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Metabolites arenot only substrates inmetabolic reactions, but
also signaling molecules controlling a wide range of cellular
processes. Discovery of the oncometabolite 2-hydroxyglutarate
provides an important link between metabolic dysfunction and
cancer, unveiling the signaling function of metabolites in
regulating epigenetic and epitranscriptomic modifications,
genome integrity, and signal transduction. It is now known that
cancer cells remodel their metabolic network to support
biogenesis, caused by or resulting in the dysregulation of various
metabolites. Cancer cells can sense alterations in metabolic
intermediates to better coordinate multiple biological processes
and enhance cellmetabolism. Recent studies have demonstrated
that metabolite signaling is involved in the regulation of
malignant transformation, cell proliferation, epithelial-to-me-
senchymal transition, differentiation blockade, and cancer
stemness. Additionally, intercellular metabolite signaling mod-
ulates inflammatory response and immunosurveillance in the
tumor microenvironment. Here, we review recent advances in
cancer-associated metabolite signaling. An in depth under-
standing of metabolite signaling will provide new opportunities
for the development of therapeutic interventions that target
cancer.

For decades, metabolites have been perceived as substrates of
enzymes and/or regulators of their biosynthetic pathways (1–3).
Recently, increasing evidencehas suggested thatmetabolites are
signaling molecules (4). Alterations in specific metabolites have
been shown to modulate the activity of macromolecules. In this
scenario, metabolites are emerging as signaling molecules that
control biological processes, including epigenetic modification,
signal transduction, and intercellularcommunication.Nutrients
are digested into various intracellular and extracellular metabo-
lites, which are produced via intermediary metabolism. Cells
actively sense these metabolites to coordinate metabolic and
nonmetabolic processes. These sensing and signaling mechan-
isms are core processes for the interaction between cellular
metabolism and nonmetabolic processes. Notably, deregulation
of metabolite signaling is implicated in numerous human
diseases, includingcancer.Forexample,59-adenosinemonopho-
sphate-activated protein kinase and mTOR complex 1
(mTORC1) are important energy/nutrient sensors that regulate
energy production, protein synthesis, and autophagic processes

to maintain metabolic homeostasis. Dysregulation of 59-
adenosine monophosphate-activated protein kinase and
mTORC1 signaling leads to aberrant glucose and amino acids
sensing in cancer cells, which have been reviewed elsewhere
(5, 6).
Although metabolite signaling plays a fundamental role in

interconnecting cellular metabolism with signaling events, the
diversity of metabolites in their spatial structure and chemical
properties precludes generic techniques that can be used to
elucidate their biological function in cellular signaling. Conse-
quently, the function of metabolites as signaling molecules has
remained largely unexplored until recently. The discovery that
the oncometabolite 2-hydroxyglutarate (2HG), generated by
mutant isocitratedehydrogenase1and2(IDH1/2),has functions
beyond cell metabolism in cancer initiation and progression has
placed renewed emphasis on this field. Besides 2HG, a growing
number of metabolites have been shown to modulate various
signaling pathways. Here, we review the recent progress in our
understandingofhowmetabolite signaling interactswithdiverse
biological processes to regulate malignant transformation and
remodel the tumormicroenvironment.

Oncometabolite 2HG as a signaling molecule

To sustain malignant growth, cancer cells gauge nutrient
availability to coordinate cellular metabolism. Deregulation of
metabolic pathways, also known as metabolic reprogramming,
is a key feature of cancer cells. Reprogrammed metabolic
pathways reshape the cancer metabolome (i.e. the abundance
of metabolites), which allows cancer cells to modulate onco-
genic signaling with specific metabolites. The role of 2HG as a
signaling molecule did not receive much attention until the
discovery of cancer-drivingmutations in IDHs. IDH1 and IDH2
mutations occur on specific residues in the catalytic center,
conferring a new catalytic property to IDH, generating 2HG (7).
2HG is classified as an oncometabolite becausemutated IDH1/2
can trigger malignant transformation, leading to the develop-
ment of cancers such as myeloid leukemia, chondrosarcoma,
and glioma (8). Additionally, 2HG can be generated by malate
dehydrogenase, lactate dehydrogenase (LDH), and phosphogly-
cerate dehydrogenase through their catalytic promiscuity. 2-
Hydroxyglutarate dehydrogenase counteracts these enzymes by
clearing cellular 2HG at a low efficiency (9, 10).
2HG acts as a signalingmetabolite that regulates a wide range

