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Abstract

The immune system of ectotherms, particularly non-avian reptiles, remains poorly charac-

terized regarding the genes involved in immune function, and their function in wild popula-

tions. We used RNA-Seq to explore the systemic response of Mojave desert tortoise

(Gopherus agassizii) gene expression to three levels of Mycoplasma infection to better

understand the host response to this bacterial pathogen. We found over an order of magni-

tude more genes differentially expressed between male and female tortoises (1,037 genes)

than differentially expressed among immune groups (40 genes). There were 8 genes differ-

entially expressed among both variables that can be considered sex-biased immune genes

in this tortoise. Among experimental immune groups we find enriched GO biological pro-

cesses for cysteine catabolism, regulation of type 1 interferon production, and regulation of

cytokine production involved in immune response. Sex-biased transcription involves iron ion

transport, iron ion homeostasis, and regulation of interferon-beta production to be enriched.

More detailed work is needed to assess the seasonal response of the candidate genes

found here. How seasonal fluctuation of testosterone and corticosterone modulate the

immunosuppression of males and their susceptibility to Mycoplasma infection also warrants

further investigation, as well as the importance of iron in the immune function and sex-

biased differences of this species. Finally, future transcriptional studies should avoid draw-

ing blood from tortoises via subcarapacial venipuncture as the variable aspiration of lym-

phatic fluid will confound the differential expression of genes.

Introduction

The innate and adaptive immune systems of non-avian reptiles remain a challenge to charac-

terize, particularly in how they function relative to avian and mammalian model systems [1].

Challenges to this characterization are fourfold. First, while the number of available reference

genome assemblies for non-avian reptiles is increasing (e.g., [2–7]), these resources are newer

and less well-developed than those of model systems, such as human, chicken, and African
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clawed frog [8–10]. As a consequence, it is still largely unknown how much of the “immune

gene set” of human, chicken, and frog is conserved in non-avian reptiles. Second, there are

fewer functional studies about the immunological mechanisms and pathways governing how

non-avian reptiles respond to pathogens compared to mammal and bird systems [1]. Third,

the closest-related functional models—human and chicken—are endotherms so their immune

processes occur at a consistent internal temperature unlike non-avian reptiles whose

ectothermy means they have a wider set of physiological and activity states. The biochemistry

that mediates immune responses may range in efficiency under these different conditions,

adding a layer of complexity to their immune function [11,12]. Finally, how the sex of an

organism modulates immune functions is now well-documented in mammals [13], but how

sex-biased differences manifest in the immune function of non-avian reptiles with tempera-

ture-dependent sex determination is less known [14].

In many species, males and females exhibit differences in anatomy, morphology, physiol-

ogy, and behavior. To some extent, sexually dimorphic traits are the product of sex differences

in gene expression, which allow phenotypic differences from a common autosomal genome.

Genes differentially expressed by sex are known as sex-biased genes and can be female or male

biased, depending on which sex exhibits higher levels of transcription [15,16]. Sex-biased gene

expression is the result of differential gene regulation between males and females, but in taxa

with specialized sex chromosomes, gene dosage also plays a role in unequal transcription. Sex

affects immune function as well as disease prevalence and severity. In general, females mount

stronger innate and adaptive immune responses than males [17,18]. Possible explanations for

this are differential regulation of gene expression by sex hormones [19,20] or differences in

behavior [17,21]. Many studies focus on sex-biased expression of immune genes on sex chro-

mosomes, but the majority of immune genes are located on autosomal chromosomes and

these warrant further study [22]. How temperature-based sex determination affects sex-biased

gene expression is also understudied. Therefore, the role of environment on disease suscepti-

bility and prevalence, as well as how these effects manifest differently by sex are topics of con-

siderable interest that have broad implications for the management of wildlife.

One way to fill in these knowledge gaps is to assay the transcriptional response of how a

non-avian reptile responds to infection where the host-pathogen relationship is reasonably

well understood. Infection and disease of the Mojave desert tortoise (Gopherus agassizii) by

the pathogenic bacteria Mycoplasma spp. is among the most extensively characterized in chelo-

nians [23]. Furthermore, because desert tortoises are long-lived animals, the cumulative effects

of exposure to stressors such as prolonged infection may have considerable long-term impact

for these animals. Knowledge gained about transcriptomic response to infection in this system

will shed light on the innate and adaptive immune response of non-avian reptiles to infection

broadly, including sex-biased effects.

Learning about this host-pathogen relationship is a major conservation priority for the des-

ert tortoise, which was listed as threatened under the US Endangered Species Act in 1990 [24].

In this host-pathogen relationship, the Mycoplasma agassizii bacteria disrupt the tissue of the

ciliated mucosal epithelium leading to upper respiratory tract disease (URTD). Although this

disease has been extensively studied in desert tortoises, it remains unclear if or how M. agassi-
zii bind to epithelial cells or if they just reside in the mucosal layer similar to other respiratory

microbes [25]. In desert tortoises, URTD can lead to severe damage to the tissues of the upper

respiratory tract and occlusion of nasal passages by thick mucosal discharges. The URTD is

also thought to be a direct cause of mortality in Mojave desert tortoises [23,26–28].

Higher pathogen loads from M. agassizii generally correlate with increased clinical signs

and adaptive antibody responses [29,30]; however, antibody production can be delayed in this

species by months to years after M. agassizii infection [30,31]. By the time most tortoises are
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classified has having URTD and an antibody response is detected, individuals have likely been

infected for a long period of time. For some time initially after infection by pathogen, tortoises

may not show clinical signs or an antibody response but would test positive for M. agassizii by

qPCR [32–34]. As many of the recovery unit populations remain below viability levels [35], it

is important to the health and viability of the species to understand how these bacterial infec-

tions and URTD impact the health of tortoises.

To learn more about the transcriptional response to this host-pathogen relationship, we

used RNA-Seq to analyze the blood-based gene expression patterns of male and female tor-

toises with severe M. agassizii infection, tortoises inoculated with M. agassizii, and uninfected

tortoises. Based on previous studies, we expect cytokines (e.g. IFN-γ, interleukins, TNFα1)

and inflammatory signaling pathway genes to be expressed at higher levels in tortoises with

bacterial infection, as they are important mediators of a host’s defense to pathogens. Since the

tortoises in this study were infected for long periods of time, we also expect signs of chronic

infection and humoral immune response such as immunoglobulins or lymphocyte-specific

cluster of differentiation genes, which are necessary for targeting, activation, and survival.

Materials and methods

Experimental design

We analyzed 25 tortoise individuals across three experimental groups with varying degrees of

bacterial infection including: 1) individuals discovered with severe M. agassizii infection and

were not inoculated from experimentation (Severe Infection group, SI); 2) individuals inocu-

lated with M. agassizii showing medium infection (Medium Infection group, MI); and 3) indi-

viduals serving as a control without any known infection (No Infection group, NI; Table 1). In

our study, both medium and severe infection groups were sampled from captive colonies with

documented infection for multiple years. We were not able to incorporate subclinical animals

with early or low levels of infection in this study. All handling and experiments using animals

were approved by the U.S. Geological Survey-Western Ecological Research Center Animal

Care and Use Committee (WERC 2012–03) and covered under state (Nevada Division of

Wildlife Permit #S33762) and federal (U. S. Fish and Wildlife Service TE-030659) permits.

