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Abstract

Programmed death (PD)-1 receptors and their ligands have been identified in the pathogenesis and 

development of systemic lupus erythematosus (SLE). Two key pathways, toll-like receptor and 

type I interferon, are significant to SLE pathogenesis and modulate the expression of PD-1 and the 

ligands (PD-L1, PD-L2) through activation of NF-κB and/or STAT1. These cell signals are 

regulated by tyrosine kinase (Tyro, Axl, Mer) receptors (TAMs) that are aberrantly activated in 

SLE. STAT1 and NF-κB also exhibit crosstalk with the aryl hydrocarbon receptor (AHR). Ligands 

to AHR are identified in SLE etiology and pathogenesis. These ligands also regulate the activity of 

the Epstein-Barr virus (EBV), which is an identified factor in SLE and PD-1 immunobiology. 

AHR is important in the maintenance of immune tolerance and the development of distinct 

immune subsets, highlighting a potential role of AHR in PD-1 immunobiology. Understanding the 

functions of AHR ligands as well as AHR crosstalk with STAT1, NF-κB, and EBV may provide 

insight into disease development, the PD-1 axis and immunotherapies that target PD-1 and its 

ligand, PD-L1.
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1. Introduction

Systemic lupus erythematosus (SLE) is an autoimmune disorder influenced by a complex 

etiology of both genetic and environmental factors which results in a clinically 

heterogeneous presentation [1]. The programmed death (PD)-1 receptor and its ligands (PD-

L1, PD-L2) are immune regulatory molecules implicated in the development of SLE [2]. 

Targeting PD-1 receptors with antibodies to block their activation is an established 
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therapeutic in the treatment of several cancers [3]. This antibody therapy may also lead to 

the development of immune-related adverse events that clinically present with symptoms 

similar to autoimmune diseases like SLE [1,3]. The complexities of the PD-1 axis are 

highlighted by the expression of PD-1 on myeloid and lymphoid subsets and the expression 

of PD-1 ligands on both immune and non-immune cells in the microenvironment. 

Understanding the regulatory signals involved in PD-1 receptor expression and function may 

be pivotal to the pathogenesis of disease and mechanisms of action for anti-PD-1 therapies 

and their adverse events and is therefore the purpose of this review.

2. The PD-1 axis

PD-1 and its ligands (PD-L1, PD-L2) provide negative signals that terminate and/or 

attenuate the immune response [4]. The most common interaction described involves CD4 T 

cell PD-1 with PD-L1 or PD-L2 on an antigen presenting cell. Ligation of these receptors 

induces the activation of an immunoreceptor tyrosine-based inhibitory motif (ITIM) in the 

PD-1 cytoplasmic tail which inhibits activation sequences contained in the immunological 

synapse [5]. However, PD-1 is also identified on B cells [6] and myeloid cells [7,8] and the 

ligands are identified on neutrophils [9], lymphocytes [10,11] and additional non-immune 

cells including tumors [12], epithelial cells [13], endothelial cells [14], and stromal cells 

[12]. PD-L1 and PD-L2 cross-compete for binding to PD-1 whereas PD-L1 also binds CD80 

[4]. This latter interaction involves antigen presenting cell CD80 binding to CD4 T cell PD-

L1 which reduces CD4 T cell activation [10]. Thus, cell signals from PD-1 or its ligands 

regulate the adaptive immune response. This highlights the rationale for PD-1 

immunotherapies. However, immune-related adverse events, similar to various autoimmune 

diseases [1,3], are known to occur in response to PD-1 immunotherapies. Dysregulated cell 

signals in SLE may therefore identify pathways involved in controlling the PD-1 response. 

Two pathways of interest include the toll-like receptor (TLR) pathway and the type I 

interferon (IFN) pathway, which are highly active in the pathophysiology of SLE [15,16] 

and the regulation of the PD-1 axis [17–19]. TLR cell signals induce the activation of NF-

κB and production of type I IFNs that subsequently activate STAT1 [20] and these 

transcription factors (NF-κB, STAT1) regulate the expression of PD-1 [21], PD-L1 [19,22] 

and PD-L2 [23]. Elevated expression levels of NF-κB [24] and STAT1 [25,26] in SLE 

indicate that regulatory signals, possibly associated with the activity of Tyro3, Axl and Mer 

(TAM) receptor tyrosine kinases or the aryl hydrocarbon receptor (AHR), are reduced or 

absent which may influence the PD-1 axis (Fig. 1).