of cellular processes (Fig. 1). It contributes to metabolic
remodeling by inhibitingmultiplemetabolic enzymes, including
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ATP synthase (11), and by deregulating the tricarboxylic acid
(TCA) cycle (12) in themitochondria. In addition, 2HGdisrupts
redox metabolism, which is a key factor involved in tumor
progression (1). 2HG acts as a structural analog of a-ketogluta-
rate (a-KG), an amino group acceptor in transamination
reactions, resulting in suppression of branched-chain amino-
transferase (BCAT) and impairment of GSH production to
disrupt the redox balance in glioma (13). Furthermore, 2HGcan
also serve as a regulator of epigenetic and epitranscriptomic
modifications. 2HG inhibits a-KG–dependent dioxygenases,
including ten-eleven translocation (TET) enzymes, lysine
demethylases (KDM), and fat mass and obesity–associated
protein (FTO), leading to a global hypermethylation phenotype
of DNA, histone, and RNA. Whereas transcriptional factor
Wilms’ tumor 1 (WT1) recruits TET2 to specific genetic loci to
epigenetically direct myeloid differentiation, 2HG disrupts the
TET2-WT1 signaling axis to promote the development of
myeloid cancers (14, 15). In addition, 2HG suppresses histone
demethylase KDM4C to enhance histoneH3 Lys-9methylation
in glioma (16, 17). 2HG can also inhibit FTO activity to increase
global N6-methyladenosine of RNA, further controlling the
stability of mRNAs encoding myelocytomatosis oncogene
(MYC)/CCAAT enhancer-binding protein a (CEBPA) tran-
scripts (18).
2HG can also modulate oncogenic signaling pathways. After

binding to KDM4A, 2HG destabilizes DEP domain–containing
mTOR-interacting protein (DEPTOR) to activate mTORC1
signaling in brain tumors (11). By increasing the cellular reactive
oxygen species level, 2HG also increases extracellular regulated
protein kinase (ERK)-dependent phosphorylation of NF-kB,
enhancing NF-kB’s stability and transcriptional activity in bone
marrow stromal cells. Specifically, 2HG signaling promotes the
expression of cytokines, adhesion molecules, and cell-surface
receptors that will provide stromal support for leukemia cell
proliferation and chemoresistance (19). 2HG can also suppress

signal transducer and activator of transcription 1 (STAT1)
signaling and the production of CXC motif chemokine 10
(CXCL10), which in turn prevents T cell infiltration and
suppresses immunosurveillance in glioma (20). Furthermore,
2HG activates EGL-nine (EGLN) prolyl hydroxylase, which
mediates the degradation of hypoxia-inducible factor (HIF),
thereby promoting the transformation of brain tumors expres-
singmutant IDH (21).
Finally, 2HG signaling leads to aberrant activity of the

machinery that monitors genome integrity. 2HG suppresses
ALKBH, a group of a-KG–dependent enzymes that remove
alkylationdamage(22).Interestingly,2HGsignalingalsodisrupts
the activity of DNA repair enzymes through an unknown
mechanism, resulting indeficienthomologous recombination in
glioma (23). DefectiveDNA repair in IDH-mutated cells opens a
window for targeting glioma with DNA-damaging agents, as
evidenced by the hypersensitivity of glioma cells to PARP
inhibitor (23, 24). The direct targets of 2HG in homologous
recombination remain poorly understood and potentially point
to a new opportunity for sensitizing cancer cells to genotoxic
agents. Notably, 2HG signaling converges with oncogenic
signaling pathways to promote cancer progression. Oncogenes
such as mutant FLT3, JAK2, and Myc up-regulate the 2HG-
producing activity ofmutant IDH to enhance 2HGsignaling (25,
26), suggesting that inhibition of these cancer drivers, in
collaboration with chemical inhibitors of mutated IDH, may be
therapeutically beneficial.