For the severe infection (SI) group, we chose captive adults (N = 9; 6F:3M) from the Desert

Tortoise Conservation Center (DTCC) in Clark County, Nevada, USA (35.975256, -115.251048)

that were classified with severe infection based on long-term health evaluations by experienced

veterinarians. Each tortoise in this category had a confirmed long-term M. agassizii infection and

multiple clinical signs of potential illnesses associated with long-term weight loss and reduced or

under-conditioned body condition (Table 1). Due to their poor overall health, consistent with

captive herd management protocols and based on veterinary guidance, most tortoises (8 of 9)

were euthanized following sample collection and immediately necropsied to evaluate tissue condi-

tions morphologically and histologically. Tortoises were euthanized after this study period by

licensed veterinarians using a mixture of ketamine (5 mg/kg) and dexmedotomidine (0.1 mg/kg)

injected intramuscularly as an anesthetic. Once animals were non-responsive, Euthasol (2 ml/kg)

was injected intravenously into the subcarapacial cranial plexus [37].

For the medium infection group, we also used captive adult tortoises (N = 7; 1F:6M) from

the DTCC that were experimentally exposed to M. agassizii as part of a previous study [29].

These tortoises tested positive for the presence of M. agassizii bacteria for four years and exhib-

ited targeted immune responses (specific antibody production measured using enzyme-linked

immunosorbent assay (ELISA) tests) to M. agassizii as well as intermittent clinical signs associ-

ated with inflammatory responses to this infection for two years prior to sampling [31]. For

the control group we chose clinically normal, adult tortoises (N = 9; 5F:4M) from a wild
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population that has been monitored since 2006 in Hidden Valley, Clark County, Nevada, USA

(36.528008, -114.975905). Tortoises in this control group were clinically normal based on

visual examination by veterinarians and tortoise biologists, and each tortoise had been evalu-

ated and assessed as clinically free of M. agassizii infection for 11 consecutive years [38,39]

prior to collecting samples for this study. Wild tortoises were not euthanized.

All tortoises were assessed and sampled in peak summer (July–early August) between

0500–0800 hours to minimize circadian and seasonal influences on measured blood analytes.

Due to logistical constraints tortoises were sampled during the same season but in different

years; Medium Infection (MI) tortoises were sampled in 2017, Severe Infection (SI) tortoises

in 2013, and No Infection (NI) tortoises in 2015.

Choice of blood and venipuncture site

In nonmammalian vertebrates, whole blood is appropriate for gene expression studies for two

reasons. First, white blood cells, which include granulocytes, monocytes, and lymphocytes,

Table 1. Clinical condition of adult captive and wild tortoises.

Tortoise ID ID Sex MCL (mm) Mass (g) Eyes Nares Oral Cavity Skin Shell Other Body Condition Score

CS0004 NI-1 F 244 2370 − − − − − − 6

CS0005 NI-2 M 266 3401 R − − − − − 4

CS0011 NI-3 M 281 4705 R − − − − − 5

CS0023 NI-4 F 250 2810 R − − − − − 6

CS0049 NI-5 F 260 2540 R − − − − − 5

CS0052 NI-6 M 277 4280 R − − − − − 4

CS0072 NI-7 F 261 3300 R − − − − − 4

CS0078 NI-8 F 268 3440 R − − − − − 4

CS0083 NI-9 M 312 5560 R − − − − − 4

15780 MI-1 M 244 2718 DS, E DS, Er − − − − 4

21804 MI-2 M 245 2794 E DS, O − − − − 5

22003 MI-3 M 274 NA E DS, Er − − − − 4

22314 MI-4 M 238 3016 R DS − − − − 4

22335 MI-5 F 256 3056 E − − − − LR 4

22390 MI-6 M 238 2840 R − − − − − 4

22399 MI-7 M 265 3390 E − − − − LR 4

18518 SI-1 M 274 2165 R A, DS, Er − − − CM 3

18602 SI-2 F 281 4329 DS, CR, E, R A, DS, Er CP − CD − 4

18619 SI-3 F 260 3037 E, DM, CR A, DS, DM, Er, O CP − − CM, LR 4

18789 SI-4 F 250 2430 DS, E A, DS, DM, Er, O − − − − 4

19156 SI-5 F 274 3300 DS, E, CR, A, DM, O − − − − 4

19431 SI-6 M NA 3140 E, R Er, O − − − − 4

19392 SI-7 F 287 4028 E DS, Er − − − W 4

19730 SI-8 F 275 3786 E, ER A, DS, DM, Er − − − − 4

21042 SI-9 M 273 3396 E, CR, R DM, DS, Er − − − − 5

The clinical condition of adult captive tortoises with medium (M1-M7; 1F:6M) and severe (SI1-SI9; 6F:3M) infection as well as wild tortoises with no infection

(NI1-NI9; 5F:4M) in Clark County, Nevada, USA. Tortoises were evaluated mid-summer (July) immediately before sampling of blood. The following codes indicate

clinical anomalies observed during evaluation: A = asymmetrical, CD = cutaneous dyskeratosis, CM = coelomic mass, CP = coloration pale, CR = coloration red,

DS = discharge serous, DM = discharge mucoid, E = edema, Er = eroded, L = lesions present, LR = labored respiration, O = occluded, R = recessed, W = weak/

lethargic“−”= clinically normal. (MCL = Maximum Carapace Length). Numerical body condition scores (BCSs) were used to assess overall muscle condition and fat

stores with respect to skeletal features of the head and limbs [36]. BCS scores were categorized as ‘under (1–3),’ ‘adequate (4–6)’ or ‘over (7–9)’ condition.

https://doi.org/10.1371/journal.pone.0238202.t001
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allow for the molecular characterization of the host’s systemic response to mycoplasma infec-

tion. Second, in reptiles erythrocytes are nucleated and transcriptionally active [40,41] and

thrombocytes remain as intact cells instead of producing anuclear platelet cytoplasmic frag-

ments [42]. Genes involved in insulin signaling, electron transport chain, stress, and oxidative

response are shared between whole blood and liver [41], making whole blood a non-invasive

sample to assess immunological and physiological response to infection.

We extracted ~2.5 mL whole blood from all tortoises via jugular venipuncture [43] using

either a 1.91-cm, 25-gauge needle-IV infusion set and 3 mL syringe, or subcarapacial veni-

puncture [37] using a 3.81-cm, 23-gauge needle and 3 mL syringe. All MI and NI tortoises

were sampled using subcarapacial venipuncture while SI tortoises were sampled using both

subcarapacial and jugular venipuncture (N = 9, 4 subcarapacial:5 jugular). Syringes were

coated in sodium heparin to prevent coagulation and blood was collected from severely

infected tortoises prior to euthanasia. Two aliquots of whole blood were made per sample. The

first aliquot (0.1–0.5 mL blood) was placed immediately into RNeasy1 Animal Protect collec-

tion tubes (Qiagen, Valencia, CA) for RNA sequencing and gene expression analysis. The sec-

ond aliquot of ~1.5 mL whole blood was placed in BD Microtainer1 tubes with lithium

heparin in order to assay blood counts, hematology, blood chemistry, trace elements, and vita-

min A concentration (described in [38]). Samples were stored on wet ice for no more than

four hours. We separated plasma from the second aliquot using centrifugation (1318 x g for 10

minutes) and stored in an ultracold freezer (-70˚C) until further processing. Aliquots of

plasma (0.01 mL) were screened for antibodies specific to M. agassizii using an enzyme-linked

immunosorbent assay (ELISA; [44]). Sloughed epithelial cells were also collected using sterile

oral swabs and screened for M. agassizii and M. testudineum using a quantitative Polymerase

Chain Reaction (qPCR) assay as described previously [32].

