
shield had a 4 mm diameter circular opening on the upper surface to allow light to be coupled
into the photodiode. This window was covered with a layer of Indium Tin Oxide (ITO) film
to maintain the continuity of the shield while allowing for optical transmission. Each shield
was connected to the ground of the system. A custom multilayer encapsulation (Fig. 1(b)) was
then implemented to provide electrical isolation between the opto-electronics and the human
scalp. Internal light leakage from LEDs to photodiodes was minimized by placing neoprene
rubber optical isolation pads between the source and detector elements. The board was then
placed inside a laser-cut acrylic case, which was itself permanently encased in another layer
of copper shielding. A bespoke silicone light-guide with a diameter of 3.5 mm was used to
couple light to and from the optical components through the layers of encapsulation to the scalp.
Finally, a black-pigmented silicone rubber was moulded over the external shielding and around
the light-guides to form a permanent, seamless, wipeable surface, with only a connector exposed
on the upper surface. Including the 4 mm protrusion of each light guide, the total height in
cross-section of the module is 14 mm. The weight of each module is approximately 15 g.
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2.1.3. Sequence and signal optimization

In order to achieve a 12-module system with a minimum frame rate of 3 Hz, all required
measurements associated with a given LED had to be obtained within 6.8 ms (48 LED
illuminations plus one dark measurement per frame). It was also critical to ensure that the
shortest channels were not at risk of saturation during in-vivo recordings. To achieve this level of
performance, we took advantage of the fact that the DDC114 is programmable in terms of both
gain and integration times. The maximum charge that can be accumulated on each channel of the
DDC114 was 50 pC, with a theoretical Root-Mean-Squared noise of 0.63 fC. This is equivalent to
205 fW and 1.63 nW of optical power respectively, resulting in a theoretical maximum dynamic
range of 98 dB.
However, in order to further increase the dynamic range, we implemented a dual-integration

strategy, wherein both a short and a long integration period were undertaken within the 6.8ms
window available for each LED. In this dual-integration scheme, the data acquisition sequence
for each LED consists of two separate integrations, labelled as A, and B in Fig. 2. The beginning
of the sequence starts with the short integration (A, 0.5 ms) followed by a longer integration
time (B, 6.3 ms). The respective LED is only switched on shortly before the start of the long
integration, B. This is to ensure the LED is illuminated for a very short time within the integration
A. The time between the rising edge of the signal driving the LED and the start of integration B is
referred to as the overlap time (τovp), which is programmable: it can be set at any value between
0.02 ms and 0.5 ms with a 0.02 ms resolution. As part of the system initialisation procedure, in
each subject users can select the maximum value of τovp that results in there being no saturated
measurements from any short integrations. After the short integration period, as much of the
time remaining in the 6.8ms sample window as possible is allotted to the long integration. The
LED remains on continuously throughout the long integration period.

Fig. 2. A timing diagram of the dual integration data acquisition scheme. Integration
A corresponds to the short integration period (0.5ms) and B, the long integration period
(6.3ms). The LED overlap time τovp can be optimized on a subject-by-subject basis.

The advantage of this dual-integration approach is that it has an effect equivalent to increasing
the maximum detectable intensity by a factor equal to the ratio of the long integration period and
the minimum value of τovp, which is in excess of 300. If short-separation measurements from the
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long integration period are found to saturate the detector, the short-integration measurement can
be used instead. Typically, which integration will be used for a given channel is determined for
each subject as part of initialisation of the system, with the result stored in a simple look-up table
for use in post-processing.

2.1.4. Motion sensor implementation

Themotion sensor (MPU9250) has the potential to provide 3-axis accelerometry, 3-axis gyroscope
and 3-axis magnetometry data at between 100 and 200 Hz. An I2C protocol was implemented to
achieve two-way communication between the motion sensor and the local microcontroller within
each module, which then loaded MPU data onto the data bus for transfer to the control unit. Due
to limitations in data transmission rates, it was not possible to transfer all 9 axes of MPU data
and simultaneously extract HD-DOT data from 12 DOT modules. A balance had to be struck
between the sample rate of MPU data, the number of data axes that were transmitted per module,
and the number of modules recording motion sensor data. Ultimately we chose to extract MPU
data from every module at 150 Hz. To achieve this within the bandwidth limitations meant it was
only possible to transmit a single axis of data per module. We chose therefore to transmit the
norm of the three accelerometer axes, which we thought likely to provide the clearest indication
of the occurrence of motion artifacts.