Metabolic intermediates emerging as new players in
oncogenic signaling

Cancercellscansenseanduse thesignalsofawidespectrumof
metabolites to promote tumorigenesis andmetastasis, including
intermediate metabolites of central carbon metabolism, lipids,
amino acids, and nucleotides (Fig. 2).

Figure 1. Oncometabolite 2-hydroxyglutarate-mediated signaling 2HG, produced by mutant isocitrate dehydrogenase 1/2 in cancer, modulates various
cellular processes, including metabolic processes, epigenetic and epitranscriptomic modifications, signal transduction, and genome integrity maintenance.
TyrosinekinaseFLT3andJAK2,togetherwithtranscriptionalfactorMyc,regulatesthe2HG-producingactivityofmutantIDH.Malatedehydrogenase(MDH), lactate
dehydrogenase (LDH), andphosphoglyceratedehydrogenase (PHGDH) areminorcontributorsof the2HGpool.ATPS, ATPsynthase;BCAT, branched-chainamino
acids aminotransferase; TET, ten-eleven translocation methylcytosine dioxygenase; KDM, lysine-specific demethylase; FTO, fat mass and obesity-associated
protein; KDM4A, lysine-specific demethylase 4A; ERK, extracellular signal–regulated kinase; STAT1, signal transducer and activator of transcription 1; EGLN, EGL-
nine homolog enzyme; ALKBH, ALKB homolog enzymes.
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Signaling role of intermediates derived from central carbon
metabolism

Central carbon metabolism consumes glucose and produces
not only energy but also a variety of metabolic intermediates to
satisfy the biosynthetic demands of cancer cells. Interestingly,
these metabolic intermediates were found to be signaling
molecules that control hypoxic signals and stress response.
Specifically, glycolysis and the TCA cycle contribute to glucose
degradation and ATP production (27), but they differ in oxygen
dependence. Cells up-regulate glycolysis to enhance energy
production when the surrounding environment lacks oxygen
(28), whereas they activate the TCA cycle when oxygen is
available. HIF1 signaling is a well-established oxygen-sensing
pathway that enhances the transcription of glycolytic enzymes.
Because the efficiency of transcription regulation is relatively
slow,which requires synthesis of newmRNAsandproteins, cells
have developed a rapid oxygen-sensing mechanism termed the
lactate-induced hypoxic signal. Lactate accumulates when cells
enter an anaerobic state, making lactate an indicator of oxygen
supply. Cells sense the increase of lactate through N-Myc
downstream-regulated3(NDRG3)proteinandinitiateahypoxic
response (29). Once bound to lactate, NDRG3 becomes more
stable, resulting in the activation of Raf-ERK1/2 signaling and
promotion of angiogenesis (29). In cancer cells, lactate accumu-
lates even in the aerobic state, potentially leading to constitutive
activation of lactate signaling. Interestingly, the enzyme respon-
sible for lactate production, lactate dehydrogenaseA (LDHA), is
involved in a second mechanism by which metabolites impact
signaling, although in this case its role relies on a noncanonical
catalytic activity. Cancer cells are challenged by oxidative stress
during transformation, in response towhichLDHA translocates
to the nucleus, where its noncanonical activity (a-ketobutyrate
dehydrogenase) is increased.Nuclear LDHAproducesa-hydro-
xybutyrate (a-HB) and epigenetically activatesWnt signaling by
enhancing disruptor of telomeric silencing 1–like (DOT1L)-
mediated histone H3 Lys-79 methylation. a-HB-DOT1L-Wnt
signaling is critical in maintaining redox balance in human
papillomavirus–induced cervical cancer (30). a-HB signaling
potentially cooperates with Wnt/b-catenin signals to promote
cell proliferation in several types of cancer.