3. Systemic lupus erythematosus (SLE)

In the United States, the incidence and prevalence of SLE is approximately 5.5 and 73 per 

100,000 people respectively [27]. The disease predominantly affects women of child-bearing 

age, with an increased prevalence in individuals with an African ancestry [27,28]. The 

etiology is a multifactorial process involving disruptions in innate and adaptive immunity 

that culminate into pronounced chronic immune dysregulation. Genetic, epigenetic and 

environmental factors are implicated in the initiation of the disease [29]. Genetic factors may 

include polymorphisms within TLR-7,8, and 9 [30], DNase I [31], and within the major 

histocompatibility (MHC) locus, including human leukocyte antigen (HLA) class I genes 
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(MHCI), class II genes (MHCII), and class III genes encoding tumor necrosis factor (TNF)-

α, complement C2 and C4 [32]. Identified environmental factors include agents that are 

infectious (e.g.: Epstein-Barr virus (EBV) [33–35], endogenous retroviruses [36]) and non-

infectious (e.g.: ultraviolet light [37], smoking [38], drugs [39], stress [40], diet [41]). The 

exact combination of genetic and environmental factors that elicits the initiation of disease is 

yet to be determined. Disease heterogeneity coupled with a prolonged subclinical phase 

complicates and delays the diagnosis of SLE [42]. Diagnosis and classification is based on a 

combination of multiple clinical (butterfly rash, oral ulcers, non-scarring alopecia, synovitis, 

serositis, leukopenia, thrombocytopenia, renal and neurological functional deficits) and 

immunological (elevated anti-nuclear, phospholipid, dsDNA, β2 glycoprotein I, cardiolipin, 

or Smith antibodies; low levels of C3 and C4 complement) manifestations [1]. Treatment is 

dependent upon disease severity and may target TLR signaling (anti-malarials), cell 

proliferation (methotrexate, cyclophosphamide), NF-κB activity (corticosteroids), B cells 

(rituxumab) or cytokines such as B cell activating factor/BAFF (belimumab) [43].

Two key pathways in SLE immunogenesis are the TLR pathway [15] and the type I IFN 

pathway [16]. The TLR pathway is most commonly activated by components of pathogens, 

but in SLE, increased cell death, due to apoptosis, neutrophil extracellular trap (NET) 

activity and/or lack of clearance of the dying cells, results in the increased presence of 

nucleic autoantigens that activate TLRs (e.g. TLR3:dsRNA, TLR7/ 8:ssRNA, TLR9:DNA) 

and contribute to the pathology [44]. The TLR pathway can also induce the production of 

type I IFNs. Activation of dendritic cell (DC) TLR7 or TLR9 induces the extracellular 

release of the type I IFN, IFN-α [45], which is a cytokine elevated in SLE patients sera [46] 

(Fig. 2). In SLE patient peripheral blood B cells, another type I IFN, IFN-β, is elevated 

intracellularly compared to healthy controls, enhanced by TLR3 ligands, and strongly 

associated with increased auto-antibody production and renal disease [47]. TLR ligands also 

regulate myeloid production of complement proteins [48], which are notably reduced in SLE 

patients [1]. Lack of complement protein C3 also enhances TLR-induced type I IFN 

production [47,49], highlighting the strong association between the TLR and type I IFN 

pathways in SLE.