RNA extraction and sequencing for RNA-Seq

Total RNA was isolated from aliquots of whole blood with minor modifications to the total

RNA isolation protocol. Briefly, whole blood samples were thawed on ice, homogenized in RNA

lysis buffer, and aliquoted before extracting with acid phenol chloroform twice. Ethanol (100%)

was added to each sample and passed through a glass-fiber filter, which binds RNA before elut-

ing with nuclease-free water (mirVana miRNA Isolation Kit with phenol, Ambion, #AM1560,

Carlsbad, California). The RNase-Free DNase Set (Qiagen, #79254, Valencia, CA) and RNeasy

MinElute Cleanup Kit (Qiagen, #74204, Valencia, CA) were used to treat total RNA for residual

DNA and salt contamination. Extracted total RNAs were sent to the Yale Center for Genomic

Analysis (YCGA; West Haven, CT) to generate cDNA poly-A-enriched Illumina libraries that

were run on two lanes of the Illumina HiSeq 2500 in High Output mode using 75-bp paired-end

reads. To avoid batch effects, libraries for all individuals were split across the two sequencing

lanes and then read files from the two lanes were concatenated for each sample.

Quality control and differential expression

We assessed reads for quality using FastQC v0.11.7 and MultiQC v1.5 [45] and performed

read trimming using BBDuk v38.00 [46] with a Q28 Illumina quality score to remove low qual-

ity sequences; reads of at least 36 bp were retained. Using STAR v2.5.3a [47], the trimmed

paired reads were mapped to the Gopherus agassizii 1.0 genome [2] and the gopAga1.0 annota-

tion was converted to GTF format via gffreadv0.10.5 (https://daler.github.io/gffutils/api.html).

Uniquely mapped reads were used to obtain gene-wise counts from exon sequences using fea-

tureCountsv1.6.1 [48]. Paired reads were counted as fragments using the “-p” flag. Multi-map-

ping and multi-overlapping reads were excluded by default [48].
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To explore sample variance, we used Principal Components Analysis (PCA) of regularized

log (rlog) count data generated by DESeq2 v1.20.0 [49] (Bioconductor v3.7), which transforms

values onto a log2 scale and normalizes for differences in sequencing depth. We assessed PCA

results for variables of interest (experimental immune group, sex), as well as potentially con-

founding experimental variables: venipuncture site (subcarapacial vs. jugular), captive vs. wild,

and sample collection year. In addition to experimental immune group and sex, PCA showed

a result for venipuncture site as well. For this reason, we tested for differentially expressed

genes (DEGs) for venipuncture site in addition to the DE analyses for experimental immune

group and sex to remove it as a potentially confounding variable.

We identified DEGs with DESeq2 [49–51] after excluding four low coverage samples (see

results section). Counts were normalized for library size internally, fitted to a negative bino-

mial distribution, and corrected for multiple testing using the Benjamini-Hochberg method

(FDR< 0.05). To control for variance associated with experimental group and sex, we used

the multifactorial (two-factor) approach that employs the Wald test when evaluating differen-

tial expression. The NI experimental group and males were set as the reference levels for the

immune and sex-based analyses, respectively. We did not have adequate sampling to analyze

the venipuncture site in the multifactor analysis, so we separately ran a one-factor analysis to

compare expression of jugular venipuncture versus subcarapacial venipuncture. This one-fac-

tor analysis also used the Wald test. Because venipuncture site is a confounding variable, we

removed DEGs associated with venipuncture site from the final list of DEGs obtained from

experimental group and sex. All results reported are excluding these venipuncture site-associ-

ated genes and are divided into genes that are only differentially expressed among experimen-

tal immune groups (unique immune genes), only differentially expressed among sexes (unique

sex-biased genes), and those genes differentially expressed among both experimental immune

and sex groups (sex-biased immune genes). Analyses and results were run in the R statistical

programming environment (http://www.R-project.com). All heatmaps were generated using

rlog transformed, mean-centered counts and genes were clustered by Manhattan distance

using the Ward method.

Enrichment analysis

The unique gene lists for experimental immune group and for sex were individually ranked by

adjusted p-values (padj <0.05) and tested for functional enrichment of Gene Ontology (GO)

and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in g:Profiler [52]. Func-

tional profiling of differentially expressed genes were queried against the mouse database,

excluding in silico curated terms, as an ordered list ranked by their adjusted p-values. Signifi-

cant GO categories (padj < 0.05) were identified using Fisher’s one-tailed test corrected for

multiple testing using the Benjamini-Hochberg method (FDR<0.05) and hierarchically fil-

tered by best-per-parent (moderate) parameters. We visualized significant GO terms

(p< 0.05) using Reduce and Visualize Gene Ontology (REVIGO, [53]), which uses simRel
scores as a measure of semantic similarity. A user-provided threshold value of 0.7 was selected

for clustering.

Data accessibility

Sequence data is available via NCBI SRA accession numbers SRS3600670 to SRS3600682, Bio-

Sample accession numbers SAMN09727116 to SAMN09727140, and BioProject accession

number PRJNA483175 (https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA483175). All

other results are available as appendices or bundled in Harvard Dataverse: https://doi.org/10.

7910/DVN/XOKGGW.
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Results

Data generation and processing

All samples were sequenced across both Illumina HiSeq lanes to avoid batch effects. We

obtained 153 Gb of sequence for the 25 individuals, averaging 30 million reads per individual

(N = 25; 3–53 million reads/individual). Average sequence coverage was 2.6-fold lower for

four individuals (two SI, two NI) than other individuals, which was evident in PCA (S1 Fig).

Removing the four low-coverage samples resulted in a total of 21 samples with 25–53 million

paired reads/individual. We only present results from this high-coverage dataset.

After read trimming, 552 million total reads were retained (11–43 million reads/individual)

that ranged in length from 36–75 bp. Using STAR yielded a 91.7% mapping rate to the

Gopherus agassizii 1.0 reference genome, of which 87.1% of reads were uniquely mapped, 4.1%

of reads were multiply mapped, and 0.4% of reads were mapped to too many loci (only

uniquely mapped reads were retained; S1 Table). Gene expression levels were quantified as the

summation of unique fragments mapped to each exon. Overall, individuals in the male and

Medium Infection (MI) groups exhibited the highest gene expression variance (Fig 1). How-

ever, six of the seven MI individuals were also male, so it is not possible to distinguish whether

high variance is a trait specific to males or to having medium Mycoplasma spp. infection.

Data exploration and differential expression

Venipuncture site. Principal Components Analysis (PCA) showed no obvious patterns

for two technical variables that were tested: captive vs. wild animals and collection year, sug-

gesting these technical artifacts in our data are weak or absent (S1 Fig). We did observe a pat-

tern associated with jugular vs subcarapacial venipuncture, which we attribute to the presence

of varied amounts of lymph fluid in blood samples collected via subcarapacial venipuncture

(S1 Fig). Blood collected via subcarapacial venipuncture can be collected within 1–2 min and

without extensive animal handling, making it the preferred collection technique by managing

agencies [36]. However, the subcarapacial plexus is proximal to lymphatic vessels, and may

result in inadvertent aspiration of lymph when collecting blood [37]; jugular venipuncture

does not result in any lymph admixture.

There were 53 total genes differentially expressed between venipuncture sites (S1 Appen-

dix). Of these, 38 were unique to venipuncture analysis and showed some involvement in

lymph-associated processes, such as regulation by host of viral transcription, T cell activation,

eosinophil migration, and response to bacterium (S2 and S3 Figs; S2 Table). To attempt to mit-

igate the effects of lymph on our immune and sex-based analyses, we post hoc removed the 15

venipuncture-site DEGs that were also differentially expressed in the immune and/or sex com-

parisons. This was done to prevent interpretation of the lymph signal as a blood-based

immune or sex-biased signal (all jugular venipuncture individuals were female). We note that

there have not been RNA-Seq differential expression studies performed on desert tortoises,

making this a novel and important result to account for in the design of future studies.