TheTCAcyclealsoproducesavarietyof signalingmetabolites
that may be of relevance to cancer biology (31, 32). Deletion of
fumarate hydratase (FH), which is frequently observed in
hereditary leiomyomatosis and renal cell cancer, leads to the
accumulationof fumarate inhumanrenal cancer cells. Fumarate
isa structural analog toa-KG,andwhen inexcess, it inhibitsTET
and suppresses demethylation of miR-200ba429, a metastasis
repressor. Through this mechanism, fumarate up-regulates the
expression of transcription factors that drive the epithelial-to-
mesenchymal transition and promote cell transformation (33).
Notably, a cell-permeable version of fumarate was shown to
potentiate mitochondrial biogenesis (34), suggesting a link
between fumarate signaling and cellular respiration.
Glucose is not only the fuel for energy production but also a

precursor of the hexosamine pathway. UDP-glucose, a glucose
derivative, is able to dissociate Hu antigen R from snail family
transcriptional repressor 1 (SNAI1) mRNA and promote RNA
decay. Lung cancer cells have been shown to overexpress UDP-
glucose 6-dehydrogenase to oxidize UDP-glucose and stabilize
SNAI1 mRNA, further supporting the processes of EMT and
metastasis (35).

Cellular signaling of lipid synthesis and saturation

Lipids are critical sources of energy and the building blocks of
plasma and intracellular membranes, but they have also been
reported to regulatemultiple signaling events.Cancercells sense
the abundance of long-chain fatty acids (LCFA) by fatty
acid-binding protein 5 (FABP5). Interestingly, saturated and
unsaturated LCFA release retinoic acid from FABP5 to
activate retinoic acid–activated nuclear receptors. Specifically,
saturated LCFA (SLCFA) bind FABP5 to down-regulate the
transcriptional activity of peroxisome proliferator–activated
receptor b/d (PPAR b/d) (36). Because PPAR b/d plays a
pro-proliferative role by enhancing the transcription of genes
involved in cell growth and angiogenesis, diets enriched with
SLCFAdelay tumorgrowthinamousemodelofbreastcancer (36).
Sterols are a specific subset of lipids, which can activate

meiosis. Meiosis-activating sterols (MAS) can be sensed by the
liver X receptor (LXR), which in turn will promote the
transcription of the ABC transporters, including ABCA1 and
ABCG1. This process results in the activation of the cholesterol

Figure 2. Metabolites modulate oncogenic signaling in cancer cellsMetabolites from carbon metabolism, lipid metabolism, and amino acids metabolism
modulate oncogenic signal transduction. Left, lactate binds to and stabilizes NDRG3 to enhance Raf-ERK1/2 signaling. a-HB increases the activity of DOT1L and
enhances Wnt signaling by up-regulating histone methylation. Fumarate inhibits TET to increase genomic DNAmethylation and promotes EMT. UDP-glucose
suppresses Hu antigen R to inhibit EMT. Middle, SLCFA bind to FABP5 and suppresses PPAR b/d signaling. MAS interact with LXR to inhibit EGFR-KRAS
signaling. UFA suppress the transcriptional activity of NF-kB through an unknownmechanism. Right, 5-HIAA, a product in tryptophan catabolism, inhibits RAS/
MAPK signaling. NDRG3, NDRG family member 3; a-HB, a-hydroxybutyrate; DOT1L, DOT1-like histone H3 methyltransferase; EMT, epithelial-mesenchymal
transition; HuR, Hu antigen R; SLCFA, saturated long-chain fatty acids; FABP5, fatty acid-binding protein 5;MAS, meiosis-activating sterols; LXR, liver X receptor;
UFA, unsaturated fatty acids; 5-HIAA, 5-hydroxyindoleacetic acid.
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pump and the reduction of intracellular cholesterol. Addition-
ally, MAS can suppress the low-density lipoprotein receptor to
inhibit cholesterol uptake. Therefore, LXR-mediated MAS
signaling reduces cholesterol supply and suppresses malignant
transformation driven by epidermal growth factor receptor
(EGFR)andKirstenrat sarcomaviraloncogenehomolog(KRAS)
in skin tumor cells (37).
The fluidity of cellular membranes may be a metabolic