TAMs are identified in the etiopathogenesis of SLE [50–52] and are known to regulate the 

activation of TLR and Type I IFN pathways [53] (Fig. 1). In SLE patients, soluble Axl 

(sAxl) production is elevated [54]. This may occur in response to IFN-α-induced Axl 

expression [55,56] that is cleaved by TLR-induced matrix metalloproteinases (e.g. ADAM 

10, ADAM 17) [54,57] (Fig. 2). Because expression of PD-L1 can be similarly induced by 

IFN-α [58], TLR-induced sheddases may also be responsible for the production of soluble 

PD-L1 (sPD-L1) in some cases of SLE (Table 1). TAM ligation is pivotal to cell migration, 

survival, and efferocytosis [53]. The ligands alone or bound to an apoptotic cell interact with 

TAMs and include vitamin K-dependent growth arrest-specific protein 6 (GAS6), which has 

the highest affinity for Axl yet binds all three receptors, or protein S, which only binds 

Tyro3 and Mer [53,59]. Elevated levels of Gas6 in active SLE [52,60] would be anticipated 

to bind Axl on T regulatory cells (Tregs) for enhanced suppressor activity [61] and inhibit 

antigen presenting cell type I IFN and TLR signals through the activation of suppressor of 

cytokine signaling (SOCS) and Twist transcriptional repressors [59] (Figs. 1 and 2). 

Dysregulation of TAMs or production of sAxl, which are known to occur in SLE [50–
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52,54], may thwart these responses and the downstream activation of PD-1 and the PD-1 

ligands.

AHR regulates the type I IFN and TLR pathways by blocking cell signals involved in type I 

IFN production [62] and exhibiting crosstalk with the transcription factors NF-kB [63] and 

STAT1 [64] (Fig. 1). This nuclear receptor responds to EBV activity, endogenous ligands in 

tryptophan catabolism (e.g. kynurenine, 6-formylindolo[3,2-b]carbazole (FICZ)), exogenous 

ligands found in the diet (e.g. flavonoids, indoles), cigarette smoke (e.g. benzo(a)pyrene), 

and certain drugs (e.g. omeprazole) [65–67]. Type I IFN or TLR cell signals induce the 

production of indoleamine 2,3-dioxygenase (IDO) [63,68], which is responsible for the 

catabolism of tryptophan into the AHR ligand kynurenine [69]. In SLE patients, lower 

serum levels of tryptophan and higher levels of kynurenine compared to healthy controls, 

identify increased IDO activity [70]. In myeloid cells, AHR is required for IDO production 

[71] but IDO is not a relevant factor in myeloid AHR-mediated IL-10 production involving 

apoptotic thymic cell co-cultures [72]. Moreover, the absence of AHR in myeloid cells 

promotes TLR-induced hypersensitivity [73] and the development of SLE [72], suggesting 

that AHR activation is required for myeloid immune tolerance. This is supported by 

experiments with human DCs that demonstrate increased TLR4-induced AHR, PD-L1, and 

PD-L2 expression in association with enhanced IDO and IL-10 production upon secondary 

TLR4 stimulation [63]. These immune-tolerant DCs are immunotherapeutic targets in cancer 

[74] that could also be targeted in SLE. The lack of identified PD-L1 expression on SLE 

patient DCs [75] may indicate a disruption in AHR cell signals or cleavage of PD-1 ligands 

from the cell surface. Because B cells are also able to produce IDO and express PD-L1 and 

PD-L2 [11,76] that bind PD-1+ follicular T helper cells (Tfh) [77], AHR expression in B 

cells may be a therapeutic target in regulating germinal center reactions in SLE.

Moreover, endothelial cells are another source of IDO and these cells also express PD-L1 

and PD-L2 [14,78], possibly via AHR, type I IFN, and/or TLR signals [71,79,80]. 

Endothelial dysfunction is a characteristic feature of SLE that increases the risk of 

atherosclerosis and cardiovascular diseases in these patients [81]. Aberrant endothelial 

activity may alter PD-L1 and PD-L2 expression on these cells that are known to suppress 

CD8 T cell activation by binding CD8 T cell PD-1 [14]. Endothelial Gas6 and AHR ligands 

such as the uremic toxin indoxyl sulfate can each independently promote leukocyte adhesion 

to the endothelium [82,83]. Because ligation of TAMs and AHR regulate signals involved in 

the expression of PD-L1 and PD-L2 (Fig. 1), elevated production of Gas6 [52,60] and/or 

kynurenine [71] in SLE may alter endothelial PD-L1 and PD-L2 expression. Additional 

examination of the regulatory cell signals in the PD-1 axis is needed to understand the 

relevance of the various cell types and biomarkers in SLE (e.g. PD-1 antibodies, sPD-L1) 

(Table 1).