Immune and sex-biased results

After removing venipuncture site-associated genes, the multifactor Wald test yielded a total of

40 genes that were uniquely differentially expressed among experimental immune groups (Fig

2, S2A and S2B Appendix). Of these 40 genes, 14 were unique to the MI-NI comparison, 21

DEGs were unique to the SI-NI comparison, and five DEGs were differentially expressed in

both comparisons (ABHD8, CDO1, RNF125, cell surface hyaluronidase-like, gopAga1_

00017729). The 5 genes differentially expressed in both comparisons were upregulated relative
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to control (NI) with large log2-fold changes of 14.1–16.4 (SI-NI comparison values). In other

words, these five genes are transcribed to differing degrees depending on whether a tortoise is

infected with Mycoplasma spp. or not. There were 61 enriched GO terms for Biological Pro-

cesses (Table 2, S3 Table), but many of these contained only one or a few DEGs. The analysis

produced zero enriched KEGG pathways. Semantic clustering of enriched GO terms using

REVIGO yielded eight major clusters including cysteine catabolism, response to thyroid hor-

mone, regulation of type 1 interferon production, and regulation of fibroblast apoptotic pro-

cess (Fig 3A).

Fig 1. Principal Components Analysis (PCA) of gene expression data explaining 37% of overall data variance. Shapes are colored according to experimental groups

(NI-No Infection, MI- Medium Infection, SI-Severe Infection). Circles represent female tortoises, squares represent male tortoises. Variables with differentially

expressed genes include immune experimental group, sex, and venipuncture site (see S2 Fig).

https://doi.org/10.1371/journal.pone.0238202.g001
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There were 1,037 genes that were uniquely differentially expressed between females and

males (Fig 4, S3 Appendix). Of these, 368 were upregulated in females relative to males with

the greatest log2-fold change occurring in PACSIN3 (4.6), SH3GL3 (4.3), gopAga1_00019967

(2.9), gopAga1_00019277 (2.1), ZSWIM4 (2.1). There were 669 genes downregulated in

females relative to males and the DEGs with the greatest log2-fold change were RGCC (-5.6),

SMC2 (-3.0), CDK1 (-2.9), NEK2 (-2.8), gopAga1_00016417 (-2.7). The g:Profiler results for

sex-biased DEGs produced 116 enriched Biological Processes and 79 enriched KEGG path-

ways (Tables 3 and 4, S4 Table, S4 Appendix). REVIGO produced 14 semantic clusters includ-

ing iron ion transport, iron ion homeostasis, response to UV-C, regulation of interferon-beta

production, cellular response to organonitrogen compound, and regulation of lysosomal pro-

tein catabolism (Fig 3B).

Fig 2. Heatmap of 40 genes that are uniquely differentially expressed by experimental immune group. Genes are clustered by the Ward method according to

Manhattan distance. All genes shown (rows) are statistically significantly expressed (adjusted α< 0.05). The tree on the left shows four clusters that reflect qualitatively

different expression patterns, depicted in graphical schematics on the right-hand panel. These patterns can be further examined in future work. Color scale presents the

amount of expression. Expression values are mean-centered, regularized log counts and colors are represented as z-score values. (^ ETS domain−containing protein Elk

−1).

https://doi.org/10.1371/journal.pone.0238202.g002
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Eight genes were differentially expressed both in the experimental immune and sex-biased

analyses, which we refer to here as sex-biased immune genes (Fig 5). These sex-biased immune

genes were identified as TMEM135, ST6GALNAC4, IGHE, TRIM3, and TRIM68-like,

gopAga1_00007704, gopAga1_00017285, and gopAga1_00017523.

Discussion

Infections from pathogenic bacteria such as Mycoplasma spp. impact the morbidity and mortality

of both wild and captive tortoise populations, which we use to understand more about the general

immune system of non-avian reptiles. To do this we analyzed the transcriptional response of

Mojave desert tortoises to infection by M. agassizii. We identified 40 uniquely differentially

expressed genes among experimental immune groups (Fig 2), of which 5 genes were differentially

expressed both in medium infection (MI) and severe infection (SI) groups relative to control (NI)

animals. Given the strong health differences among these groups, it was surprising to discover

that transcription in desert tortoises was foremost influenced by sex with 1,037 genes uniquely dif-

ferentially expressed between males and females (Fig 4; S3 Appendix). We identified eight genes

that were significantly differentially expressed in both analyses, which we consider to be sex-biased

immune genes (Fig 5). Finally, results showed that the method most accepted to draw blood from

tortoises (subcarapacial venipuncture) is not ideal for gene expression analysis due to varying

amounts of lymph aspirate that biases the gene expression signal based on the amount of aspirate

in the sample. Our results provide a systemic view of the effects of mycoplasmosis and sex-biased

transcriptional differences in desert tortoises that will aid future management and conservation

practices and shed new light on the immune response of non-avian reptiles broadly.

Table 2. Significantly enriched Gene Ontology (GO) terms for immune group analysis.

P

value

GO ID GO Term No. of

genes

Associated differentially expressed genes

0.042 GO:0005737 cytoplasm 17 IFT46, SRI, HMOX1, SERINC1, GTSF1, HPRT1, CCDC91, ATP11A, KARS, CDO1,

RNF125, FAM20B, COPS8, BTG1, PNPLA7, XAF1, SLC25A3
0.047 GO:0003824 catalytic activity 11 SRI, HMOX1, MPG, HPRT1, CA1, ATP11A, KARS, CDO1, RNF125, FAM20B, PNPLA7
0.041 GO:0006807 nitrogen compound metabolic process 11 SRI,SERINC1,MPG,MRNIP,HPRT1,KARS,LMO2,CDO1,RNF125,COPS8,BTG1
0.041 GO:0005783 endoplasmic reticulum 6 SRI,HMOX1,SERINC1,ATP11A,RNF125,PNPLA7
0.041 GO:0010033 response to organic substance 6 SRI,HPRT1,KARS,LMO2,CDO1,RNF125
0.047 GO:0002252 immune effector process 3 HPRT1,KARS,RNF125
0.041 GO:0008285 negative regulation of cell proliferation 3 KARS,COPS8,BTG1
0.041 GO:0031325 positive regulation of cellular metabolic

process

3 LMO2,RNF125,COPS8

0.041 GO:0002275 myeloid cell activation involved in

immune response

2 HMOX1,KARS

0.041 GO:0002718 regulation of cytokine production

involved in immune response

2 HMOX1,KARS

0.041 GO:0004620 phospholipase activity 2 HMOX1,PNPLA7
0.042 GO:0009410 response to xenobiotic stimulus 2 HPRT1,CDO1
0.042 GO:0031349 positive regulation of defense response 2 KARS,RNF125
0.042 GO:0010212 response to ionizing radiation 2 MRNIP,KARS
0.041 GO:0051279 regulation of release of sequestered

calcium ion into cytosol

2 SRI,CD19

These are the significantly enriched (α � 0.05) GO terms with the highest number of differentially expressed genes among immune experimental groups (Medium

Infection, Severe Infection) relative to control groups (No Infection) for which gene information is available (this includes biological process, cellular component, and

molecular functions).

https://doi.org/10.1371/journal.pone.0238202.t002
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Infection-based differential expression

Tortoises, like many ectotherms, rely on broad non-specific innate immune responses such as

non-specific leukocytes, lysozymes, antimicrobial peptides, the complement pathway and

Fig 3. REVIGO treemaps for genes differentially expressed based on experimental immune group or sex. REVIGO treemaps showing semantically clustered

enriched GO terms (colored tiles) with box size proportional to normalized adjusted p-value and clusters are shown for (A) experimental immune groups (top), and (B)

sex-biased among males and females (bottom). The white labels on panel B are cell-cell recognition, cholangiocyte proliferation, and endothelial cell apoptotic process.

https://doi.org/10.1371/journal.pone.0238202.g003
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phagocytic B cells as primary lines of defense against pathogens [1,54,55]. Adaptive immune

reactions mediated by T and B cells are induced in tortoises; however, their cell-mediated and

humoral responses may be slow (weeks to years; [29,31]) or fail to develop into novel antigens

[56], and do not consistently demonstrate evidence of memory response [1,57]. Indeed, we

found many general immune-related responses to be enriched among experimental immune

groups, including GO:0002275 (myeloid cell activation involved in immune response),

GO:0009410 (response to xenobiotic stimulus), and GO:0002252 (immune effector process).