2.2. Array positioning and application

To couple the array to the head of the subjects, the 12 modules were first placed within a
stretchable lattice made from 1 cm wide elastic strapping. The elastic ran around the outer edge
of each module, and held the modules in formation while allowing the array to conform to the
head. A continuation of the elastic lattice at each end of the array formed a chin-strap. Tightening
the chin-strap caused the inter-module distance along the long axis of the array to increase. The
minimum inter-module distance was simply the thickness of the elastic strapping (∼2 mm), while
the maximum distance was limited only by the length of the ribbon cable between modules, but
this limit was never approached. When applied to the subjects, the array was centred along the
midline, 1 cm posterior to Cz, with the long axis of the array running parallel to the T7-Cz-T8
line (Fig. 1(b)). The chin-strap was tightened such that the centre of the lateral edges of the
array reached C5 on the left and C6 on the right hemisphere. A Polhemus Patriot 3D digitizer
(Polhemus, VT, USA) was used to measure each subject’s cranial landmarks (nasion, inion,
pre-auricular left and right, Cz) and the external corners of each module within the array for
registration purposes. Once the registration measurements were complete, a neoprene cap was
applied over the module array to maintain downward pressure on the modules and insulate them
from external light sources (see Fig. 1(e)). A single ribbon cable of 3 m in length connected
the modules to one another and to the control unit, allowing subjects to move in a relatively
unconstrained manner.

2.3. Experimental preparation and paradigm design

Nine subjects (2 female; median age 28 and range 22-45 years, 1 left handed) were recruited to
this study. Each gave written, informed consent prior to undergoing any experiment. This study
was approved by the UCL research ethics committee.

Structural magnetic resonance imaging (MRI) data were acquired for each participant using a
Siemens Magnetom Prisma Fit 3T system. This included a 3D T1-weighted sequence (MPRAGE,
1 mm isotropic, TR/TE/TI= 2200/2.9/900 ms) and a 3D T2-weighted sequence (SPACE, 1 mm
isotropic, TR/TE= 3200/400 ms). The MRI scans and HD-DOT experiments were performed on
different days within the same 4-month period.
Prior to the start of an experimental session, the subjects were given 5 minutes to familiarize

themselves with texting the pangram ‘the quick brown fox jumps over the lazy dog’ on an iPhone
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7 smartphone (Apple Inc., CA, USA). The HD-DOT data acquisition experiment then consisted
of three separate paradigms, which were randomly ordered for each subject and are described
below.
The first paradigm was a unimanual texting protocol performed while the subjects remained

(with the exception of the task itself) as still as possible. Subjects were seated in a comfortable
chair, approximately 90 cm from a computer screen. Using a timing protocol built in MATLAB
(Mathworks, MA, USA), the screen would initially (and during inter-stimulus ‘rest state’ periods)
display a fixation cross at the centre of a 50% grey screen. To trigger the start of a stimulation block,
the words ‘Left hand text’ or ‘Right hand text’ were displayed on the screen and accompanied
by an audio cue of the same words read aloud. During each block, the subjects would text the
pangram above continuously (without capitalization nor punctuation) for 17.5 seconds with the
specified hand, at which point the block would end, as indicated by the screen reverting to the rest
state and the audio cue ‘stop texting’. Inter-stimulus periods were randomly jittered in duration
from 17.5 to 22.5 seconds. A total of 16 stimulation blocks (8 per hand in a pseudorandom
sequence) were performed, so that the total duration of this paradigm, which including 30 seconds’
rest at the beginning and end of the sequence, was approximately 11 minutes.
The second paradigm consisted of a simple walking protocol. Subjects were asked to stand,

and on hearing the audio cue of the word ‘walk’, walk at their own pace around the laboratory in
a figure-eight path spanning the width of the room (approximately 3.5 m). Each walking block
would last 17.5 seconds, with the end of each block indicated by the audio cue ‘stop walking’. At
the end of each block, subjects would stop walking and stand still at whatever point in their path
they found themselves. The inter-stimulus period was randomly jittered in duration from 17.5 to
22.5 seconds. A total of 12 stimulation walking blocks were performed, so that the total duration
of this paradigm, which included 30 seconds’ rest at the beginning and end of the sequence, was
approximately 8.5 minutes.
The last paradigm was a unimanual texting protocol performed while the subject walked

continuously throughout. Subjects were asked to walk the figure-eight path at their own pace.
To trigger the start of a stimulation block, the words ‘Left hand text’ or ‘Right hand text’ were
provided by audio cue. During each block, the subjects would continue to walk, but would
simultaneously text the pangram above continuously for 17.5 seconds with the specified hand.
The end of each block was indicated by the audio cue ‘stop texting’. Inter-stimulus periods were
randomly jittered in duration from 17.5 to 22.5 seconds. A total of 16 stimulation blocks (8 per
hand) were performed, so that the total duration of this paradigm (including 30 seconds’ rest at
the beginning and end of the sequence) was approximately 11 minutes.