4. The PD-1 axis and SLE

In SLE, the number of PD-1+Tfh cells increase with disease severity and their development 

is regulated by B cell PD-L1 ligation [77,85,86]. B cell PD-1 ligation inhibits tyrosine 

phosphorylation of effector molecules (e.g. SYK, SHP-2) effectively blocking B cell 

receptor signaling [6] (Fig. 3). The expansion of B cells in SLE [90] may suggest that B cell 
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PD-1 is not effectively expressed or ligated in SLE despite increases in transcript levels 

[90,91]. The lack of significant PD-1 expression on SLE patient CD8 T cells is an identified 

defect in regulatory cell signals for this cell type [88]. In tumor models, macrophage PD-1 

expression correlates negatively with their phagocytic potency [7]. Possibly, macrophages in 

SLE also express PD-1 as a biomarker of their reduced ability to clear apoptotic cells.

PD-1 polymorphisms have been identified in SLE. The susceptibility to lupus nephritis and 

SLE is associated with PD1.3 and PD1.5 polymorphisms, respectively [2,93]. PD1.6 

polymorphisms may be a protective factor to SLE [94]. Both TLR ligands and IFN-α induce 

PD-1 expression on myeloid [17,95] and lymphoid subsets [96,97]. TAM cell signals, which 

are disrupted in SLE [50–52] and regulate TLR and IFN-α pathways [53], likely influence 

PD-1 activation in SLE immune subsets. This is supported by independent models that 

display glomerulonephritis in PD-1-deficient [98] and the Mer-deficient mice [99]. However, 

Axl deficiency or blockade exhibits a protective effect against glomerulonephritis [99,100] 

and in tumor models, Axl blockade improves PD-1 immunotherapy [101]. This suggests that 

Axl exhibits a distinct mechanism in regulating the PD-1 axis. Identified links in tumor cells 

between Axl and PD-L1 expression [102] indicate that Axl inhibitors could block B cell PD-

L1 interactions with proliferating PD-1+Tfh cells in SLE [77] (Table 1).

The production of PD-1 antibodies in SLE [89] may break immune tolerance established by 

the expression of PD-L1 and PD-L2 on epithelial and endothelial cells [13,14], resulting in 

nephritis, similar to cases identified with PD-1 therapies [103]. Polymorphisms in PD-L1 or 

PD-L2 have not revealed associated risks in developing SLE [104]. PD-L1 expression is 

upregulated on SLE patient peripheral blood neutrophils but reduced on DCs and monocytes 

(Table 1). These responses may be partly explained by a lack of C3 and C1q complement 

proteins in SLE [28] since neutrophil PD-L1 expression is negatively correlated with C3 [9] 

and C1q opsonized apoptotic cells induce PD-L1 and PD-L2 expression on human 

macrophages and DCs [105]. The complexity is further displayed in lupus-prone murine 

models that demonstrate improved kidney function in response to PD-1 activation [106] or 

blockade [107].

5. AHR and the PD-1 axis

The transcription factor and nuclear receptor, AHR, is integral to hematopoiesis, xenobiotic 

metabolism, adhesion, and migration [108,109]. The expression of AHR is induced by TLR 

cell signals that activate the NF-κB p65(RelA)/p50 heterodimer in the AHR promoter 

[110,111]. AHR ligands are highly linked to the amino acid tryptophan. FICZ, which is a 

product of UV-B irradiated tryptophan [112], is an AHR ligand that may mediate SLE 

patient sunlight-induced flares [112]. IDO oxidation of tryptophan forms the AHR ligand 

kynurenine, which is elevated in SLE patient sera [70]. FICZ and newly identified trace 

derivatives of kynurenine exhibit greater affinity to AHR compared to kynurenine [108,113]. 