determinant of cell identity and is modulated by factors such as
the saturation degree of lipids. This feature allows cells to be
differentiated intodifferentsubsets.Cancerstemcells (CSCs)are
thought tobe therootofmetastasis andrelapse.Thesecells share
metabolic features similar to those of normal stem cells; still, a
better understanding of themetabolic determinants of stemness
can help uncover metabolite signaling pathways that sustain
CSCs (38–40). Of note, ovarian cancer stem cells have
significantly higher levels of unsaturated lipids than non-CSCs,
andthedegreeofunsaturation isclosely linkedto thestemnessof
these cells. Importantly, inhibition of desaturases efficiently
blocksNF-kB signaling and suppresses tumor-initiating activity
of ovarian CSCs (41). Therefore, desaturase may serve as a vital
target in eradicating CSCs. Cholesterol is another structural
component of membranes that controls membrane fluidity.
Cholesterol metabolism is closely linked to intestinal stem cell
proliferation. Lysophosphatidylcholine acyltransferase 3
(LPCAT3), a phospholipid remodeling protein, negatively
regulatescholesterolproduction.ThedeletionofLpcat3 induces
accumulation of cholesterol and confers high proliferative
capacity to intestinal stemcells, resulting in enhanced formation
of intestinal tumors (42).

Cancer signaling of amino acids metabolism

Cancer cells consume high amounts of amino acids to sustain
the fast turnover and need for proteins. Specifically, tumor cells
have an increased requirement for glutamine, leading to
glutamine depletion in the surrounding microenvironment. As
a consequence, cancer cells sense glutamine insufficiency and
seek alternative sources of amino acids during glutamine
shortage. Pancreatic cancer cells sense glutamine insufficiency
and activate EGFR and p21-activated kinase signaling to uptake
extracellular proteins through macropinocytosis and support
pancreatic cancer metabolism (43).
The intermediates of amino acids metabolism have been

shown to intersectwith cellular signaling. RAS/MAPK signaling
plays a key role in promoting cell proliferation and survival.
ActivationofRAS/MAPKsignalinghasbeenfrequentlyobserved
in various types of cancer. Interestingly, 5-hydroxyindoleacetic
acid (5-HIAA), a product in tryptophan degradation, potentially
interacts with membrane-bound receptors and effectively
suppresses RAS/MAPK signaling (44). Therefore, 5-HIAA
metabolism could potentially be targeted to suppress MAPK
signaling and tumor growth. Additionally, dysfunction of the
methionine salvage pathway has a signaling role in tumorigen-
esis. The methylthioadenosine phosphorylase (MTAP) gene
frommethioninemetabolismisabsent incertaincancers, suchas
glioblastoma.MTAPdeficiency results in the accumulationof 5-
methylthioadenosine (MTA). This nucleoside shares structural

similarities with SAM, which is a methyl donor in methylation
reactions. MTA inhibits protein arginine methyltransferase 5
(PRMT5), likelybyoccupyingitsSAM-bindingdomain,resulting
in decreasedmethyltransferase activity and hypomethylation of
downstream proteins (45, 46). Although the downstream
biological events remainunclear, treatmentwithMTAdecreases
the viability ofMTAP-deleted cancer cells.
Amino acids are also regulators of cancer stem cells. For