2.4. HD-DOT data processing, image reconstruction and analysis

2.4.1. Head modelling and array registration

For each subject, the T2-weighted image was linearly co-registered to the T1-weighted image
using ANTs [31]. Both T1-w and T2-w images were employed to produce a multi-tissue
probabilistic segmentation using the unified segmentation algorithm implemented in SPM12
[32] (http://www.fil.ion.ucl.ac.uk/spm/). Six tissue types were segmented: soft tissue (i.e. scalp),
skull, cerebrospinal fluid (CSF), grey matter (GM), white matter (WM) and air. The final 6-layer
tissue mask of each subject was obtained by assigning to each voxel the label of the tissue with
the highest probability. High-resolution multi-layer tetrahedral meshes were then created with
the iso2mesh software [33] for each subject.
Cranial landmarks (Inion, Nasion, pre-auricular points and Cz) were manually identified for

each subject from a 3D rendering of their T1-w MRI and used to map the cranial landmark
coordinates measured with the Polhemus digitizer to the virtual head mesh coordinate system via
an affine transformation. The transformation matrix obtained in this process was then applied
to all points measured with the Polhemus system, which included the external corners of each

http://www.fil.ion.ucl.ac.uk/spm/
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module. Each scalp surface mesh was then realigned to the measured positions using the iterative
closest point algorithm [34]. Sources and detector positions were then obtained from a priori
knowledge of their position with respect to the measured corners of the tiles, using a modified
version of the spring relaxation algorithm included in the Homer2 package, AtlasViewer [35].

2.4.2. Forward modelling

Wavelength-specific Jacobians were computed on the volumetric head meshes of each subject
with the Toast++ software [36], which solves the diffusion approximation via the finite element
method. Optical properties (absorption coefficients and reduced scattering coefficients) were
assigned to each tissue type and for each wavelength by fitting all published values for these
tissue types [28,37,38]. Voxels within the head that were defined by the segmentation process
as air (typically within the sinuses) were assigned the same optical properties as CSF. The
forward model solution was projected by Toast++ onto a 50 × 60 × 50 regular voxel grid for
reconstruction, and a finer inter-mediate grid of 100 × 120 × 100 voxels was used to optimize
the mapping between the mesh space and the voxel space. Sources (and adjoint detectors) were
modelled as having a Gaussian profile with a standard deviation of 2 mm, and Neumann boundary
conditions were applied.

2.4.3. Data pre-processing

The raw, channel-wise HD-DOT data was processed prior to image reconstruction using elements
taken from the Homer2 toolbox (https://homer-fnirs.org/) to produce haemodynamic response
functions (HRFs) for each subject and condition. First, channels were passed through a quality
control step (enPruneChannel), which removed channels that exhibited a mean intensity of
less than 500 ppm or a value of the mean intensity divided by the standard deviation of less
than 12. Any channels that, despite the dual-integration strategy described above, were found
to saturate at any point during each recording were also excluded. This quality control step
resulted in a binary vector indicating those channels that had passed these thresholds (‘good’
channels). After converting the intensity data to changes in absorbance (in units of optical
density), a motion correction step was performed using the kurtosis wavelet approach with a
kurtosis level of 3.3 [39]. The function hmrMotionArtifactByChannel was applied both before
and after wavelet motion correction to quantify the burden of motion artifacts in both the original
data and that which remained in the data after the motion correction step. This information
was used to permit data rejection where necessary and to yield the artifact envelope used in the
comparison with the motion sensor data of Fig. 6 in Section 3.4. Note that a modified version
of the hmrMotionArtifactByChannel function was also used to identify features in the MPU
data. After these motion correction steps, the data was bandpass filtered in range 0.01 to 0.5Hz
and converted to changes in haemoglobin concentrations using differential pathlength factors
of 7.5 and 7 for 740 nm and 855 nm wavelengths, respectively [40]. Haemodynamic response
functions were then extracted using a deconvolution approach that employed a set of gaussian
basis functions (with both a standard deviation and temporal spacing of 1.5 s) to model the HRF
from 5 seconds prior to 30 seconds after the onset of each stimulus [23]. For every channel in
the array, the deconvolution model included as a regressor the nearest short-separation channel
(defined as that with a source-detector separation of 10mm or less) that passed the quality control
step. This process yielded 35-second long haemodynamic responses for every good channel,
condition and subject.