Full degradation of kynurenine generates nicotinamide adenine dinucleotide (NAD) [114], 

which is a molecule essential for life that is reduced in cells treated with another high 

affinity AHR ligand, dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD) [115]. Thus, the 

type of ligand may affect AHR activation and downstream cell signals in immunity.
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5.1. AHR in T cells

The AHR ligands dioxin and kynurenine induce the formation of T regulatory cells (Tregs) 

[112] and the expression of PD-1 on CD8 T cells [116]. FICZ, which has higher binding 

affinity to AHR than kynurenine, induces the formation of the proinflammatory 

interleukin-17 producing T cells (Th17) [108]. Despite elevated levels of kynurenine in SLE 

patients [70] the ratio of Tregs to Th17 cells is reduced in SLE patient peripheral blood 

compared to healthy controls [117] and the levels of PD-1 on SLE patient CD8 T cells is 

also reduced compared to healthy controls [88]. The expression of PD-1 on CD4 and CD8 T 

cells is mediated by the NF-κB p50 homodimer [118]. Because AHR is able to form a 

complex with NF-κB p50 [64], the activity of AHR in these cells may direct PD-1 function. 

NF-κB and AHR activity are involved in the generation of both Treg and Th17 cells 

[119,120]. AHR is also characterized in regulating STAT1 activity during Th17 

differentiation [121]. STAT1 promotes Foxp3 [122] but represses IL-17 [123] transcriptional 

activity. The ability of AHR to complex with NF-κB p50 and STAT1 in myeloid cells [64] 

suggests that similar interactions occur in Th17 cells to promote their activity and suppress 

PD-1 receptors. A lack of STAT1 activation in T cells may also explain the increased levels 

of STAT1 protein in SLE patient CD4 T cells compared to healthy controls [26]. Dietary 

compounds (e.g. curcumin and resveratrol) can bind AHR, ameliorate SLE symptoms 

[124,125], and regulate the activation of NF-κB [126,127] and STAT1 [128,129]. These 

compounds antagonize the AHR ligand FICZ, inhibit the formation of Th17 cells and 

enhance the generation of Foxp3+Tregs [130–132]. AHR-induced repression of STAT1 

[123] may promote the activation of the nuclear receptor retinoic acid receptor-related 

orphan receptor (ROR)-γt, which is required for the differentiation of Th17 cells [123,133]. 

Exogenous synthetic RORγt ligands but not currently known endogenous RORγt ligands 

reduce PD-1 expression on T cell lines and murine primary T cells [134] (Fig. 3). Whether 

certain RORγt ligands, additional dietary ligands or rapidly metabolized ligands, which do 

not accumulate in the same manner as toxins, regulate PD-1 expression and tolerance 

continues to be explored [135,136].

5.2. AHR in B cells

Similar properties of AHR exist in B cells. STAT1 and TLR7 signaling are required for the 

formation of germinal centers that are common in SLE [137]. This process is regulated by 

TLR9 signals [137] and the various heterodimers or homodimers of NF-κB [138]. Distinct 

findings of AHR activity in B cells suggests that AHR may interact with STAT1 and NF-κB 

signals in these cells. For example, cross-linking the B cell receptor significantly induces the 

expression of AHR and activation of AHR with dioxin negatively affects the processes of 

class-switch re-combination and plasma cell differentiation [139]. Dioxin, like kynurenine, 

encourages the production of Tregs via AHR activation [140] which suggests that ligands 

such as FICZ, which induce Th17 formation [108], may also distinctly affect the activity of 

B cells. AHR is an identified as a factor required for murine B cell proliferation [141]. 

Because B cells exhibit increased proliferation in the absence of PD-1 [142], AHR may 

potentially modulate PD-1 expression in B cells as well as BAFF cell signals, which have 

established functions in B cell survival, class-switch recombination, and plasma cell 

differentiation [143].
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5.3. AHR in myeloid cells

In myeloid cells, AHR is established in the regulation of immune tolerance and the 

expression of PD-1 ligands [63,72], which may be in response to AHR complexing with 

STAT1 and NF-κB p50 [64]. Tolerance and the formation of M2 alternative macrophages is 

dependent upon NF-κB p50 in myeloid cells [144], further implicating AHR ligands and cell 

signals in the SLE response. In mouse embryonic fibroblasts, viral induced IFN-β is 

regulated by AHR activation of 2,3,7,8-tetrachlorodibenzo p-dioxin-inducible poly(ADP-

ribose)polymerase (TIPARP), which antagonizes cell signals involved in type I IFN 

production [62]. Whether this cell signaling mechanism in response to various AHR ligands 

also exists in DCs that generate IFN-α in SLE is not known.