Previous studies on turtles revealed expression of immune-related genes [2,31,38,58–63]

associated with both innate and adaptive immune functions. We expected differential expres-

sion of cytokines (e.g. IFN-γ, interleukins, TNFα1) to be higher in tortoises with M. agassizii
infection because they play important roles in modulating host defense responses to

Fig 4. Heatmap of 1,037 genes uniquely differentially expressed by sex. Genes are clustered by the Ward method

according to Manhattan distance. All genes shown (rows) are statistically significantly expressed (adjusted α< 0.05).

Color scale presents the amount of expression. Expression values are mean-centered, regularized log counts and colors

are represented as z-score values.

https://doi.org/10.1371/journal.pone.0238202.g004
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Table 3. The 25 significantly enriched (α� 0.01) sex-biased Gene Ontology (GO) biological process categories.

Adj. p

value

GO ID GO Term No. of

genes

Associated differentially expressed genes

5.29E-25 GO:0044237 cellular metabolic process 433 TRIM25, PEMT, DAZAP2, C1D, SMARCB1, TCF25, BRPF1, DDX18,

CHORDC1, RAC1, RMND5A, GTF2F1, RELB, RAB8A, DVL3, RUVBL2,

DNMT1, IKBKG, CLCN3, CUL3
3.75E-16 GO:0019222 regulation of metabolic process 298 TRIM25, PEMT, DAZAP2, C1D, SMARCB1, TCF25, BRPF1, CHORDC1, RAC1,

GTF2F1, RELB, RAB8A, DVL3, RUVBL2, DNMT1, IKBKG, CLCN3, CUL3,

MSH6, DNAJB1
1.27E-16 GO:0006996 organelle organization 200 SMARCB1, SEC24B, BRPF1, CHORDC1, RAC1, ACP2, RAB8A, RUVBL2,

DNMT1, CLCN3, CUL3, LETM1, MSH6, RANBP1, UQCC1, INPP5K, TEP1,

KIF5B, CCT4, RALA
1.02E-16 GO:0051641 cellular localization 153 SEC24B, RAC1, CSE1L, AP2A2, RAB8A, DVL3, RUVBL2, IKBKG, CLCN3,

CUL3, LETM1, RANBP1, INPP5K, KIF5B, CCT4, PHAX, PRPF31, RALA,

DERL3, UBE2G2
7.45E-6 GO:0070887 cellular response to chemical stimulus 130 TRIM25, SMARCB1, RAC1, RAB8A, RUVBL2, DNMT1, CUL3, TBL2, TFAP4,

RANBP1, SRA1, INPP5K, KIF5B, HIPK1, GABPA, DERL3, UBE2G2, RNMT,

GIT1, DNAJB9, NFE2L2
2.95E-5 GO:0035556 intracellular signal transduction 116 TRIM25, RAC1, RELB, DVL3, DNMT1, IKBKG, CUL3, MSH6, TFAP4, INPP5K,

STIMATE, HIPK1, GIT1, NFE2L2, DYRK3, MAPKAPK2, BRCA1, SUZ12,

ATAD5, CRLF3
3.88E-3 GO:0008283 cell proliferation 95 PEMT, SMARCB1, BRPF1, RAC1, DNMT1, TFAP4, SRA1, HIPK1, ODC1,

BRCA1, SUZ12, ATAD5, RAB5A, CDK5RAP3, MYDGF, CDK1, PSEN1, CCAR1,

RPS6KB1, GGNBP2
1.53E-6 GO:0033554 cellular response to stress 78 TRIM25, SMARCB1, CHORDC1, RELB, DVL3, CUL3, TBL2, DNAJB1, TFAP4,

HIPK1, DERL3, UBE2G2, DNAJB9, NFE2L2, DYRK3, MAPKAPK2, ATAD5,

CDK5RAP3, CDK1, PSEN1
7.34E-4 GO:0071417 cellular response to organonitrogen compound 23 RAB8A, DNMT1, GABPA, PSEN1, HSP90B1, OSBPL8, RPS6KB1, SLC6A4,

DMTN, RANGAP1, HSF1, PDPK1, ZEB1, PTPN1, PIK3R3, ACTB, BLM, CISH,

ATP7A, LEPROT
1.25E-2 GO:0007169 transmembrane receptor protein tyrosine

kinase signaling pathway

19 GIT1, MAPKAPK2, PSEN1, OSBPL8, RPS6KB1, PDCD6, DOK2, PDPK1,

RABGEF1, PTPN1, PIK3R3, SS18, LMTK2, RBPJ, PRKD2, PIK3R1, NDST1,

ERBB2, MAPK1
4.35E-2 GO:0030335 positive regulation of cell migration 18 RAC1, MIEN1, RAB5A, CCAR1, RPS6KB1, PDCD6, DMTN, NIPBL, PDPK1,

ACTR3, SDCBP, PLAA, FADD, ATP7A, ITGA2B, PRKD2, PIK3R1, HMGB1
4.13E-4 GO:0030099 myeloid cell differentiation 16 GABPA, PABPC4, DYRK3, PSEN1, PAFAH1B1, ACIN1, TFRC, SP3, FADD,

CUL4A, IREB2, OSTM1, RBPJ, PIK3R1, SOX6, HMGB1
3.61E-3 GO:0043583 ear development 14 SEC24B, RAC1, DVL3, MAPKAPK2, ABR, CEP290, PAFAH1B1, TRIP11, NIPBL,

SCRIB, ZEB1, MKS1, RBPJ, MAPK1
9.29E-3 GO:0072175 epithelial tube formation 11 SEC24B, BRPF1, DVL3, RALA, NUP50, CEP290, HNF1B, SCRIB, IFT57, MKS1,

IPMK
1.58E-2 GO:0043149 stress fiber assembly 9 RAC1, CUL3, INPP5K, RGCC, SORBS3, MKKS, WAS, ARAP1, PIK3R1
2.85E-5 GO:0032648 regulation of interferon-beta production 9 POLR3D, RELB, YY1, IFNAR1, RIOK3, IFIH1, POLR3C, TRAF3IP1, HMGB1
3.79E-2 GO:0007224 smoothened signaling pathway 9 HIPK1, TROVE2, ULK3, IFT57, STK36, MKS1, TRAF3IP1, NDST1, CENPJ
1.58E-2 GO:0030038 contractile actin filament bundle assembly 9 RAC1, CUL3, INPP5K, RGCC, SORBS3, MKKS, WAS, ARAP1, PIK3R1
9.18E-4 GO:0002066 columnar/cuboidal epithelial cell development 8 SEC24B, RAC1, PAFAH1B1, SCRIB, PDPK1, SIDT2, RFX3, YIPF6
1.21E-2 GO:0001738 morphogenesis of a polarized epithelium 7 SEC24B, RAC1, DVL3, PAFAH1B1, MKS1, TRAF3IP1, EXOC5
8.04E-3 GO:0060113 inner ear receptor cell differentiation 7 SEC24B, RAC1, PAFAH1B1, TRIP11, SCRIB, MKS1, RBPJ
1.02E-2 GO:0019080 viral gene expression 7 SMARCB1, TFAP4, INPP5K, DENR, CCNT2, TARDBP, PCBP2
2.02E-2 GO:0042771 intrinsic apoptotic signaling pathway in

response to DNA damage by p53 class

mediator

6 HIPK1, ATAD5, BAG6, SHISA5, TOPORS, BRCA2

4.9E-2 GO:0072577 endothelial cell apoptotic process 6 HIPK1, NFE2L2, RGCC, PDPK1, PAK4, PRKCI