2.4.4. Inverse problem

Images representing both the change in oxyhaemoglobin (∆HbO) and the change deoxy-
haemoglobin (∆HbR)were reconstructed for each subject, task and time point using amultispectral

https://homer-fnirs.org/
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approach, which directly generates concentration changes from attenuation data [41]. We em-
ployed the LSQR method to solve the inverse problem and first order Tikhonov regularization, as
in Brigadoi et al. [42]. For each reconstruction, the LSQR algorithm was configured to terminate
after a maximum of 50 iterations, and with a tolerance of 10−5. The regularization hyperparameter
was set to λ= 10−3. The reconstructed images were defined on the same regular grid as the
Jacobian. A remapping procedure was therefore performed to map back the reconstructed images
from the voxel space to the volumetric head mesh.

2.4.5. Group-level analysis

For each subject, the structural pipeline of the Human Connectome Project (HCP) [43] (HCP
pipeline v. 4.0.0, https://github.com/Washington-University/HCPpipelines/releases) was imple-
mented to obtain a pial surface in the subject-space and a high-resolution pial surface mesh with
164,000 nodes registered to the Conte-69 template [44].

For surface analysis and visualization, each volumetric head-mesh-based image was mapped
to the corresponding pial surface in the subject-space by assigning a value to each node on the
pial boundary surface that was equal to the mean value of all the volumetric mesh node values
within a 3mm radius. In order to compute group average images and perform statistical analyses
to compare activation across tasks, the ∆HbO and ∆HbR pial images in the subject space were
first resampled to the high-resolution Conte-69-registered subject-space. Group averages for both
∆HbO and ∆HbR were then computed by averaging all the Conte-69-registered pial images for
each task at each reconstructed time point in the template space.

For each subject, task and chromophore, the average activation image between 6 and 16 s post
stimulus-onset was computed. Since the 12 modules were designed to cover the sensorimotor
cortex in this experiment, we reduced the number of nodes on which to apply statistical
comparisons by selecting only nodes within the regions to which the 12 modules were sensitive.
The sensitivity mask was computed by mapping to the Conte69 template the sensitivity map
for the subject with the highest number of good channels, i.e. the one achieving the highest
sensitivity over the cortex (our best-case scenario), and setting to 0 all nodes with sensitivity
lower than 5% of the maximum sensitivity.

Statistical analyses were performed using the Permutation Analysis of Linear Models (PALM)
tool included in FSL [45]. PALM is a statistical toolbox that uses permutation methods and
includes support for surface-based statistical analysis. Permutation-based t-tests were performed
to compare each activation image vs. rest (defined as the average image during the baseline
period from -5 to 0 seconds) and to compare activation images for different tasks, with 500
permutations, tail approximation [46] and threshold-free cluster enhancement to correct for
multiple comparisons with default parameters for surface data.

3. Results

3.1. System performance and data quality

By taking the standard-deviation of dark measurements over time for each detector and each
experiment, it is possible to quantify the sensitivity of the system in terms of the measured
noise-equivalent power (NEP) [30]. The median NEP measured in-vivo, across all 9 subjects,
3 paradigms and all 48 detectors was 318 fW (range 268 to 409 fW). A 3-way ANOVA of
subject, paradigm and detector demonstrated that all three variables have a significant impact on
NEP (p< 0.001), with subject having the most significant effect (p< 1 × 10−6). The maximum
detectable power for the long integration period with the chosen gain is 16.3 nW, and as a result,
the measured dynamic range was 94.2 dB. However, accounting for the increase in the effective
maximum detectable power afforded by dual-integration the effective dynamic range of the
system was 142.6 dB. Note that the minimum value of τovp automatically determined across our

https://github.com/Washington-University/HCPpipelines/releases
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subject group was 0.1ms. As this system is an evolution of previous devices, basic assessments
of features such as temporal stability are beyond the remit of this paper. However, we include as
supplementary data an example of a simple stability measurement (see Fig. 7 in the Appendix).
The data quality control steps described in “Methods” allowed us to quantify the proportion