example, branched-chain amino acids (BCAAs), which are
essential for cell growth, seem to have an intrinsic linkwith both
stem cell fate decision and cancer stemness. Low valine to
isoleucine/leucine ratio, or BCAA imbalance, greatly slows the
formation of hematopoietic stem cells (47). Importantly,
branched-chain aminotransferase 1 (BCAT1), which is the
cytosolic enzyme responsible for BCAA degradation, shows
higher expression in leukemic stem cells. BCAT1 potentially
links BCAAs abundance to differentiation programs and
maintains the undifferentiated state of leukemia cells, as
inhibition of BCAT1 promotes the differentiation of myeloid
leukemia cells (48). BCAT1 transfers an amino group to a-KG
and decreases intracellular a-KG level. Consequently, the
activity of a-KG–dependent TET enzymes is suppressed to
induce genomic DNA hypermethylation (49). Of note, BCAT2,
the mitochondrial paralogue of BCAT1, is essential for the
progression of pancreatic cancer (50). Nevertheless, the down-
stream targets of BCAA signaling and how BCAAs regulate
cancer progression remain to be understood.

Nucleotide metabolism involved in cell fate decision

Cancer cells fulfill their high demands of DNA, RNA, and
consequentlynucleotides, at least inpart, byup-regulating thede
novo synthesis of ribose, purines, and pyrimidines. Pyrimidine
can act as a signaling molecule that controls cell differentiation.
In the case of acutemyeloid leukemia (AML), leukemic cells are
maintained at an undifferentiated state due to a differentiation
barrier (51). High-throughput screenings have identified dihy-
droorotate dehydrogenase, an enzyme involved in de novo
pyrimidine synthesis, asbeingresponsible for thisdifferentiation
block.Becausedihydroorotatedehydrogenase is a key enzyme in
uridine synthesis, uridine metabolites may have a signaling
function to control cell fate transition inAML.Elucidationof the
uridine signaling pathway may help us to understand the
metabolic basis of the differentiation barrier in AML (38).

Metabolite signaling in the tumor microenvironment

Thetumormicroenvironment is composedofcancercells and
cancer-associated fibroblasts as well as immune and pro-
inflammatory cytokines (52). To sustain rapid proliferation,
tumor cells compete for nutrients present in intercellular fluids
and secrete metabolic waste to reshape the metabolic composi-
tionoftheextracellularenvironment.Interestingly,theactivityof
tumor-associated cells is modulated by cancer metabolism to
create an environment supportive of cancer progression (Fig. 3).

Glucose metabolism linked to cancer immunosurveillance

Tumorcellsconsumelargeamountsofglucoseanddeprivethe
tumor-infiltrating immunecells of glucose.Asa result, glycolysis
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in these tumor-infiltrating T cells is disrupted, and phosphoe-
nolpyruvate, a glycolytic intermediate, accumulates. Phosphoe-
nolpyruvate is known to repress the activity of sarco-/endopla-
mic reticulum Ca21-ATPase (SERCA), which pumps calcium
from the cytoplasm into the endoplasmic reticulum, controlling
cytoplasmic Ca21 levels. A decrease in cytoplasmic Ca21

deactivates the transcription factor nuclear factor of activated
T cells (NFAT), to down-regulate the expression of target genes
and suppress T cell immune response (53). This in turnweakens
the effector function of CD4/CD8 T cells, which have tumor-
eliminating effects. As such, glucose metabolism seems to be
tightly linked to Ca21 signaling within the tumor tissue.
Furthermore, the glycolytic nature of most tumor cells results
in lactate accumulation and acidification of the microenviron-
ment. Lactate is a signaling metabolite that controls retinoic
acid–inducible gene I–like receptor (RLR) signaling, which
supports type I interferon production. Antiviral response RLR
signaling is well-known to support type I interferon production
and antiviral response. Importantly, RLR signaling is also
involved in cancer immune surveillance. Lactate directly binds
to the mitochondrial antiviral signaling protein (MAVS) and
preventsitsinteractionwithRLR.Theconsequentsuppressionof
RLR signaling weakens immune surveillance and promotes
cancer progression (54).