(Continued)
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immediate and long-term pathogen exposure. While related categories GO:0002718 (regula-

tion of cytokine production involved in immune response, Table 2) and regulation of type I

interferon production (Fig 3A) were enriched, we did not find these specific genes to be differ-

entially expressed (Table 2). Moreover, western painted turtles (Chrysemys picta bellii; [58])

demonstrated a unique repertoire of toll-like receptors (TLRs) including TLR15-like receptor

known in the response of birds to bacterial pathogens [64]. In our data we found related pat-

tern recognition signaling categories such as GO:0039529 and GO:0039536 (RIG-I signaling

pathway) as well as GO:1900745 (regulation of p38 MAPK cascade) and GO:1901224 (regula-

tion of NIK/ NF-κB signaling), which are involved in innate and adaptive immune activation

and maintenance. On the other hand, these pathways are important mediators of inflamma-

tion and if prolonged, may exacerbate the effects of M. agassizii infection and URTD.

Chinese soft-shelled turtles (Pelodiscus sinensis) infected with pathogenic bacteria also dem-

onstrated differential expression of innate immune genes including IL-8, serum amyloid A

(SAA), CD9, CD59, activating transcription factor 4 (ATF4) and cathepsin L genes [62], point-

ing to an initial non-specific innate immune response, followed by later moderate adaptive

responses to combat remaining pathogens. Given that this study was designed to assess

chronic rather than acute immunological responses, it was not surprising that these five genes

differentially expressed among the immune groups. However, we did observe that CD19 was

downregulated in both the desert tortoise MI and SI groups relative to uninfected controls,

although not significantly in the MI group. CD19 is an antigen expressed by both subsets of B

lymphocytes. B1 cells are innate-like effectors that produce natural antibodies and exhibit

phagocytic activity in fish, amphibians, and reptiles, including turtles/tortoises [1,65,66]. Addi-

tionally, B2 cells are responsible for generating antigen-specific antibodies against foreign

pathogens. In Mojave desert tortoises, the mean infection intensity of M. agassizii is negatively

correlated with the mean number of lymphocytes [65], which could provide protection via

phagocytosis during early infection or long-term humoral immunity. Given that MI and SI

individuals have been chronically infected with M. agassizii and tested positively for acquired

antibodies, the latter is more likely in this study. Unlike the MI group, CD19 expression was

significantly reduced in SI individuals, suggesting that the suppression of B lymphocytes may

increase susceptibility to infection and morbidity. Taken together, CD19 may be a key B lym-

phocyte antigen in the chelonian immune response to infection, and may be a good gene target

for future studies.

Of the 40 genes that were uniquely expressed among immune groups, 28 genes were previ-

ously annotated and are associated with a number of immune and metabolic processes. Genes

ABHD8, CDO1, RNF125, cell surface hyaluronidase-like, and gopAga1_00017729 were signifi-

cantly upregulated in MI and SI animals with high log2-fold change values (Fig 2). Most of the

differentially expressed immune genes are involved in protein production, folding, and secre-

tory domains, with additional broad functions related to both host defenses and mitigation of

host-induced inflammatory responses. For example, cysteine dioxygenase type 1 (CDO1) is a

Table 3. (Continued)

Adj. p

value

GO ID GO Term No. of

genes

Associated differentially expressed genes

3.47E-2 GO:0042149 cellular response to glucose starvation 5 TBL2, NFE2L2, HSPA5, SZT2, HIGD1A

The 25 significantly enriched (α� 0.01) sex-biased Gene Ontology (GO) Biological Process categories with the highest number of DEGs (adjusted p values are provided,

GO processes are ranked by number of genes, only the first 20 genes in each category are listed). For a complete list of DEGs and the 116 significant GO terms see S3

and S4 Appendices.

https://doi.org/10.1371/journal.pone.0238202.t003
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Table 4. The 25 significantly enriched (α� 0.05) sex-biased KEGG pathways.

Adj p

value

KEGG ID KEGG name No. of

genes

Differentially expressed genes

5.41E-3 KEGG:05165 Human papillomavirus infection 29 DVL3, IKBKG, HDAC5, PPP2R5C, HDAC2, PSEN1, PPP2CA, RPS6KB1, PPP2R5E, SCRIB,

IFNAR1, HDAC3, TCF7L2, UBE3A, LAMC1, RBL1, PIK3R3, FADD, ATP6V1H, ITGA2B
5.41E-3 KEGG:04144 Endocytosis 23 AP2A2, RAB8A, KIF5B, GIT1, CYTH1, RAB5A, VPS26A, RUFY1, TFRC, USP8, CHMP5,

SH3GL3, WAS, VPS35, ARAP1, SNX2, PRKCI, WIPF2, CLTC, ARF1
3.17E-3 KEGG:04141 Protein processing in

endoplasmic reticulum

18 SEC24B, DNAJB1, DERL3, UBE2G2, NFE2L2, HSP90B1, HSP90AA1, SSR1, DNAJC3, PDIA4,

HSPA5, SEC62, PLAA, EIF2AK1, EIF2AK3, DNAJA2, SEC24A, NPLOC4
5.41E-3 KEGG:04530 Tight junction 16 MARVELD3, RAC1, RAB8A, ACTR2, PPP2CA, HSPA4, SCRIB, ACTR3, ACTB, WAS,

MYL12B, RAPGEF6, PRKCI, PPP2R2D, PATJ, ERBB2
2.60E-2 KEGG:04151 PI3K-Akt signaling pathway 16 RAC1, PPP2R5C, YWHAB, YWHAH, HSP90B1, PPP2CA, RPS6KB1, HSP90AA1, PDPK1,

EIF4E, PIK3R3, ITGA2B, PIK3R1, PPP2R2D, ERBB2, MAPK1
3.17E-3 KEGG:05164 Influenza A 15 TRIM25, DNAJB1, KPNA2, XPO1, IFNAR1, IFIH1, PIK3R3, ACTB, EIF2AK3, OAS3,

HNRNPUL1, PIK3R1, NXT2, MAPK1, CYCS
1.95E-2 KEGG:05168 Herpes simplex infection 14 PPP1CB, CDK1, HCFC2, CDC34, USP7, IFNAR1, CSNK2B, TAF5, IFIH1, FADD, EIF2AK3,

OAS3, CYCS, CSNK2A1
2.11E-2 KEGG:03013 RNA transport 14 PHAX, PABPC4, NUP50, XPO1, ACIN1, RANGAP1, DDX20, EIF4E, NCBP1, UPF3B, NXT2,

THOC7, EIF2S2, EIF4EBP3
4.19E-2 KEGG:05225 Hepatocellular carcinoma 14 SMARCB1, DVL3, NFE2L2, RPS6KB1, SMARCD1, TCF7L2, SMARCC2, ACTL6A, PIK3R3,

ACTB, PIK3R1, MAPK1, SMARCD2, RPS6KB2
1.16E-2 KEGG:03040 Spliceosome 14 PUF60, PRPF31, EFTUD2, DDX46, ACIN1, PLRG1, NCBP1, SRSF10, SYF2, SRSF9, USP39,

PPIH, PRPF4, SF3B4
8.13E-3 KEGG:04120 Ubiquitin mediated proteolysis 14 CUL3, UBE2G2, BRCA1, HERC4, FBXW11, CDC34, HUWE1, UBE3A, CUL4A, BIRC3, CUL5,