of ‘good’ channels obtained in each subject as a function of source-detector separation. Two
subjects from the cohort were found to have less than 70% of channels with source-detector
separations in range 0-35 mm marked as ‘good’, and were subsequently rejected. The median
percentage of channels in range 0-35 mm marked as good in the remaining 7 subjects was 94.5%.
The maximum source-detector separation of channels marked as ‘good’ varied from 34.8 to 56.5
mm across our subject group and the corresponding number of dual-wavelength channels used
for image reconstruction varied from 248 to 614.

3.2. Functional images

Example three-dimensional DOT functional response images are presented in Fig. 3(a). Recon-
structed images of the peak response in oxyhaemoglobin concentration for the seated texting
(right), walking texting (right) and walking paradigms are presented in a subject-specific finite
element mesh. Group-level, peak-response maps associated with all five task conditions, for both
∆HbO and ∆HbR are shown in Fig. 3(b). A clear, localized contralateral response is apparent for
the seated texting with the right hand, while the left-hand seated texting produces a more bilateral
response pattern. In comparison the walking task produces a positive ∆HbO in the superior
somatomotor cortex and only a small negative ∆HbR, predominantly in midline cortical areas
anterior to the pre-central gyrus. The walking texting response maps show a positive ∆HbO and
a negative ∆HbR that are similar in spatial distribution to those of the seated-equivalent, but with
notably reduced contrast. Walking texting (with both left and right hand) are associated with a
decrease in ∆HbO in the superior supplementary motor area relative to the baseline condition.

Cortical maps of the T-statistic associated with the contrast of task ∆HbO > baseline ∆HbO for
all five tasks are shown in Fig. 4(a-e). The same maps, but masked to indicate significance after
correction at a T-stat value equivalent to p< 0.05 are shown in Fig. 4(f-j). Note that the T-stat
maps of the seated and walking texting conditions are very similar in their spatial distributions,
with contralateral increases in HbO apparent in each case. Significant responses are apparent in
the contralateral hand-knob regions of the somatomotor cortex to both seated texting conditions.
Walking texting left also demonstrates a significant response in the hemisphere contralateral to
stimulation, but with a notably reduced extent. No region of the brain exhibited a significant
response to the walking texting right condition, despite the similarities to the equivalent seated
condition apparent in the haemodynamic maps of Fig. 3(b). The walking condition produced
a significant ∆HbO response in the superior somatomotor cortices. Note that while the ∆HbR
images of Fig. 3(b) show decreases that are spatially localized and generally consistent with a
typical functional haemodynamic response, the T-statistic images based on ∆HbR did not reach
significance after correction.
Figure 5 depicts the spatial overlap of the ∆HbO-derived T-statistic maps for the seated and

walking texting paradigms for both right and left-handed tasks, when each is thresholded at
30% of its maximum T-statistic value. Areas in which the seated texting and walking texting
distributions overlap are indicated in dark red. The dice coefficient, which was calculated to
quantify the extent of this overlap, was 0.77 and 0.75 for right and left-handed tasks, respectively.

3.3. Motion artifacts and motion sensor data

Despite offering less vulnerability to motion artifacts than other neuroimaging modalities, fNIRS
is still sensitive to motion [12,13]. Motion artifacts are often a significant problem for fNIRS
applications, particularly in studies of infants and in studies of moving subjects. For this study,
the proportion of data identified as motion artifact was consistent across our three different
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Fig. 3. HD-DOT haemodynamic images at the subject and group level. Part (a) depicts
example 3D orthogonal slices through peak ∆HbO response DOT maps in response to
texting with the right hand while seated, texting with the right hand whilst walking, and
walking, each thresholded at 30% of the peak response. Group-average haemodynamic
response maps, displayed in the Conte 69 template pial space, are shown in part (b). Images
b(i-v) show the ∆HbO maps for each of the five conditions, while b(vi-x) the equivalent
∆HbR images.
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Fig. 4. Group T-stat maps for the contrast of task ∆HbO > baseline ∆HbO for each
of the five conditions. The upper row (a-e) consists of the unmasked T-statistic maps, while
the lower row (f-j) shows the masked T-stat maps in which only values that remain significant
after correction are displayed.