6. EBV and the PD-1 axis

EBV infection and reactivation are associated with SLE etiology [33–35]. The 

seroprevalence of EBV progressively increases during childhood with greater than 90% of 

U.S. adults exhibiting antibody positive titers by the age of 35 [145]. EBV can infect 

neutrophils [146], T cells [147], epithelial cells [148], but preferentially infects B cells 

[149]. Two common EBV proteins are latent membrane protein 1 (LMP1) and LMP2a 

which mimic cell signals induced by CD40 ligation and BCR activation respectively [149]. 

LMP1-induced NF-κB activation generates various cytokines in B cells (e.g. the IL-27 

subunit EBV-induced gene 3 (EBI3), A proliferation-inducing ligand (APRIL), BAFF, IFN-

α, IFN-γ) that are elevated in SLE [150–152]. The production of IFNs by LMP1 

subsequently induces STAT1 activity [152] and these cell signals may play role in LMP1-

induced PD-L1 expression in infected cell lines [153]. Possibly, these same signals regulate 

peripheral blood neutrophil PD-L1 over-expression in SLE [9].

In various cell lines, the EBV immediate early viral transactivator, BRLF1, has been shown 

to induce the expression of Mer [154], indicating that TAM receptors are regulated by EBV 

activity. Either BRLF1 or another EBV immediate early viral transactivator, BZLF1, is 

sufficient to induce lytic replication in both latently infected epithelial cells and B cells 

[155]. Research has identified AHR complexed with the latent protein, EBV nuclear 

antigen-3 (EBNA-3) [66], and dioxin-induced AHR is directly involved in the reactivation of 

the EBV immediate early viral transactivator, BZLF1 [67]. This initiating factor in lytic viral 

replication antagonizes latent viral signals, in part, by blocking NF-κB activity [156] (Fig. 

3).

T cell AHR and PD-L1 expression are also induced by the EBV cytokine IL-27. In these 

cells, AHR interacts with c-Maf, a transcription factor identified in a subset of Tregs 

[157,158]. These CD4+CD25+Foxp3−c-Maf+ Treg cells, termed Treg-of-B cells, are formed 

in response to repeated interactions with B cells [159]. Treg-of-B cells express PD-1 and 

additional checkpoints in regulating Th2, Th1, and Th17 responses under physiological cues 

that have yet to be fully elucidated (Fig. 3).

Moreover, EBV binds to B cells via complement receptor-2 (CR2, CD21) and the levels of 

soluble CD21 (sCD21), released subsequent to BCR activation, are indicated to block EBV 

infection [160–162]. CD40 ligation and the latent EBV molecule, EBNA-2, induce CD21 
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expression [163,164] which then cooperates with the BCR to recognize and respond to 

complement (C3dg or iC3b)-bound antigens [165] (Fig. 3). In SLE patients, low levels of 

CD21 are identified on activated naïve and memory B cell subsets and the levels of serum 

sCD21 are reduced compared to healthy controls [166,167]. In mice deficient of CD21 and 

the complement receptor 1 (CR1, CD35), B cells express increased levels of PD-1 [168] and 

increased levels of PD-1 transcripts are expressed by activated B cells in human SLE 

[90,91]. Interestingly, the expansion of PD-1+ B cell subsets similar to the ones expanded in 

active SLE have been reported in association with the development of autoimmune 

complications of checkpoint inhibitors in melanoma patients [169]. Because PD-1 ligation 

antagonizes TCR and BCR cell signals [5,6], the presence of sPD-L1 in SLE [92] may 

directly affect the activity of lymphocytes. The production of sPD-L1 is also linked to an 

SLE associated disease, non-Hodgkin lymphoma (NHL) [170,171].