Amino acids metabolism implicated in tumor inflammation
and T cell differentiation

Amino acids are important regulators of inflammation and
anti-tumor response. Tryptophan catabolism generates kynur-
enine, a key signaling metabolite in tumor inflammation.
Kynureninecanbe sensedbyboth thearyl hydrocarbonreceptor
(AHR) and G protein–coupled receptor 35 (GPR35), which
will suppress immunosurveillance. Kynurenine-AHR/GPR35
signaling plays a regulatory role in chronic inflammation and
colonic tumorigenesis (55, 56).
T cells can differentiate into effector T cells that promote

immune response against tumors, such as T helper type 1 (Th1)
cells that are involved in the destruction of tumor cells, or into
regulatory T cells that mediate immunosuppression. This cell
differentiation process can bemodulated by tumormetabolism.
For instance, glutamine metabolism is a metabolic determinant

of T cell differentiation as its product, a-KG, can direct T cell
differentiation. Additionally, upon cytokine activation, naive
CD41 T cells can differentiate into Th1 cells in the presence of
glutamine or into T regulatory (Treg) cells in the absence of this
amino acid.a-KG increases themRNA level of the transcription
factorTbet,which governs Th1 differentiation (57). Determina-
tion of whether a-KG directly binds to Tbet or epigenetically
modulates Tbet expression requires further exploration.
Furthermore,a-KGenhancesmTORC1signaling todirectnaive
T cells toward Th1 cell differentiation. Overall, cancer cells
compete for glutaminepresent in the tumormicroenvironment,
a process that causes glutamine shortage for T cells. The
consequent Treg phenotype will ultimately contribute to
reduced immunosurveillance (58).

Intercellular signaling of fatty acids and cholesterol
metabolism in the tumor microenvironment

Fattyacidsandcholesterolarealsoinvolvedintheregulationof
inflammatory and immune responses. Exosomes serve as
key vehicles connecting tumor cells with their adjacent cells.
Notably, cancer-associated fibroblasts are important cellular
components of the tumor microenvironment that are respon-
sible for matrix deposition and signaling. Exosomes secreted by
cancer-associated fibroblasts transport a wide spectrum of
nutrients, suchasaminoacids, lipids,andTCAcyclemetabolites,
to fuel cancer cells during nutrient deprivation (59).
Exosome-mediatedmetabolite signaling is also involved in the

development of nonalcoholic steatohepatitis (NASH),which is a
high-risk factor for liver cancer. Clinically, NASH is featured by
liver cell death and inflammation. Liver cells (hepatocytes) show
enhanced release of extracellular vesicleswhen treatedwithhigh
levels of palmitate and lysophosphatidylcholine (60). Interest-
ingly, the secreted exosomes express ligands that can induce
tumor necrosis factor signaling and hepatocyte cell death.
Moreover, hepatocyte-derived exosomes interact with macro-
phages to up-regulate the expression of interleukin-1b and
interleukin-6 and enhance hepatic inflammation (60). Because
NASHpotentially progresses to liver cancer, enhanced release of
exosomes is potentially involved in the remodeling of the liver
cancermicroenvironment.