Fig. 5. Overlap images comparing the spatial distribution of seated and walking
functional T-stat maps. (a) shows masks of the region in which the T-stat map exceeds
30% of its maximum for seated texting right (green) and walking texting right (blue). The
regions where these masks coincide is shown in dark red. The equivalent image for texting
with the left hand is shown in (b).

experimental paradigms, despite two paradigms requiring the subjects to walk around the
laboratory. The burden of motion artifact (the percentage of data-points identified as motion)
averaged 4.0%, 2.2% and 2.4% for the seated texting, walking and walking texting paradigms,
respectively, but these differences were not statistically significant (one-way ANOVA, p= 0.089).
Similarly, the number of channels passing our data quality thresholds showed no significant
variation across the three paradigms (one-way ANOVA, p= 0.996). However, the standard
deviation of the absorbance data (which averaged 0.0252, 0.0262 and 0.0304 OD for the seated
texting, walking and walking texted paradigms, respectively) were all significantly different from
one another (one-way ANOVA, Tukey-Kramer post-hoc analysis, p< 0.01). Therefore, while



Research Article Vol. 11, No. 8 / 1 August 2020 / Biomedical Optics Express 4122

Fig. 6. The relationship between motion sensor data and DOT artifacts. a) A selected
period of accelerometery data from one module (in blue) and the unfiltered change-in-
absorbance signal at 740 nm for a channel associated with that same module (in green). The
overlaid pink shaded regions indicate periods identified as motion artifacts using the DOT
data (see “Methods”) while the yellow shaded periods identify features from the MPU signal.
Note the discrepancies between the two. Panel b) presents equivalent data for the walking
paradigm. Note the overt periods of increased acceleration variance during the walking
blocks. Motion artifacts identified in the DOT data do not coincide with detectable changes
in the accelerometer signal, which appears dominated by the acceleration associated with
the walking task itself. Panel c) Provides a summary of the concordance between the DOT-
and MPU-derived artifact envelopes across all datasets.
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the proportion of identified motion artifacts did not change in the walking paradigms, the act of
walking appears to significantly increase the standard deviation of our HD-DOT data.

To inform and potentially alleviate the issue of motion artifacts [47,48,56,57] (and to take
further advantage of the concept of modular, wearable HD-DOT technology) a motion sensor
(MPU9250, Invensense Inc. USA) was incorporated into each module. The norm of the 3-axis
accelerometry data from each motion sensor was collected for all 12 modules throughout all
three paradigms in each subject. Figure 6(a) shows an example period of acquired accelerometer
data from one module, and an unfiltered change-in-absorbance trace from one DOT channel
associated with that module, for the seated texting paradigm in one subject. The figure also
displays the periods identified as potentially artifactual using the MPU signal, and the periods
identified as artifact from the DOT data itself using established approaches. The clear spike-like
artifacts identified directly from the DOT data do not reliably coincide with identifiable features
in the accelerometer signal, even when the subject is seated. Figure 6(b) shows an example period
of data from the walking paradigm. Here, the walking blocks are clearly evident in the MPU data.
Here, even large spike artifacts in the DOT data do not coincide with clear deviations in the MPU
data while the subject is walking. Similar patterns are evident throughout the dataset. Figure 6(c)
summarises the agreement between the DOT-derived artifact envelope and the MPU-derived
equivalent. For the seated and walking texting cases, when an artifact is apparent from the
DOT data, the MPU rarely agrees (rates of only 13.3 and 12.6% respectively). When there is
no artifact identified in the DOT data (which is the vast majority of the time) there is greater
agreement between the DOT and MPU-derived envelopes (93.2 and 96.6% respectively). The
walking paradigm demonstrates a different pattern: motion in the DOT data is coincident with
MPU features in 77.8% of cases, while when no artifact is apparent in the DOT data, the rate of
agreement is 47.4%. However, this is likely a result of the MPU feature extraction algorithm
marking the entirety of each walking block as motion artifact.