7. SLE and non-Hodgkin lymphoma (NHL)

The diagnosis of SLE is independently and significantly associated with higher proportions 

of blood cancers compared to age and sex-matched controls [171]. NHL is the most 

common SLE associated blood cancer, which accounts for 4.3% of all cancers, affects both 

men and women, and originates from oncogenic B- or T-cells [171,172]. The highest NHL 

incidence occurs in diffuse large-B-cell lymphoma (DLBCL) and B-cell chronic lymphoid 

leukemia (B-CLL) affecting 4–7 and 4–8 per 100,000 people respectively [172]. DLBCL is 

the most common type of NHL in SLE patients whereas B-CLL is a rare occurrence [172–

174]. In DLBCL, sPD-L1 is a marker of poor prognosis [170], which may indicate that sPD-

L1 in SLE is a risk factor for this disease. In B-CLL, membrane Axl is a contributing factor 

in disease progression [175] by complexing with kinases, such as LYN and SYK [176]. The 

lower risk of B-CLL may reflect the increased levels of sAxl in SLE that potentially block 

membrane Axl cell signals. Similar to SLE, DLBCL and B-CLL are driven by EBV 

infection [177], polymorphisms in complement [178] and TLR [179,180] genes. Continued 

evaluation of the cell signal similarities and differences between SLE and NHL may allow 

for the identification of biomarkers for SLE patients at risk of developing NHL and possibly 

better therapies for both diseases.

8. Summary

SLE is the result of complex genetic and environmental factors that alter innate and adaptive 

immunity. The PD-1 axis is involved in the regulation of innate and adaptive immune 

subsets in SLE and certain cancers. This axis is also a target in the treatment of various 

diseases where the mechanisms that regulate immune checkpoints have yet to be fully 

revealed. The complexities of PD-1 immunity are embedded in the multiple cell signaling 

pathways that regulate the expression and activation of the receptors on both immune and 

parenchymal cells in the microenvironment.

Dysregulation of SLE TAMs, such as Axl, may affect TAM-induced regulation of type I IFN 

and TLR cell signals and their downstream responses involving the PD-1 axis. These cell 

signal networks are also influenced by AHR (Figs. 1 and 3). The ability of AHR to induce 

PD-1 coupled with noted deficits in the phagocytic potency of PD-1+ or TAM deficient 
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macrophages in various models may indicate that AHR ligands are involved in TAM 

expression and/or the clearance of apoptotic cells. Because STAT1 and NF-κB are integral to 

myeloid, B cell, Treg and Th17 development, further exploration of these transcription 

factors in the AHR response is needed. The involvement of AHR in the generation of Tregs, 

that can express PD-1 receptors, and Th17 cells, that lack these checkpoints, suggests that 

AHR cell signals participate in PD-1 immunity, highlighting AHR as a therapeutic target. 

Mechanisms to block FICZ interactions with AHR but promote AHR ligation with 

kynurenine or kynurenine trace derivatives may promote tolerance. Moreover, because 

kynurenine is a precursory step in the production of NAD, metabolic enzymes and 

metabolites in kynurenine catabolism may be pivotal to the PD-1 axis and the function of 

immune subsets in SLE.

Endogenous or exogenous AHR ligands can also regulate EBV latent or lytic activity, 

suggesting that EBV-induced TAM receptor expression or LMP1-induced PD-L1 expression 

may involve AHR. Evidence that the EBV receptor, CD21, regulates PD-1 expression needs 

further exploration. The involvement of the EBV associated cytokine, IL-27, in the 

expression of AHR and PD-L1 further highlights the complex interactions involved in the 

PD-1 response. These integrated functions of AHR in SLE and the PD-1 axis in various cell 

types suggest that interventions that prevent or induce PD-1 ligation modulate AHR 

expression and/or responses. The identification of sPD-L1, PD-1 antibodies, and kynurenine 

in SLE highlights possible dysfunction between AHR and the PD-1 axis. Understanding 

how AHR or additional AHR associated transcription factors influence the development and 

activation of distinct cell types in a multi-cellular microenvironment may aid in identifying 

factors in the progression and treatment of SLE and NHL. Identification of AHR ligands that 

enhance or inhibit cell surface PD-1 and PD-L1 may also be beneficial in immunotherapies 

that target these receptors.
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Fig. 1. Common SLE cell signals that modulate the PD-1 axis.
PD-1 receptors are activated by TLR- and Type I IFN-induced NF-κB and/or STAT1 

activation. TLR and Type I IFN cell signals are regulated by TAM receptor activity and the 

functions of suppressor of cytokine signaling (SOCS) and Twist transcriptional repressors. 