PIAS1, UBA6, UBA2
5.41E-3 KEGG:04140 Autophagy—animal 13 PPP2CA, RPS6KB1, PDPK1, MLST8, RRAGD, PIK3R3, EIF2AK3, ATG2B, PIK3R1, ATG16L2,

MAPK1, HMGB1, NRBF2
1.38E-3 KEGG:05169 Epstein-Barr virus infection 13 POLR3D, YWHAB, YWHAH, HDAC2, CDK1, PSMC6, USP7, PSMD14, POLR3C, PIK3R3,

RBPJ, PIK3R1, CSNK2A1
1.95E-2 KEGG:04510 Focal adhesion 12 RAC1, PPP1CB, PDPK1, FLNB, PIK3R3, ACTB, BIRC3, ITGA2B, MYL12B, PIK3R1, ERBB2,

MAPK1
2.03E-2 KEGG:05160 Hepatitis C 12 IKBKG, PPP2CA, IFNAR1, PDPK1, PIK3R3, EIF2AK1, EIF2AK3, PIAS1, OAS3, PIK3R1,

PPP2R2D, MAPK1
5.41E-3 KEGG:03015 mRNA surveillance pathway 12 RNMT, PABPC4, PPP1CB, PPP2R5C, PPP2CA, PPP2R5E, ACIN1, ETF1, NCBP1, UPF3B,

PPP2R2D, NXT2
2.63E-2 KEGG:04152 AMPK signaling pathway 11 RAB8A, PPP2R5C, PPP2CA, RPS6KB1, PPP2R5E, HMGCR, PDPK1, PIK3R3, PIK3R1,

PPP2R2D, RPS6KB2
2.03E-2 KEGG:04390 Hippo signaling pathway 11 DVL3, PPP1CB, YWHAB, YWHAH, FBXW11, PPP2CA, SCRIB, ACTB, PPP2R2D, MOB1A,

PATJ
1.38E-3 KEGG:05203 Viral carcinogenesis 11 GTF2H1, MAPKAPK2, YWHAB, CDK1, GTF2A1, USP7, UBE3A, PIK3R3, RBPJ, PIK3R1,

MAPK1
8.13E-3 KEGG:05212 Pancreatic cancer 10 RAC1, IKBKG, RALA, RPS6KB1, PIK3R3, BRCA2, PIK3R1, ERBB2, MAPK1, RPS6KB2
1.38E-3 KEGG:04114 Oocyte meiosis 10 PPP1CB, PPP2R5C, YWHAB, YWHAH, CDK1, PPP3CB, SLK, MAD2L1, PPP3R1, MAPK1
8.02E-3 KEGG:04910 Insulin signaling pathway 10 PPP1CB, RPS6KB1, PRKAR1A, PDPK1, PTPN1, EIF4E, PIK3R3, PKLR, PIK3R1, MAPK1
1.56E-2 KEGG:05210 Colorectal cancer 10 RAC1, MSH6, RALA, RPS6KB1, TCF7L2, PIK3R3, PIK3R1, MAPK1, CYCS, RPS6KB2
1.12E-2 KEGG:03008 Ribosome biogenesis in

eukaryotes

9 XPO1, CSNK2B, RBM28, MPHOSPH10, XRN1, TBL3, NXT2, CSNK2A1, RIOK2

8.13E-3 KEGG:05170 Human immunodeficiency virus

1 infection

8 CDK1, RPS6KB1, PIK3R3, FADD, CUL4A, PPP3R1, MAPK1, CYCS

The 25 significantly enriched (α� 0.05) sex-biased KEGG pathways (Kyoto Encyclopedia of Genes and Genomes) that have the highest number of differentially

expressed genes (significance based on adjusted p values). For the complete list of 79 pathways see S4 Table.

https://doi.org/10.1371/journal.pone.0238202.t004
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protein-coding gene that responds to glucagon, xenobiotic stimuli, bacterial insults, and

organic substances, leading to enzymatic cysteine catabolic processes and dioxygenase activity

(Table 2; [67]). These processes aid in providing essential biomolecules such as vitamins,

cofactors, antioxidants, and many defense compounds that frontline innate immune cells (e.g.

macrophages and dendritic cells) need to protect cells or neutralize targeted antigens (e.g.,

invading bacteria). Relative to the control group, RNF125 was highly upregulated in both MI

and SI groups with respective log2-fold changes of 14.9 and 16.5. As a ubiquitin ligase,

RNF125 has been shown to reduce inflammatory signaling by targeting RIG-I [68] as well as

regulating viral transcription in peripheral blood mononuclear cells [69]. RNF125 is primarily

expressed in lymphoid tissues and is a positive regulator of T lymphocyte activation [70–72],

which may be critical for modulating inflammatory pathways and adaptive host defense

against infection in desert tortoises.

Pathways with enriched DEGs included those involved in immune host defenses and regu-

latory processes. For example, cysteine catabolism plays an important role in many proteins

and immune defenses such as mRNA transcription, regulation of macrophage chemotaxis,

heme oxidation, etc. (Fig 3A; [73]). Other pathways such as regulation of type I interferon pro-

duction (e.g. myeloid cell activation, basophil activation, immune effector processes) include a

family of cytokines that are critically important in controlling host innate and adaptive

immune responses to viral and bacterial infections, and other inflammatory responses (Fig 3A;

[74]). There were also differential processes associated with regulation of thyroid hormones

[75] and ionizing radiation [76] conditions. These enriched processes associate with modulat-

ing immune activities such as chemotaxis, phagocytosis, generation of reactive oxygen species

(ROS), and cytokine synthesis at the cellular level based on hypo- and hyperthyroid condi-

tions. Alternatively, they can interfere with the interactions of targeted cells such as dendritic

cells and lymphocytes between innate and adaptive cell-mediated immunity, respectively [75].

Fig 5. Venn diagram of shared differentially expressed genes among sex, experimental immune group, and venipuncture site. Dotted line points to the three genes

differentially expressed in all comparisons.

https://doi.org/10.1371/journal.pone.0238202.g005
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Sex-biased differential expression

Sex is increasingly recognized as an important effector of the immune response [77–79].

Indeed, our results show striking differences in transcription between male and female tor-

toises evidenced by 1,037 sex-biased DEGs that yielded 116 enriched Biological Processes and

79 enriched KEGG pathways (Figs 3B and 4; Tables 3 and 4). Previous literature has shown

that exposure to pathogens elicits sex-biased differential immunological responses. Females

generally initiate stronger innate and adaptive immune responses, which can promote faster

clearance of pathogens. This has been observed both in birds where females show increased T

lymphocyte proliferation after parasite exposure compared to males [80] as well as in lizards

where female-derived macrophages demonstrated greater phagocytic activity than male-

derived macrophages [81]. In humans, stimulation of TLR7 in plasmacytoid dendritic cells

induces significantly greater expression of IFNα in females [82], and females show enhanced

antibody responses with higher B cell numbers [83]. Consistent with the literature, our find-

ings show that females exhibit upregulation of genes associated with cytokine production and

host defense compared to males, including POLR3D, POLR3C, MAPKAPK2, MR1, ARID5A,

SARS, SETD6, and PCBP2 (Table 3, S1 Appendix).