4. Discussion

Advancing DOT technologies away from the use of optical fibres and towards head-mounted
modular electronics has the potential to permit functional neuroimaging of the whole adult
cortex, with sub-centimetre resolution, in almost any environment [30]. Dispensing with optical
fibres allows for sampling density and field-of-view to be increased without the associated
increase in weight and ergonomic burden. However, achieving a light-weight device that can
provide high-density sampling, wide-range of source-detector separations and a large field of
view with minimal cabling is a significant challenge. Here, we have presented several significant
methodological and technological advances that have allowed us to create a wearable high-density
DOT technology that incorporates 12modules, and provides 1152 logical channels per wavelength.
This is sufficient to cover around one third of the adult scalp. The biggest challenge in the
development of this technology was achieving a reasonable frame rate while also maintaining
sufficient sensitivity and dynamic range. By optimising the gain settings of the charge-to-digital
converter (DDC114, Texas Instrument, USA) and focussing on the electro-magnetic shielding
of the modules, we were able to achieve a sample time per measurement of 6.8 ms while also
attaining exceptional sensitivity. The in-vivo-measured noise-equivalent power, which averaged
318 fW, is (as far as the authors are aware) the lowest ever reported for a CW device. The fact
that the NEP was found to vary significantly with subject suggests that our measures may actually
underestimate the achievable sensitivity of this device; variation between subjects implies that
either the electrical noise of the environment changed day-to-day, or (more likely) the fit of
the head cap affected the intensity of background light reaching the detectors during the ‘dark’
measurements. Furthermore, the NEP is inversely dependent on integration time, such that
increasing the integration period to the 20 ms, for example, would yield an NEP of approximately
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85 fW, but would result in a frame rate of only ∼1Hz, which we deemed too low for functional
neuroimaging because of the increased risk of aliasing of the cardiac signal.
The dual-integration strategy described in “Methods” allowed us to effectively increase

the dynamic range of the device from an intrinsic value of 94.2 dB to an effective value of
142.6 dB. This ensured that we were able to successfully collect data from the shortest, 10mm
source-detector pair without saturating the DDC114. The tunable nature of the LED overlap
time also allows signal quality to be optimized across different subjects. However, the fact that
the minimum τovp value in our group was 0.1ms (compared to a possible minimum of 0.02ms)
suggests that our large effective dynamic range was not fully exploited in this dataset. This result
implies that the source power could have been increased by a factor of ∼5 without saturating
the device in these subjects. However, given the high variability in optical contact losses across
subjects and phantoms etc., maintaining some headroom in the device is clearly necessary.
Note that this system, like its predecessors [26,58], has undergone a range of phantom-based

assessments. However, partly because building a realistic, dynamic DOT phantom that can
accurately mimic the realities of an in-vivo experiment remains very challenging, we focused on
assessing system performance in a real experimental scenario. One specific experimental factor
that affects all optical devices is thermal stability, which is directly relevant to head-mounted
electronics. The data obtained from the in-vivo experiments here did not exhibit obvious thermal
drift, as the process of calibration for the integration timing scheme (which usually takes 5-10
minutes) tends to provide enough time for the modules to reach a stable temperature.
The signal quality observed in our subject group was generally high. Two subjects of 9 were

rejected because the proportion of ‘good’ channels in range 0-35mm did not exceed 70%, but in
the remaining subjects the vast majority of those same channels (94.5%) passed our data quality
checks. The longest separation ‘good’ channel in each subject varied from 34.8 to 56.5mm. This
compares very favourably with commercially available CW devices [7]. It is important to note,
however, that in terms of the maximum obtainable source-detector distances, the performance of
this system in this cohort fell short of that obtained by Chitnis et al. [26], despite the improvement
in sensitivity. This is almost certainly due to the fact that the group studied here happened to
include a larger proportion of subjects with dark hair.

Another significant advantage of moving DOT technologies away from the use of optical fibres
and towards wearable electronics is the opportunity it presents for the integration of additional
sensing devices into the HD-DOT modules. The inclusion of the motion sensor has the potential
to allow automated detection and rejection, or even optimized correction, of motion-contaminated
data segments [47–49,56,57]. However, our results demonstrate that using motion sensor data,
even as a simple indicator of the presence of artifacts is not straightforward. While a subject
remains otherwise still, our results suggest that DOT artifacts can be coincident with clear
features in the MPU data, but this is not routinely the case. When a subject is undertaking a gross
movement (e.g. walking), the relationship between the amplitude signal from the accelerometer
and the presence of motion artifacts decouples further. The acceleration associated with walking
(and in this case, turning) appear significantly larger in amplitude than the spikes in acceleration
associated with motion artifacts when a subject remains still (Fig. 6), but walking itself does
not necessarily induce overt motion artifacts. Extracting multi-axes data from each module, and
perhaps investigating the relationship between the network of motion sensor signals that can be
obtained from multiple modules, may yet provide a way of overcoming at least some of these
limitations [50].
The functional haemodynamic response data obtained in this cohort was in some respects