AHR is activated by ligands involved in the etiology, pathogenesis, and treatment of SLE. 

AHR also exhibits crosstalk with NF-κB and STAT1.
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Fig. 2. Molecules dysregulated in SLE.
(1) Mutations in DNase I can limit the degradation of DNA from apoptotic cells and/or from 

neutrophil extracellular traps (NETs) and induce the release of nucleic acids that can act as 

TLR ligands. (2) IFN-α and IDO production are elevated in SLE. TLR ligands induce the 

production of IFN-α and IDO from antigen presenting cells and endothelial cells. IFN-α 
also induces the production of IDO and cell surface expression of Axl. (3) TLRs can 

generate matrix metalloproteinases (MMPs) that cleave Axl from the cell surface. In SLE, 

soluble Axl (sAxl) is elevated and generated mainly from macrophages and B cells. (4) The 

production of complement proteins is modulated by TLR ligands. (5) C1q binds antibodies 

that opsonize the apoptotic cell. C reactive protein (CRP) binds to C1q in activating the 

complement cascade involving C3b deposition which binds to macrophage complement 

receptor 1 (CR1). Reduced levels of C1q alter macrophage uptake of apoptotic cells. (6) 

IDO generates kynurenine from tryptophan that can enhance the formation of Tregs. 

Kynurenine production is elevated in SLE but the levels of Tregs do not increase. Ligation of 

Treg Axl with Gas6 enhances their suppressor activity which may be blocked by sAxl. (7) 

Gas6 sourced from activated endothelial cells is elevated in SLE and binds apoptotic cells 

and Axl. In SLE, the levels of sAxl may block immune cell recognition of apoptotic cells 

and alter the function of immune and non-immune cells in the microenvironment.
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Fig. 3. Possible cell signals in lymphocytes.
(1) Distinct endogenous and exogenous AHR ligands regulate the differentiation of 

lymphocytes. (2) Latent EBV protein EBNA-2 and CD40 ligation induce cell surface 

expression of CD21. (3) Latent EBV proteins LMP1 and LMP2a mimic respective cell 

signals induced by CD40 and the BCR. (4) Latent EBV protein EBNA-3 enhances dioxin-

induced AHR transcriptional activity. (5) Dioxin-induced AHR activates EBV protein 

BZLF1 involved in lytic replication and antagonizing NF-κB. (6) LMP1 induces the 

production of APRIL and the NF-kB-induced expression of PD-L1 and production of BAFF 

and EBI3. Autocrine APRIL and BAFF activate NF-κB. (7) Axl, activated by Gas6, can 

complex with kinases (LYN, SYK), activate the PI3K/AKT pathway, or in the presence of 

type I IFN, activate JAK/STAT signals. In SLE, soluble Axl (sAxl) is produced. (8) CD21 is 

an EBV receptor that also assists the BCR in the recognition of complement (C3dg, iC3b) 

bound to antigens. (9) BCR activation induces NF-κB cell signals, CD21 shedding, and the 

expression of PD-1. (10) B cell PD-1 ligation to PD-L1 inhibits SYK activity. (11) The 

immunological synapse involves CD40 and B7 ligation associated with MHC:peptide 

interaction with the TCR for full activation of the B and T cell. (12) LMP1 and TLR NF-κB 

-induced production of type I IFN activates STAT1. (13) The functions of EBV in T cells are 

not clearly known. (14) Distinct cytokines regulate the development of T cell subsets. (15) 

AHR regulates the activity of NF-κB and STAT1 in lymphocytes. (16) In Th17 cells, PD-1 

and PD-L1 are repressed whereas in Tregs, these receptors are expressed. T cell PD-1 

ligation inhibits activation sequences contained in the immunological synapse. (17) T cell 

PD-L1 ligation with the B7 molecule, CD80, also suppresses T cell activation. (18) STAT1 

antagonizes RORγt which is a transcription factor required for Th17 cell differentiation. 

Foxp3 and c-Maf are associated with subsets of Tregs. AHR induces the expression of 

Foxp3 and c-Maf exhibits crosstalk with AHR.
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