While females generally elicit stronger immune responses, this pattern is sometimes

reversed. In this study, male tortoises displayed increased expression for biological processes

involved in myeloid cell differentiation and activation, leukocyte mediated immunity, and pos-

itive regulation of tumor necrosis factor production (Figs 3B and 4; Tables 3 and 4). In mice,

macrophages from males produced greater proinflammatory cytokines during the acute phase

than their female counterparts [84]. Similarly, whole blood and neutrophils from human

males produced greater levels of tumor necrosis factor than females [85,86]. Dysregulation of

the immune response can lead to chronic infection or sepsis, which males are more prone to

develop than females [87,88]. In contrast, females are more susceptible to inflammatory and

autoimmune diseases as a result of stronger mounted immune responses [87]. Indeed, the

TNIP1 gene is associated clinically with female-biased autoimmune diseases such as systemic

lupus erythematosus and systemic sclerosis [88–90], which are diseases characteristic of an

over-active immune system and here we also find TNIP1 to be significantly upregulated in

female tortoises. While immune cell levels are not significantly different between male and

female desert tortoises with no history of infection [12], our findings indicate that there is a

sex-biased immune response following pathogen exposure. Whether immune cells vary

between sex following infection is unknown but should be tested in future studies. Addition-

ally, because immune cell function and levels change with seasonality and temperature in tor-

toises [12,106], it is possible that sex-biased gene expression is also affected by these factors.

Overall, the sex-biased patterns in the literature are complex and sex-biased outcomes of

Mycoplasma spp. infection and URTD warrants further study.

Sex-biased immune responses depend on genetics and hormones. However, turtles (includ-

ing the desert tortoise) lack sex chromosomes and instead have temperature-based sex deter-

mination [14]. How this fact affects immune gene expression, if at all, is unknown. Hormones,

on the other hand, fluctuate seasonally and are responsive to changes in temperature in non-

avian reptiles. Additionally, many sex hormone receptors directly regulate gene transcription

by translocating to the nucleus and binding hormone response elements when activated. This

suggests that hormones likely play a key role in sex-biased gene expression and immunity.

Indeed, female anole lizards suppress female-biased gene expression and exhibit higher lev-

els of male biased genes when treated with testosterone [91]. Testosterone, which is higher in

male than female vertebrates regardless of the mode of sex determination, also has immuno-

suppressive effects on immune cell activity [92]. Testosterone reduces the production of pro-
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inflammatory cytokines in mammals [93] and decreases cell-mediated immune reactions in

birds, with greater immune suppression occurring in males than females [94]. In this study,

the TMF1 gene, which is associated with the GO category for testosterone secretion, is signifi-

cantly upregulated in male tortoises as expected. Whether testosterone causes immunosup-

pression in tortoises has not been investigated, but it is worth noting that testosterone levels in

the desert tortoise vary seasonally [95]. This means that if there is an immunosuppressive effect

of testosterone in tortoises then that immunosuppression may also vary seasonally. Testoster-

one levels begin to rise in April through July and peak in late August and September when

male-male aggression, mating activity, and metabolism are greatest [96,97].

Additionally, testosterone is highly correlated with production of corticosterone [96],

which also has immunosuppressive effects and has been shown to be higher on average in

male tortoises relative to females [96,98]. Corticosteroids are generated as a stress response

and we identified several genes upregulated in males that enriched for cellular response to

stress (GO:0033554). These results together raise the question of whether immunosuppression

in males during mating season predisposes them to Mycoplasma spp. infection due to a damp-

ened immune response. Moreover, male tortoises also contact both sexes more frequently rela-

tive to females [30] and males travel greater distances, suggesting they may be more likely to

spread M. agassizii (or other infections) among populations. Further investigation would be

instructive for future wildlife management practices.

As expected, differentially expressed genes between male and female tortoises were

enriched for metabolism, particularly those related to iron. Iron is an essential cofactor for

many metabolic processes including cellular respiration, oxygen transport, and DNA synthe-

sis. In this study, genes associated with iron homeostasis and iron ion import were expressed

at higher levels in male tortoises (e.g., TFRC, SLC25A37). Transferrin receptor (TFRC) is

required for the cellular uptake of iron through endocytosis and SLC25A37 is involved in

transporting cytosolic iron into mitochondria via Mitoferrin-1. Sex differences in iron uptake

may be associated with elevated energy demands in males because male tortoises have larger

home range sizes and travel larger distances relative to females [99–103], and may also expend

more acute energy requirements by engaging in combative activity over mates. Perhaps this is

also why males exhibited higher gene expression variability than females (Fig 1). Additionally,

female desert tortoises lay their eggs in April–mid July [104,105], which requires a large invest-

ment of energy and resources. Allocation of energetic resources during this period may deplete

iron levels and could further contribute to transcriptional differences related to iron homeosta-

sis between males and females.

Cellular sequestration of iron is a recognized immunological response. Tortoises challenged

with lipopolysaccharide demonstrated a reduction in plasma iron concentration [106]. Host

import of iron prevents the pathogen from acquiring it, thereby limiting the rate of pathogen

proliferation [107]. Given the diverse roles of iron in metabolism and immunity, future studies

will be important to determine the functional effects of iron homeostasis. Fortunately, iron can

be assayed easily and cheaply for wild and captive animals, lending itself as a good topic for

future studies.

Conclusions and implications for future studies

We carried out RNA-Seq and differential expression analysis to identify the systemic host

response of the Mojave desert tortoise to three levels of Mycoplasma agassizii infection. We

identified 40 uniquely differentially expressed genes associated with infection. Among these

were genes involved in protein production, secretory domains, host defenses, and mitigation

of host-induced inflammatory responses. The genes ABHD8, CDO1, RNF125, cell surface
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hyaluronidase-like, and gopAga1_00017729 were upregulated in medium and severely

infected animals relative to control, indicating these may be biomarkers of infection. A stron-

ger result from these data is that sex plays a dominant role in determining gene expression,

even among healthy and severely sick animals (1,037 sex-biased vs. 40 immune-based DEGs,

respectively). We identified eight genes that were differentially expressed both by sex and

infection status (i.e. sex-biased immune genes). Further assessment of gene expression before

and during disease progression would be instructive. Because tortoises have temperature-

based sex determination, effects of sex hormones are of primary interest, including the poten-

tial immunosuppressive effect of testosterone and corticosterone during select seasonal periods

of their activity. For future studies, subcarapacial venipuncture may result in aspirated lymph

fluid, which will confound gene expression analysis, so jugular venipuncture would be a pre-

ferred method of blood collection for gene expression studies.

Supporting information

S1 Table. Sequencing and mapping statistics for the 25 samples included in this study.
�Denotes samples removed from analysis due to low sequencing depth.

(DOCX)

S2 Table. Enriched Gene Ontology (GO) terms for biological processes that are uniquely

differentially expressed based on venipuncture site.

(DOCX)

S3 Table. Enriched Gene Ontology (GO) terms for biological processes that are uniquely

differentially expressed among experimental groups (No Infection, NI; Medium Infection,

MI; Severe Infection, SI).

(DOCX)

S4 Table. Enriched KEGG pathways for genes uniquely differentially expressed based on

sex.
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S1 Fig. Principal Components Analysis (PCA) of gene expression data based on different

variables. Color-coded by additional variables relevant to the experimental design: (A) low

coverage samples, (B) venipuncture site, (C) wild vs. captive, (D) collection year. Only high

coverage samples are shown for venipuncture site, wild vs. captive, and collection year. Veni-

puncture site showed a pattern and was analyzed through the DESeq2 pipeline (see S2 and S3

Figs, and S1 Appendix).

(TIF)

S2 Fig. Heatmap of 38 genes that are uniquely differentially expressed by venipuncture

site. Subcarapacial blood draws may have aspirated lymph fluid due to proximal lymphatic

vessels, however this is the preferred phlebotomy technique by management agencies. Expres-

sion values are mean-centered, regularized log counts and colors are represented as z-score

values. Jugular, light blue; subcarapacial, tan.

(TIF)

S3 Fig. REVIGO treemap for genes differentially expressed based on venipuncture site.

(TIF)

S1 Appendix. Differentially Expressed Genes (DEGs) by venipuncture site (all, including

non-unique genes).
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