consistent with previous work and with our expectations [26,27,51,52]. The seated texting task
constitutes a unimanual motor stimulation, but one that likely induces activation in the areas of the
brain associated with working memory and motor planning. Given the field-of-view associated
with the array, the largest responses are evident as expected in the primary somatomotor regions,
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specifically around the pre- and post-central gyri, approximately half way between the mid-line
and the lateral cerebral fissure (Fig. 3 and 4). This area (the well-known ‘hand knob’) is invariably
associated with cortical representations of the fingers and thumb [53]. The functional imaging
map associated with the walking paradigm shows a response that is markedly superior to those
resulting from the texting stimulus. This is consistent with a greater involvement of the cortical
representation of the feet [54], and possibly of parts of the supplementary motor area [55].

As can be seen from Fig. 3, 4 and 5, the spatial distribution of the functional maps associated
with the walking texting and seated texting tasks are extremely similar. The peaks of each
response distribution are highly consistent for both left and right-hand stimuli. However, as
evident from Fig. 4, the T-statistic maps associated with these images are very different, with a
much-reduced region of activation reaching significance in the case of walking and right-hand
texting, while the walking and left-hand texting fails to reach significance at all after correction.
There are clearly two possible reasons for this: either the functional response that results from
the texting task is reduced while the subject is also walking or the walking-texting data was
simply noisier. Our analysis of the differences in motion burden and data quality across our
three paradigms demonstrates that the proportion of data identified as motion in each of the
three paradigms is effectively the same, but that the walking paradigms yield data that exhibits
significantly larger standard deviation. This suggests there are additional features in the walking
and walking texting data that are not picked up by our motion artifacts detection process, but
that still increase the variance of our data. While it is possible that this increase in standard
deviation during the walking tasks relates directly to physiology (e.g. increases in heart rate,
stroke volume, respiration rate etc.), it is also possible that these additional features are effectively
small-scale motion artifacts that do not exhibit the large, fast changes in amplitude or standard
deviation that we typically depend on to identify artifacts from DOT data. The presence of these
‘micro-artifacts’ would explain the increase in noise in the walking texting haemodynamic images
relative to the seated texting equivalents in Fig. 3, and the reduction in the regions of the brain in
which the functional response reaches significance in Fig. 4.

The consistency of the spatial distribution of the responses between seated and walking texting
is encouraging evidence that wearable HD-DOT will be able to provide reliable functional
neuroimaging of subjects during overt movement, but our results suggest that improvements in
head-gear and the expansion of the use of motion sensing may be necessary to obtain results
equivalent to those in stationary subjects.

5. Conclusion

We have presented a series of significant technological developments that have allowed us to
produce a fibreless, modular, high-density DOT system with exceptional sensitivity, a large
dynamic range and a field of view that encompasses approximately one third of the adult scalp. We
have applied this technology in a set of novel paradigms that allowed us to investigate its efficacy
in the functional neuroimaging of overtly moving subjects. The system yielded comparable
images of functional activation in response to a paradigm performed by both stationary and
walking subjects, demonstrating the potential for this technology to become the gold-standard in
un-constrained functional neuroimaging.

Appendix 1

Figure 7 shows the full time-course of 100s of static epoxy-resin phantom data recorded using the
12-module system from cold without explicit warm-up time excepting the ∼5 minutes required
to calibrate the integration timing scheme. The black dashed line denotes the noise-equivalent
power, determined from the standard-deviation of dark measures. Figure 7(b) shows the temporal
stability of a subset of the channels shown in Fig. 7(a) for which there was a good level of light
recorded (taken here as > 1 nW). No variation exceeds 1.5%, and the median standard deviation
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Fig. 7. Phantom characterization of the thermal stability of the 12-module HD-DOT system.

across all channels in this example was 0.048%. Figure 7(c) shows a histogram of the gradients
of the linear fit to each of the time-courses shown in b). The mean and maximum gradients were
5.8e-4% per second and 4.4e-3% per second, respectively. As the mean is non-zero, this implies
there remains a linear trend present in the data, but that trend is small. For the worst-case channel,
the signal intensity would expect to change by 1% in 247 seconds, while for the average channel,
it would take 1700 seconds. This level of drift comparable with previous fNIRS devices [59],
and is of a scale and duration that would render it irrelevant to most functional DOT paradigms.
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