Figure3. Metabolite signaling in the tumormicroenvironmentMetabolite signaling incancer-associatedcellswithin themicroenvironment. Lactatedirectly
binds to MAVS to suppress RLR signaling and weakens cancer immunosurveillance. Kynurenine metabolism is activated in tumor-associating immune cells.
Kynurenine binds to either transcription factor AHR or the cell-surface receptor GPR35 tomediate inflammatory signaling. In Th1 cells, glutamine-deriveda-KG
increases the expression of Tbet, through anunknownmechanism, andpromotes Th1 cell differentiation. Bile acid triggers the release of CXCL16, which further
acts onendothelial cells andNK cells to enhance antitumor immunosurveillance.AHR, aryl hydrocarbon receptor;GPR35, G protein–coupled receptor 35; Tbet, T-
box transcription factor.
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Interestingly, bile acids are also regulatory metabolites in the
tumor microenvironment. Human liver cells produce bile acids
as the end metabolites of cholesterol metabolism. The link
betweenbileacidsandcoloncancerhasbeenreportedpreviously
(61), with the signaling function of bile acids being intensively
investigated in energy metabolism, inflammation, and cancer.
Bile acids have been shown to act on receptors from both the
nucleus and cell surface. Bile acids bind to farnesoid X receptor,
vitamin D receptor, and G protein–coupled bile acid receptors,
which further regulate lipid metabolism and energy production
by altering the expressionor activity of correspondingmetabolic
enzymes (62). In contrast, bile acids exert anti-tumor effects in
liver cancer. In hepatic sinusoidal endothelial cells, bile acids
trigger the releaseof chemokineCXCL16 toenhanceanti-tumor
immunosurveillance by increasing hepatic CXCR61 natural
killer cells (63).

Signaling of microbiota-derived metabolites

The microbiota is a rich source of metabolites within the
human body and is also a vital regulator of metabolite signaling.
Metabolites generated by microbiota are important signaling
molecules in both normal cells and cancer cells in the
colon. Several microbiota-produced metabolites, including
taurine, histamine, and spermine, act as signaling molecules to
suppress the NLRP6 inflammasome and inflammation-induced
colorectal cancer (64). Specifically, indole is an important
signaling metabolite in colon cancer. Indole associates with
AHR in the gastrointestinal tract and promotes its nuclear
translocation. The subsequent up-regulation of interleukin-6
transcription in human colon adenocarcinoma cells further
promotes tumor inflammation (65).

Concluding remarks

Metabolite signaling is proving to be quite a fascinating topic,
notonly contributing tometabolic remodelingof cancer but also
connecting cellular metabolism with signaling networks. While
thesignalingnatureofmoremetabolites isbeinguncovered,how
cells sense these metabolites and their physiological roles are
being explored in depth. It is important to note that the
abundance ofmetabolites is highly dynamic and largely depends
onnutrient status andcell state.Metabolomicprofilingof cancer
cells under different nutritional status, or cancer cells from
different stages, may help with the discovery of new signaling
rolesofmetabolites.Moreover,metabolites areknowntoexist in
a compartmentalized manner within cells (66). Therefore, the
same metabolite may have distinct signaling roles in different
cellular compartments.
Although we have gained rich knowledge of intracellular

metabolitesignaling,thisprocessbetweendifferentcell typesand
different organs remains largely unexplored. Moreover, tumor
cells are known to induce systemic changes to promote cancer
growthandmetastasis.Aclearunderstandingofintercellularand
interorgan metabolite signaling would also help to elucidate
complications in a tumor-bearing context, such as cachexia
(extreme weight loss andmuscle wasting).
The development of new tools or strategies would help to

advance our current understanding of metabolite signaling in

cancer.The signaling roleof ametabolite is largelydependenton
its interaction with macromolecules. Unfortunately, tools for
high-throughput discovery of metabolite-binding proteins are
still lacking, such asplatforms that could allow the screening and
discovery of metabolites acting on key signaling pathways in
cancer.
Most importantly, therapeutic targeting of metabolite signal-

ing holds great promise for clinical intervention in cancer. For
example, chemical inhibitors ofmutant IDHhave been success-
ful in the treatment of IDH-mutated leukemia, andweanticipate
that ongoing discovery of functional roles of metabolites and
their binding sites will provide other opportunities for the
development of new targeted therapies of cancer.
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